Person:
Couzin, Iain D.

Loading...
Profile Picture
Email Address
ORCID
0000-0001-8556-4558
Birth Date
Research Projects
Organizational Units
Job Title
Last Name
Couzin
First Name
Iain D.
Name

Search Results

Now showing 1 - 10 of 161
Loading...
Thumbnail Image
Publication

The chemical ecology of locust cannibalism

2023-05-05, Couzin, Iain D., Couzin-Fuchs, Einat

No Thumbnail Available
Publication

Quantifying the movement, behaviour and environmental context of group‐living animals using drones and computer vision

2023-03-21, Koger, Benjamin, Deshpande, Adwait, Kerby, Jeffrey T., Graving, Jacob M., Costelloe, Blair R., Couzin, Iain D.

1. Methods for collecting animal behaviour data in natural environments, such as direct observation and biologging, are typically limited in spatiotemporal resolution, the number of animals that can be observed and information about animals'social and physical environments. 2. Video imagery can capture rich information about animals and their environments, but image-based approaches are often impractical due to the challenges of processing large and complex multi-image datasets and transforming resulting data, such as animals' locations, into geographical coordinates. 3. We demonstrate a new system for studying behaviour in the wild that uses drone-recorded videos and computer vision approaches to automatically track the location and body posture of free-roaming animals in georeferenced coordinates with high spatiotemporal resolution embedded in contemporaneous 3D landscape models of the surrounding area. 4. We provide two worked examples in which we apply this approach to videos of gelada monkeys and multiple species of group-living African ungulates. We demonstrate how to track multiple animals simultaneously, classify individuals by species and age–sex class, estimate individuals' body postures (poses) and extract environmental features, including topography of the landscape and animal trails. 5. By quantifying animal movement and posture while reconstructing a detailed 3D model of the landscape, our approach opens the door to studying the sensory ecology and decision-making of animals within their natural physical and social environments.

Loading...
Thumbnail Image
Publication

Emerging technologies for behavioral research in changing environments

2023, Couzin, Iain D., Heins, Conor

The first response exhibited by animals to changing environments is typically behavioral. Behavior is thus central to predicting, and mitigating, the impacts that natural and anthropogenic environmental changes will have on populations and, consequently, ecosystems. Yet the inherently multiscale nature of behavior, as well as the complexities associated with inferring how animals perceive their world, and make decisions, has constrained the scope of behavioral research. Major technological advances in electronics and in machine learning, however, provide increasingly powerful means to see, analyze, and interpret behavior in its natural complexity. We argue that these disruptive technologies will foster new approaches that will allow us to move beyond quantitative descriptions and reveal the underlying generative processes that give rise to behavior.

Loading...
Thumbnail Image
Publication

Behavioral variation across the days and lives of honey bees

2022-09, Smith, Michael L., Davidson, Jacob D., Wild, Benjamin, Dormagen, David M., Landgraf, Tim, Couzin, Iain D.

In honey bee colonies, workers generally change tasks with age (from brood care, to nest work, to foraging). While these trends are well established, our understanding of how individuals distribute tasks during a day, and how individuals differ in their lifetime behavioral trajectories, is limited. Here, we use automated tracking to obtain long-term data on 4,100+ bees tracked continuously at 3 Hz, across an entire summer, and use behavioral metrics to compare behavior at different timescales. Considering single days, we describe how bees differ in space use, detection, and movement. Analyzing the behavior exhibited across their entire lives, we find consistent inter-individual differences in the movement characteristics of individuals. Bees also differ in how quickly they transition through behavioral space to ultimately become foragers, with fast-transitioning bees living the shortest lives. Our analysis framework provides a quantitative approach to describe individual behavioral variation within a colony from single days to entire lifetimes.

No Thumbnail Available
Publication

A simple cognitive model explains movement decisions in zebrafish while following leaders

2023-05-04, Oscar, Lital, Li, Liang, Gorbonos, Dan, Couzin, Iain D., Gov, Nir S., Lital, Oscar

While moving, animals must frequently make decisions about their future travel direction, whether they are alone or in a group. Here we investigate this process for zebrafish (Danio rerio), which naturally move in cohesive groups. Employing state-of-the-art virtual reality, we study how real fish follow one or several moving, virtual conspecifics (leaders). These data are used to inform, and test, a model of social response that includes a process of explicit decision-making, whereby the fish can decide which of the virtual conspecifics to follow, or to follow in some average direction. This approach is in contrast with previous models where the direction of motion was based on a continuous computation, such as directional averaging. Building upon a simplified version of this model [Sridhar et al., 2021], which was limited to a one-dimensional projection of the fish motion, we present here a model that describes the motion of the real fish as it swims freely in two-dimensions. Motivated by experimental observations, the swim speed of the fish in this model uses a burst and-coast swimming pattern, with the burst frequency being dependent on the distance of the fish from the followed conspecific(s). We demonstrate that this model is able to explain the observed spatial distribution of the real fish behind the virtual conspecifics in the experiments, as a function of their average speed and number. In particular, the model naturally explains the observed critical bifurcations for a freely swimming fish, which appear in the spatial distributions whenever the fish makes a decision to follow only one of the virtual conspecifics, instead of following them as an averaged group. This model can provide the foundation for modeling a cohesive shoal of swimming fish, while explicitly describing their directional decision-making process at the individual level.

