Couzin, Iain D.

Lade...
Profilbild
E-Mail-Adresse
Geburtsdatum
Forschungsvorhaben
Organisationseinheiten
Berufsbeschreibung
Nachname
Couzin
Vorname
Iain D.
Name

Suchergebnisse Publikationen

Gerade angezeigt 1 - 6 von 6
Lade...
Vorschaubild
Veröffentlichung

Modular structure within groups causes information loss but can improve decision accuracy

2019-06-10, Kao, Albert B., Couzin, Iain D.

Many animal groups exhibit signatures of persistent internal modular structure, whereby individuals consistently interact with certain groupmates more than others. In such groups, information relevant to a collective decision may spread unevenly through the group, but how this impacts the quality of the resulting decision is not well understood. Here, we explicitly model modularity within animal groups and examine how it affects the amount of information represented in collective decisions, as well as the accuracy of those decisions. We find that modular structure necessarily causes a loss of information, effectively silencing the input from a fraction of the group. However, the effect of this information loss on collective accuracy depends on the informational environment in which the decision is made. In simple environments, the information loss is detrimental to collective accuracy. By contrast, in complex environments, modularity tends to improve accuracy. This is because small group sizes typically maximize collective accuracy in such environments, and modular structure allows a large group to behave like a smaller group (in terms of its decision-making). These results suggest that in naturalistic environments containing correlated information, large animal groups may be able to exploit modular structure to improve decision accuracy while retaining other benefits of large group size. This article is part of the theme issue 'Liquid brains, solid brains: How distributed cognitive architectures process information'.

Lade...
Vorschaubild
Veröffentlichung

Army ants dynamically adjust living bridges in response to a cost-benefit trade-off

2015, Reid, Chris R., Lutz, Matthew J., Powell, Scott, Kao, Albert B., Couzin, Iain D., Garnier, Simon

The ability of individual animals to create functional structures by joining together is rare and confined to the social insects. Army ants (Eciton) form collective assemblages out of their own bodies to perform a variety of functions that benefit the entire colony. Here we examine ‟bridges" of linked individuals that are constructed to span gaps in the colony's foraging trail. How these living structures adjust themselves to varied and changing conditions remains poorly understood. Our field experiments show that the ants continuously modify their bridges, such that these structures lengthen, widen, and change position in response to traffic levels and environmental geometry. Ants initiate bridges where their path deviates from their incoming direction and move the bridges over time to create shortcuts over large gaps. The final position of the structure depended on the intensity of the traffic and the extent of path deviation and was influenced by a cost-benefit trade-off at the colony level, where the benefit of increased foraging trail efficiency was balanced by the cost of removing workers from the foraging pool to form the structure. To examine this trade-off, we quantified the geometric relationship between costs and benefits revealed by our experiments. We then constructed a model to determine the bridge location that maximized foraging rate, which qualitatively matched the observed movement of bridges. Our results highlight how animal self-assemblages can be dynamically modified in response to a group-level cost-benefit trade-off, without any individual unit's having information on global benefits or costs.

Lade...
Vorschaubild
Veröffentlichung

Collective animal navigation and migratory culture : from theoretical models to empirical evidence

2018-05-19, Berdahl, Andrew M., Kao, Albert B., Flack, Andrea, Westley, Peter A. H., Codling, Edward A., Couzin, Iain D., Dell, Anthony I., Biro, Dora

Animals often travel in groups, and their navigational decisions can be influenced by social interactions. Both theory and empirical observations suggest that such collective navigation can result in individuals improving their ability to find their way and could be one of the key benefits of sociality for these species. Here, we provide an overview of the potential mechanisms underlying collective navigation, review the known, and supposed, empirical evidence for such behaviour and highlight interesting directions for future research. We further explore how both social and collective learning during group navigation could lead to the accumulation of knowledge at the population level, resulting in the emergence of migratory culture.

Lade...
Vorschaubild
Veröffentlichung

Collective Learning and Optimal Consensus Decisions in Social Animal Groups

2014, Kao, Albert B., Miller, Noam, Torney, Colin, Hartnett, Andrew, Couzin, Iain D.

