Rädecker, Nils

Lade...
Profilbild
E-Mail-Adresse
ORCID
Geburtsdatum
Forschungsvorhaben
Organisationseinheiten
Berufsbeschreibung
Nachname
Rädecker
Vorname
Nils
Name

Suchergebnisse Publikationen

Gerade angezeigt 1 - 8 von 8
Lade...
Vorschaubild
Veröffentlichung

Presence of algal symbionts affects denitrifying bacterial communities in the sea anemone Aiptasia coral model

2022-12, Xiang, Nan, Rädecker, Nils, Pogoreutz, Claudia, Cárdenas, Anny, Meibom, Anders, Wild, Christian, Gärdes, Astrid, Voolstra, Christian R.

The coral-algal symbiosis is maintained by a constant and limited nitrogen availability in the holobiont. Denitrifiers, i.e., prokaryotes reducing nitrate/nitrite to dinitrogen, could contribute to maintaining the nitrogen limitation in the coral holobiont, however the effect of host and algal identity on their community is still unknown. Using the coral model Aiptasia, we quantified and characterized the denitrifier community in a full-factorial design combining two hosts (CC7 and H2) and two strains of algal symbionts of the family Symbiodiniaceae (SSA01 and SSB01). Strikingly, relative abundance of denitrifiers increased by up to 22-fold in photosymbiotic Aiptasia compared to their aposymbiotic (i.e., algal-depleted) counterparts. In line with this, while the denitrifier community in aposymbiotic Aiptasia was largely dominated by diet-associated Halomonas, we observed an increasing relative abundance of an unclassified bacterium in photosymbiotic CC7, and Ketobacter in photosymbiotic H2, respectively. Pronounced changes in denitrifier communities of Aiptasia with Symbiodinium linucheae strain SSA01 aligned with the higher photosynthetic carbon availability of these holobionts compared to Aiptasia with Breviolum minutum strain SSB01. Our results reveal that the presence of algal symbionts increases abundance and alters community structure of denitrifiers in Aiptasia. Thereby, patterns in denitrifier community likely reflect the nutritional status of aposymbiotic vs. symbiotic holobionts. Such a passive regulation of denitrifiers may contribute to maintaining the nitrogen limitation required for the functioning of the cnidarian-algal symbiosis.

Lade...
Vorschaubild
Veröffentlichung

Heat stress reduces the contribution of diazotrophs to coral holobiont nitrogen cycling

2022-04, Rädecker, Nils, Pogoreutz, Claudia, Gegner, Hagen M., Cárdenas, Anny, Perna, Gabriela, Geißler, Laura, Roth, Florian, Bougoure, Jeremy, Guagliardo, Paul, Voolstra, Christian R.

Efficient nutrient cycling in the coral-algal symbiosis requires constant but limited nitrogen availability. Coral-associated diazotrophs, i.e., prokaryotes capable of fixing dinitrogen, may thus support productivity in a stable coral-algal symbiosis but could contribute to its breakdown when overstimulated. However, the effects of environmental conditions on diazotroph communities and their interaction with other members of the coral holobiont remain poorly understood. Here we assessed the effects of heat stress on diazotroph diversity and their contribution to holobiont nutrient cycling in the reef-building coral Stylophora pistillata from the central Red Sea. In a stable symbiotic state, we found that nitrogen fixation by coral-associated diazotrophs constitutes a source of nitrogen to the algal symbionts. Heat stress caused an increase in nitrogen fixation concomitant with a change in diazotroph communities. Yet, this additional fixed nitrogen was not assimilated by the coral tissue or the algal symbionts. We conclude that although diazotrophs may support coral holobiont functioning under low nitrogen availability, altered nutrient cycling during heat stress abates the dependence of the coral host and its algal symbionts on diazotroph-derived nitrogen. Consequently, the role of nitrogen fixation in the coral holobiont is strongly dependent on its nutritional status and varies dynamically with environmental conditions.

Lade...
Vorschaubild
Veröffentlichung

Standardized short-term acute heat stress assays resolve historical differences in coral thermotolerance across microhabitat reef sites

2020-08, Voolstra, Christian R., Buitrago-López, Carol, Perna, Gabriela, Cárdenas, Anny, Hume, Benjamin C. C., Rädecker, Nils, Barshis, Daniel J.

