Denk, Robert

Lade...
Profilbild
E-Mail-Adresse
Geburtsdatum
Forschungsvorhaben
Organisationseinheiten
Berufsbeschreibung
Nachname
Denk
Vorname
Robert
Name

Suchergebnisse Publikationen

Gerade angezeigt 1 - 9 von 9
Vorschaubild nicht verfügbar
Veröffentlichung

Boundary value problems with rough boundary data

2023, Denk, Robert, Ploß, David, Rau, Sophia, Seiler, Jörg

Vorschaubild nicht verfügbar
Veröffentlichung

On the maximal Lp-regularity of parabolic mixed-order systems

2011, Denk, Robert, Seiler, Jörg

Vorschaubild nicht verfügbar
Veröffentlichung

Inhomogeneous symbols, the Newton polygon, and maximal Lp-regularity

2008, Denk, Robert, Saal, Jürgen, Seiler, Jörg

We prove a maximal regularity result for operators corresponding to rotation invariant symbols (in space) which are inhomogeneous in space and time. Symbols of this type frequently arise in the treatment of half-space models for (free) boundary-value problems. The result is obtained by extending the Newton polygon approach to variables living in complex sectors and combining it with abstract results on the H∞-calculus and R-bounded operator families. As an application, we derive maximal regularity for the linearized Stefan problem with Gibbs-Thomson correction.

Vorschaubild nicht verfügbar
Veröffentlichung

Maximal Lp -regularity of non-local boundary value problems

2015, Denk, Robert, Seiler, Jörg

We investigate the R -boundedness of operator families belonging to the Boutet de Monvel calculus. In particular, we show that weakly and strongly parameter-dependent Green operators of nonpositive order are R -bounded. Such operators appear as resolvents of non-local (pseudodifferential) boundary value problems. As a consequence, we obtain maximal Lp -regularity for such boundary value problems. An example is given by the reduced Stokes equation in waveguides.

Lade...
Vorschaubild
Veröffentlichung

On the maximal Lp-regularity of parabolic mixed order systems

2010, Denk, Robert, Seiler, Jörg

We study maximal Lp-regularity for a class of pseudodifferential mixed order systems on a space-time cylinder ℝn x ℝ or X x ℝ where X is a closed smooth manifold. To this end we construct a calculus of Volterra pseudodifferential operators and characterize the parabolicity of a system by the invertibility of certain associated symbols. A parabolic system is shown to induce isomorphisms between suitable Lp-Sobolev spaces of Bessel potential or Besov type. If the cross section of the space-time cylinder is compact, the inverse of a parabolic system belongs to the calculus again. As applications we discuss time-dependent Douglis-Nirenberg systems and a linear system arising in the study of the Stefan problem with Gibbs-Thomson correction.

Lade...
Vorschaubild
Veröffentlichung

Vorlesung Pseudodifferentialoperatoren

2007, Denk, Robert, Seiler, Jörg

Skript zur Vorlesung vom Wintersemester 2007/08

Lade...
Vorschaubild
Veröffentlichung

Maximal Lp-regularity of non-local boundary value problems

2013, Denk, Robert, Seiler, Jörg

We investigate the R-boundedness of operator families belonging to the Boutet de Monvel calculus. In particular, we show that weakly and strongly parameter-dependent Green operators of nonpositive order are R-bounded. Such operators appear as resolvents of non-local (pseudodifferential) boundary value problems. As a consequence, we obtain maximal Lp-regularity for such boundary value problems. An example is given by the reduced Stokes equation in waveguides.

Vorschaubild nicht verfügbar
Veröffentlichung

Bounded H-calculus for pseudo-differential Douglis–Nirenberg systems of mild regularity

2009, Denk, Robert, Saal, Jürgen, Seiler, Jörg

Lade...
Vorschaubild
Veröffentlichung

Bounded H-infty-calculus for pseudodifferential Douglis-Nirenberg systems of mild regularity

2007, Denk, Robert, Saal, Jürgen, Seiler, Jörg

Parameter-ellipticity with respect to a closed subsector of the complex plane for pseudodifferential Douglis-Nirenberg systems is introduced and shown to imply the existence of a bounded H_\infty-calculus in suitable scales of Sobolev, Besov, and Hölder spaces. We also admit non pseudodifferential perturbations. Applications concern systems with coefficients of mild Hölder regularity and the generalized thermoelastic plate equations.