Learning has been studied extensively in the context of isolated individuals. However, many organisms are social and consequently make decisions both individually and as part of a collective. Reaching consensus necessarily means that a single option is chosen by the group, even when there are dissenting opinions. This decision-making process decouples the otherwise direct relationship between animals' preferences and their experiences (the outcomes of decisions). Instead, because an individual's learned preferences influence what others experience, and therefore learn about, collective decisions couple the learning processes between social organisms. This introduces a new, and previously unexplored, dynamical relationship between preference, action, experience and learning. Here we model collective learning within animal groups that make consensus decisions. We reveal how learning as part of a collective results in behavior that is fundamentally different from that learned in isolation, allowing grouping organisms to spontaneously (and indirectly) detect correlations between group members' observations of environmental cues, adjust strategy as a function of changing group size (even if that group size is not known to the individual), and achieve a decision accuracy that is very close to that which is provably optimal, regardless of environmental contingencies. Because these properties make minimal cognitive demands on individuals, collective learning, and the capabilities it affords, may be widespread among group-living organisms. Our work emphasizes the importance and need for theoretical and experimental work that considers the mechanism and consequences of learning in a social context.

Lade...
Vorschaubild
Veröffentlichung

Counteracting estimation bias and social influence to improve the wisdom of crowds

2018-04, Kao, Albert B., Berdahl, Andrew M., Hartnett, Andrew T., Lutz, Matthew J., Bak-Coleman, Joseph B., Ioannou, Christos C., Giam, Xingli, Couzin, Iain D.

Aggregating multiple non-expert opinions into a collective estimate can improve accuracy across many contexts. However, two sources of error can diminish collective wisdom: individual estimation biases and information sharing between individuals. Here, we measure individual biases and social influence rules in multiple experiments involving hundreds of individuals performing a classic numerosity estimation task. We first investigate how existing aggregation methods, such as calculating the arithmetic mean or the median, are influenced by these sources of error. We show that the mean tends to overestimate, and the median underestimate, the true value for a wide range of numerosities. Quantifying estimation bias, and mapping individual bias to collective bias, allows us to develop and validate three new aggregation measures that effectively counter sources of collective estimation error. In addition, we present results from a further experiment that quantifies the social influence rules that individuals employ when incorporating personal estimates with social information. We show that the corrected mean is remarkably robust to social influence, retaining high accuracy in the presence or absence of social influence, across numerosities and across different methods for averaging social information. Using knowledge of estimation biases and social influence rules may therefore be an inexpensive and general strategy to improve the wisdom of crowds.

Lade...
Vorschaubild
Veröffentlichung

Visual sensory networks and effective information transfer in animal groups

2013-09, Strandburg-Peshkin, Ariana, Twomey, Colin R., Bode, Nikolai W.F., Kao, Albert B., Katz, Yael, Ioannou, Christos C., Rosenthal, Sara B., Torney, Colin J., Wu, Hai Shan, Couzin, Iain D.

Social transmission of information is vital for many group-living animals, allowing coordination of motion and effective response to complex environments. Revealing the interaction networks underlying information flow within these groups is a central challenge. Previous work has modeled interactions between individuals based directly on their relative spatial positions: each individual is considered to interact with all neighbors within a fixed distance (metric range), a fixed number of nearest neighbors (topological range), a 'shell' of near neighbors (Voronoi range), or some combination (Figure 1A). However, conclusive evidence to support these assumptions is lacking. Here, we employ a novel approach that considers individual movement decisions to be based explicitly on the sensory information available to the organism. In other words, we consider that while spatial relations do inform interactions between individuals, they do so indirectly, through individuals' detection of sensory cues. We reconstruct computationally the visual field of each individual throughout experiments designed to investigate information propagation within fish schools (golden shiners, Notemigonus crysoleucas). Explicitly considering visual sensing allows us to more accurately predict the propagation of behavioral change in these groups during leadership events. Furthermore, we find that structural properties of visual interaction networks differ markedly from those of metric and topological counterparts, suggesting that previous assumptions may not appropriately reflect information flow in animal groups.