Coral bleaching is one of the main drivers of reef degradation. Most corals bleach and suffer mortality at just 1–2°C above their maximum monthly mean temperatures, but some species and genotypes resist or recover better than others. Here, we conducted a series of 18‐hr short‐term acute heat stress assays side‐by‐side with a 21‐day long‐term heat stress experiment to assess the ability of both approaches to resolve coral thermotolerance differences reflective of in situ reef temperature thresholds. Using a suite of physiological parameters (photosynthetic efficiency, coral whitening, chlorophyll a , host protein, algal symbiont counts, and algal type association), we assessed bleaching susceptibility of Stylophora pistillata colonies from the windward/exposed and leeward/protected sites of a nearshore coral reef in the central Red Sea, which had previously shown differential mortality during a natural bleaching event. Photosynthetic efficiency was most indicative of the expected higher thermal tolerance in corals from the protected reef site, denoted by an increased retention of dark‐adapted maximum quantum yields at higher temperatures. These differences were resolved using both experimental setups, as corroborated by a positive linear relationship, not observed for the other parameters. Notably, short‐term acute heat stress assays resolved per‐colony (genotype) differences that may have been masked by acclimation effects in the long‐term experiment. Using our newly developed portable experimental system termed the Coral Bleaching Automated Stress System (CBASS), we thus highlight the potential of mobile, standardized short‐term acute heat stress assays to resolve fine‐scale differences in coral thermotolerance. Accordingly, such a system may be suitable for large‐scale determination and complement existing approaches to identify resilient genotypes/reefs for downstream experimental examination and prioritization of reef sites for conservation/restoration. Development of such a framework is consistent with the recommendations of the National Academy of Sciences and the Reef Restoration and Adaptation Program committees for new intervention and restoration strategies.

Lade...
Vorschaubild
Veröffentlichung

Greater functional diversity and redundancy of coral endolithic microbiomes align with lower coral bleaching susceptibility

2022-10, Cárdenas, Anny, Raina, Jean-Baptiste, Pogoreutz, Claudia, Rädecker, Nils, Bougoure, Jeremy, Guagliardo, Paul, Pernice, Mathieu, Voolstra, Christian R.

The skeleton of reef-building coral harbors diverse microbial communities that could compensate for metabolic deficiencies caused by the loss of algal endosymbionts, i.e., coral bleaching. However, it is unknown to what extent endolith taxonomic diversity and functional potential might contribute to thermal resilience. Here we exposed Goniastrea edwardsi and Porites lutea, two common reef-building corals from the central Red Sea to a 17-day long heat stress. Using hyperspectral imaging, marker gene/metagenomic sequencing, and NanoSIMS, we characterized their endolithic microbiomes together with 15N and 13C assimilation of two skeletal compartments: the endolithic band directly below the coral tissue and the deep skeleton. The bleaching-resistant G. edwardsi was associated with endolithic microbiomes of greater functional diversity and redundancy that exhibited lower N and C assimilation than endoliths in the bleaching-sensitive P. lutea. We propose that the lower endolithic primary productivity in G. edwardsi can be attributed to the dominance of chemolithotrophs. Lower primary production within the skeleton may prevent unbalanced nutrient fluxes to coral tissues under heat stress, thereby preserving nutrient-limiting conditions characteristic of a stable coral-algal symbiosis. Our findings link coral endolithic microbiome structure and function to bleaching susceptibility, providing new avenues for understanding and eventually mitigating reef loss.

Lade...
Vorschaubild
Veröffentlichung

Heat stress destabilizes symbiotic nutrient cycling in corals

2021-02-02, Rädecker, Nils, Pogoreutz, Claudia, Gegner, Hagen M., Cárdenas, Anny, Roth, Florian, Bougoure, Jeremy, Guagliardo, Paul, Wild, Christian, Pernice, Mathieu, Voolstra, Christian R.

Recurrent mass bleaching events are pushing coral reefs worldwide to the brink of ecological collapse. While the symptoms and consequences of this breakdown of the coral-algal symbiosis have been extensively characterized, our understanding of the underlying causes remains incomplete. Here, we investigated the nutrient fluxes and the physiological as well as molecular responses of the widespread coral Stylophora pistillata to heat stress prior to the onset of bleaching to identify processes involved in the breakdown of the coral-algal symbiosis. We show that altered nutrient cycling during heat stress is a primary driver of the functional breakdown of the symbiosis. Heat stress increased the metabolic energy demand of the coral host, which was compensated by the catabolic degradation of amino acids. The resulting shift from net uptake to release of ammonium by the coral holobiont subsequently promoted the growth of algal symbionts and retention of photosynthates. Together, these processes form a feedback loop that will gradually lead to the decoupling of carbon translocation from the symbiont to the host. Energy limitation and altered symbiotic nutrient cycling are thus key factors in the early heat stress response, directly contributing to the breakdown of the coral-algal symbiosis. Interpreting the stability of the coral holobiont in light of its metabolic interactions provides a missing link in our understanding of the environmental drivers of bleaching and may ultimately help uncover fundamental processes underpinning the functioning of endosymbioses in general.

Lade...
Vorschaubild
Veröffentlichung

Down to the bone : the role of overlooked endolithic microbiomes in reef coral health

2020-02, Pernice, Mathieu, Raina, Jean-Baptiste, Rädecker, Nils, Cárdenas, Anny, Pogoreutz, Claudia, Voolstra, Christian R.

Reef-building corals harbour an astonishing diversity of microorganisms, including endosymbiotic microalgae, bacteria, archaea, and fungi. The metabolic interactions within this symbiotic consortium are fundamental to the ecological success of corals and the unique productivity of coral reef ecosystems. Over the last two decades, scientific efforts have been primarily channelled into dissecting the symbioses occurring in coral tissues. Although easily accessible, this compartment is only 2-3 mm thick, whereas the underlying calcium carbonate skeleton occupies the vast internal volume of corals. Far from being devoid of life, the skeleton harbours a wide array of algae, endolithic fungi, heterotrophic bacteria, and other boring eukaryotes, often forming distinct bands visible to the bare eye. Some of the critical functions of these endolithic microorganisms in coral health, such as nutrient cycling and metabolite transfer, which could enable the survival of corals during thermal stress, have long been demonstrated. In addition, some of these microorganisms can dissolve calcium carbonate, weakening the coral skeleton and therefore may play a major role in reef erosion. Yet, experimental data are wanting due to methodological limitations. Recent technological and conceptual advances now allow us to tease apart the complex physical, ecological, and chemical interactions at the heart of coral endolithic microbial communities. These new capabilities have resulted in an excellent body of research and provide an exciting outlook to further address the functional microbial ecology of the "overlooked" coral skeleton.

Lade...
Vorschaubild
Veröffentlichung

Coral holobiont cues prime Endozoicomonas for a symbiotic lifestyle

2022-08, Pogoreutz, Claudia, Oakley, Clinton A., Rädecker, Nils, Cárdenas, Anny, Perna, Gabriela, Xiang, Nan, Peng, Lifeng, Davy, Simon K., Ngugi, David K., Voolstra, Christian R.

Endozoicomonas are prevalent, abundant bacterial associates of marine animals, including corals. Their role in holobiont health and functioning, however, remains poorly understood. To identify potential interactions within the coral holobiont, we characterized the novel isolate Endozoicomonas marisrubri sp. nov. 6c and assessed its transcriptomic and proteomic response to tissue extracts of its native host, the Red Sea coral Acropora humilis. We show that coral tissue extracts stimulated differential expression of genes putatively involved in symbiosis establishment via the modulation of the host immune response by E. marisrubri 6c, such as genes for flagellar assembly, ankyrins, ephrins, and serpins. Proteome analyses revealed that E. marisrubri 6c upregulated vitamin B1 and B6 biosynthesis and glycolytic processes in response to holobiont cues. Our results suggest that the priming of Endozoicomonas for a symbiotic lifestyle involves the modulation of host immunity and the exchange of essential metabolites with other holobiont members. Consequently, Endozoicomonas may play an important role in holobiont nutrient cycling and may therefore contribute to coral health, acclimatization, and adaptation.

Vorschaubild nicht verfügbar
Veröffentlichung

The coral holobiont highlights the dependence of cnidarian animal hosts on their associated microbes

2021, Pogoreutz, Claudia, Voolstra, Christian R., Rädecker, Nils, Weis, Virginia, Cárdenas, Anny, Raina, Jean-Baptiste

Coral reefs face unprecedented threats from anthropogenic environmental change. Climate change, pollution, and overfishing are affecting symbiotic interactions in the coral holobiont, which constitute the structural and functional foundation of reef ecosystems, eventually leading to the breakdown of the symbiosis and/or the onset of disease(s). The resulting dysbiosis of species relationships within the coral holobiont causes coral mortality at a global scale, accompanied by unprecedented loss of coral reef cover. In this chapter, we discuss the diversity of microbes (Symbiodiniaceae, bacteria, archaea, protists, fungi) associated with the coral host and what is known of their respective contribution to holobiont functioning. We highlight how the coral–dinoflagellate symbiosis forms the “engine” of the coral holobiont machinery, and we discuss the complexity of interactions that have shaped the ecological success of corals. We conclude that the coral holobiont is a prime example of how microbial associates shape the biology of their animal hosts and enable them to inhabit and even thrive in otherwise inhospitable environments. Given the current global decline of coral reef ecosystems, it is imperative to better understand the mechanisms governing coral holobiont function and health in order to develop strategies for mitigating the consequences of climate change and local anthropogenic stressors.