Keicher, Lara


Suchergebnisse Publikationen

Gerade angezeigt 1 - 2 von 2
Vorschaubild nicht verfügbar

Contrasting torpor use by reproductive male common noctule bats in the laboratory and in the field

2023, Keicher, Lara, Shipley, J. Ryan, Schaeffer, Paul J., Dechmann, Dina K. N.

Metabolic processes of animals are often studied in controlled laboratory settings. However, these laboratory settings often do not reflect the animals’ natural environment. Thus, results of metabolic measurements from laboratory studies must be cautiously applied to free-ranging animals. Recent technological advances in animal tracking allow detailed eco-physiological studies that reveal when, where and how physiological measurements from the field differ from those from the laboratory. We investigated torpor behavior of male common noctule bats (Nyctalus noctula) across different life history stages using two approaches: in controlled laboratory experiments and in the field using calibrated heart rate telemetry. We predicted that non-reproductive males would extensively use torpor to conserve energy, whereas reproductive males would reduce torpor use to promote spermatogenesis. We did not expect differences in torpor use between captive and wild animals as we simulated natural temperature conditions in the laboratory. We found that during the non-reproductive phase, both captive and free-ranging bats used torpor extensively. During reproduction, bats in captivity unexpectedly also used torpor throughout the day, while only free-ranging bats showed the expected reduction in torpor use. Thus, depending on life history stage, torpor behavior in the laboratory was markedly different from the wild. By implementing both approaches and at different life history stages, we were able to better explore the limitations of eco-physiological laboratory studies and make recommendations for when they are an appropriate proxy for natural behavior.

Vorschaubild nicht verfügbar

Stable carbon isotopes in breath reveal fast metabolic incorporation rates and seasonally variable but rapid fat turnover in the common shrew (Sorex araneus)

2017-08-02, Keicher, Lara, O'Mara, Michael Teague, Voigt, Christian C., Dechmann, Dina K. N.

Small non-migratory mammals with Northern distribution ranges apply a variety of behavioural and physiological wintering strategies. A rare energy-saving strategy is Dehnel's phenomenon, involving a reduction and later regrowth of the body size, several organs and parts of the skeleton in red-toothed shrews (Soricidae). The size extremes coincide with major life stages. However, the physiological consequences for the shrew's metabolism remain poorly understood. In keeping with the energetic limitations that may induce the size changes, we hypothesised that metabolic incorporation rates should remain the same across the shrews' lifetimes. In contrast, fat turnover rates should be faster in smaller subadults than in large juveniles and regrown adults, as the metabolic activity of fat tissue increases in winter individuals (subadults). Measuring the changes in the ratio of exhaled stable carbon isotopes, we found that the baseline diet of shrews changed across the season. A diet switch experiment showed that incorporation rates were consistently rapid (t50=38.2±21.1-69.3±53.5 min) and did not change between seasons. As predicted, fat turnover rates were faster in size-reduced subadults (t50=2.1±1.3 h) compared with larger juveniles (t50=5.5±1.7 h) and regrown adults (t50=5.0±4.4 h). In all three age/size classes, all body fat was turned over after 9-24 h. These results show that high levels of nutrient uptake are independent of body size, whereas fat turnover rates are negatively correlated with body size. Thus, the shrews might be under higher pressure to save energy in winter and this may have supported the evolution of Dehnel's phenomenon.