Datensatz:

3D-POP - An automated annotation approach to facilitate markerless 2D-3D tracking of freely moving birds with marker-based motion capture

Lade...
Vorschaubild

Datum der Erstveröffentlichung

2023

Andere Beitragende

Repositorium der Erstveröffentlichung

Max Planck Digital Library

Version des Datensatzes

6
Link zur Lizenz

Angaben zur Forschungsförderung

Deutsche Forschungsgemeinschaft (DFG): 422037984

Projekt

Core Facility der Universität Konstanz
Bewerten Sie die FAIRness der Forschungsdaten

Gesperrt bis

Titel in einer weiteren Sprache

Publikationsstatus
Published

Zusammenfassung

The 3DPOP dataset is a large scale 2D to 3D posture, identity and trajectory dataset for freely moving pigeons. We use marker-based motion tracking to first track precise head and body position and orientation for multiple individuals, then propagated custom keypoints based on the relative positions of markers and keypoints.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
570 Biowissenschaften, Biologie

Schlagwörter

Biology, Computer Science, Systems and Electrical Engineering, Posture Tracking, Computer Vision, Motion Capture, Homing Pigeon, Identity Tracking, 3D Posture tracking, Computer Vision, Animal Behaviour, 2D Posture, 3D Posture

Zugehörige Publikationen in KOPS

Publikation
Beitrag zu einem Konferenzband
3D-POP : An Automated Annotation Approach to Facilitate Markerless 2D-3D Tracking of Freely Moving Birds with Marker-Based Motion Capture
(2023) Naik, Hemal; Chan, Hoi Hang; Yang, Junran; Delacoux, Mathilde; Couzin, Iain D.; Kano, Fumihiro; Nagy, Mate
Erschienen in: 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway, NJ: IEEE, 2023, S. 21274-21284. ISBN 979-8-3503-0129-8. Verfügbar unter: doi: 10.1109/cvpr52729.2023.02038
Link zu zugehöriger Publikation
Link zu zugehörigem Datensatz

Zitieren

ISO 690NAIK, Hemal, Hoi Hang CHAN, Junran YANG, Mathilde DELACOUX, Iain D. COUZIN, Fumihiro KANO, Mate NAGY, 2023. 3D-POP - An automated annotation approach to facilitate markerless 2D-3D tracking of freely moving birds with marker-based motion capture
BibTex
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/72869">
    <dc:creator>Delacoux, Mathilde</dc:creator>
    <dc:contributor>Yang, Junran</dc:contributor>
    <dcterms:title>3D-POP - An automated annotation approach to facilitate markerless 2D-3D tracking of freely moving birds with marker-based motion capture</dcterms:title>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:contributor>Couzin, Iain D.</dc:contributor>
    <dc:contributor>Kano, Fumihiro</dc:contributor>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2025-04-02T09:11:28Z</dcterms:available>
    <dc:creator>Kano, Fumihiro</dc:creator>
    <dc:language>eng</dc:language>
    <dc:contributor>Naik, