Datensatz:

Replication Data for: Improving Computer Vision Interpretability: Transparent Two-level Classification for Complex Scenes

Lade...
Vorschaubild

Datum der Erstveröffentlichung

2024

Andere Beitragende

Repositorium der Erstveröffentlichung

Harvard Dataverse

Version des Datensatzes

V1
Link zur Lizenz
oops

Angaben zur Forschungsförderung

Projekt

Core Facility der Universität Konstanz
Bewerten Sie die FAIRness der Forschungsdaten

Gesperrt bis

Titel in einer weiteren Sprache

Publikationsstatus
Published

Zusammenfassung

Treating images as data has become increasingly popular in political science. While existing classifiers for images reach high levels of accuracy, it is difficult to systematically assess the visual features on which they base their classification. This paper presents a two-level classification method that addresses this transparency problem. At the first stage, an image segmenter detects the objects present in the image and a feature vector is created from those objects. In the second stage, this feature vector is used as input for standard machine learning classifiers to discriminate between images. We apply this method to a new dataset of more than 140,000 images to detect which ones display political protest. This analysis demonstrates three advantages to this paper's approach. First, identifying objects in images improves transparency by providing human-understandable labels for the objects shown on an image. Second, knowing these objects enables analysis of which distinguish protest images from non-protest ones. Third, comparing the importance of objects across countries reveals how protest behavior varies. These insights are not available using conventional computer vision classifiers and provide new opportunities for comparative research.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Social Sciences, image analysis, computer vision, explainable AI, two-level classification, protest analysis

Zugehörige Publikationen in KOPS

Publikation
Zeitschriftenartikel
Improving Computer Vision Interpretability : Transparent Two-Level Classification for Complex Scenes
(2024) Scholz, Stefan; Weidmann, Nils B.; Steinert-Threlkeld, Zachary C.; Keremoglu, Eda; Goldlücke, Bastian
Erschienen in: Political Analysis. Cambridge University Press. ISSN 1047-1987. eISSN 1476-4989. Verfügbar unter: doi: 10.1017/pan.2024.18
Link zu zugehöriger Publikation
Link zu zugehörigem Datensatz

Zitieren

ISO 690SCHOLZ, Stefan, Nils B. WEIDMANN, Zachary C. STEINERT-THRELKELD, Eda KEREMOGLU, Bastian GOLDLÜCKE, 2024. Replication Data for: Improving Computer Vision Interpretability: Transparent Two-level Classification for Complex Scenes
BibTex
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/72502">
    <dcterms:issued>2024</dcterms:issued>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/71935"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/72502"/>
    <dc:creator>Keremoglu, Eda</dc:creator>
    <dcterms:created rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2024-05-29T21:25:35.000Z</dcterms:created>
    <dc:contributor>Goldlücke, Bastian</dc:contributor>
    <dc:creator>Scholz, Stefan</dc:creator>
    <dcterms:abstract>Treating images as data has become increasingly popular in political science. While existing classifiers for images reach high levels of accuracy, it is difficult to systematically assess the visual features on which they base their classification. This paper presents a two-level classification method that addresses this transparency problem. At the first stage, an image segmenter detects the objects present in the image and a feature vector is created from those objects. In the second stage, this feature vector is used as input for standard machine learning classifiers to discriminate between images. We apply this method to a new dataset of more than 140,000 images to detect which ones display political protest. This analysis demonstrates three advantages to this paper's approach. First, identifying objects in images improves transparency by providing human-understandable labels for the objects shown on an image. Second, knowing these objects enables analysis of which distinguish protest images from non-protest ones. Third, comparing the importance of objects across countries reveals how protest behavior varies. These insights are not available using conventional computer vision classifiers and provide new opportunities for comparative research.</dcterms:abstract>
    <dc:contributor>Weidmann, Nils B.</dc:contributor>
    <dc:contributor>Steinert-Threlkeld, Zachary C.</dc:contributor>
    <dcterms:title>Replication Data for: Improving Computer Vision Interpretability: Transparent Two-level Classification for Complex Scenes</dcterms:title>
    <dc:creator>Goldlücke, Bastian</dc:creator>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2025-02-28T11:59:05Z</dc:date>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2025-02-28T11:59:05Z</dcterms:available>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:creator>Weidmann, Nils B.</dc:creator>
    <dc:contributor>Keremoglu, Eda</dc:contributor>
    <dc:language>eng</dc:language>
    <dc:contributor>Scholz, Stefan</dc:contributor>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/71935"/>
    <dc:creator>Steinert-Threlkeld, Zachary C.</dc:creator>
  </rdf:Description>
</rdf:RDF>
URL (Link zu den Daten)

Prüfdatum der URL

Kommentar zur Publikation

Universitätsbibliographie
Diese Publikation teilen