Loading...
Thumbnail Image
Publication

Growth produces coordination trade-offs in Trichoplax adhaerens, an animal lacking a central nervous system

2023-03-10, Davidescu, Mircea R., Romanczuk, Pawel, Gregor, Thomas, Couzin, Iain D.

How collectives remain coordinated as they grow in size is a fundamental challenge affecting systems ranging from biofilms to governments. This challenge is particularly apparent in multicellular organisms, where coordination among a vast number of cells is vital for coherent animal behavior. However, the earliest multicellular organisms were decentralized, with indeterminate sizes and morphologies, as exemplified by Trichoplax adhaerens , arguably the earliest-diverged and simplest motile animal. We investigated coordination among cells in T. adhaerens by observing the degree of collective order in locomotion across animals of differing sizes and found that larger individuals exhibit increasingly disordered locomotion. We reproduced this effect of size on order through a simulation model of active elastic cellular sheets and demonstrate that this relationship is best recapitulated across all body sizes when the simulation parameters are tuned to a critical point in the parameter space. We quantify the trade-off between increasing size and coordination in a multicellular animal with a decentralized anatomy that shows evidence of criticality and hypothesize as to the implications of this on the evolution hierarchical structures such as nervous systems in larger organisms.

Loading...
Thumbnail Image
Publication

Head-tracking of freely-behaving pigeons in a motion-capture system reveals the selective use of visual field regions

2022-11-09, Kano, Fumihiro, Naik, Hemal, Keskin, Göksel, Couzin, Iain D., Nagy, Mate

Using a motion-capture system and custom head-calibration methods, we reconstructed the head-centric view of freely behaving pigeons and examined how they orient their head when presented with various types of attention-getting objects at various relative locations. Pigeons predominantly employed their retinal specializations to view a visual target, namely their foveas projecting laterally (at an azimuth of ± 75°) into the horizon, and their visually-sensitive "red areas" projecting broadly into the lower-frontal visual field. Pigeons used their foveas to view any distant object while they used their red areas to view a nearby object on the ground (< 50 cm). Pigeons "fixated" a visual target with their foveas; the intervals between head-saccades were longer when the visual target was viewed by birds' foveas compared to when it was viewed by any other region. Furthermore, pigeons showed a weak preference to use their right eye to examine small objects distinctive in detailed features and their left eye to view threat-related or social stimuli. Despite the known difficulty in identifying where a bird is attending, we show that it is possible to estimate the visual attention of freely-behaving birds by tracking the projections of their retinal specializations in their visual field with cutting-edge methods.

Loading...
Thumbnail Image
Publication

The benefits of swimming together

2023-03-22, Couzin, Iain D., Li, Liang

Loading...
Thumbnail Image
Publication

Inferring social influence in animal groups across multiple timescales

2023-02-20, Sridhar, Vivek H., Davidson, Jacob D., Twomey, Colin R., Sosna, Matthew M. G., Nagy, Mate, Couzin, Iain D.

Many animal behaviours exhibit complex temporal dynamics, suggesting there are multiple timescales at which they should be studied. However, researchers often focus on behaviours that occur over relatively restricted temporal scales, typically ones that are more accessible to human observation. The situation becomes even more complex when considering multiple animals interacting, where behavioural coupling can introduce new timescales of importance. Here, we present a technique to study the time-varying nature of social influence in mobile animal groups across multiple temporal scales. As case studies, we analyse golden shiner fish and homing pigeons, which move in different media. By analysing pairwise interactions among individuals, we show that predictive power of the factors affecting social influence depends on the timescale of analysis. Over short timescales the relative position of a neighbour best predicts its influence and the distribution of influence across group members is relatively linear, with a small slope. At longer timescales, however, both relative position and kinematics are found to predict influence, and nonlinearity in the influence distribution increases, with a small number of individuals being disproportionately influential. Our results demonstrate that different interpretations of social influence arise from analysing behaviour at different timescales, highlighting the importance of considering its multiscale nature. This article is part of a discussion meeting issue ‘Collective behaviour through time’.

Loading...
Thumbnail Image
Publication

Collective wisdom in polarized groups

2022-09-13, Bak-Coleman, Joseph B., Tokita, Christopher K., Morris, Dylan H., Rubenstein, Daniel I., Couzin, Iain D.

The potential for groups to outperform the cognitive capabilities of even highly skilled individuals, known as the “wisdom of the crowd”, is crucial to the functioning of democratic institutions. In recent years, increasing polarization has led to concern about its effects on the accuracy of electorates, juries, courts, and congress. While there is empirical evidence of collective wisdom in partisan crowds, a general theory has remained elusive. Central to the challenge is the difficulty of disentangling the effect of limited interaction between opposing groups (homophily) from their tendency to hold opposing viewpoints (partisanship). To overcome this challenge, we develop an agent-based model of collective wisdom parameterized by the experimentally-measured behaviour of participants across the political spectrum. In doing so, we reveal that differences across the political spectrum in how individuals express and respond to knowledge interact with the structure of the network to either promote or undermine wisdom. We verify these findings experimentally and construct a more general theoretical framework. Finally, we provide evidence that incidental, context-specific differences across the political spectrum likely determine the impact of polarization. Overall, our results show that whether polarized groups benefit from collective wisdom is generally predictable but highly context-specific.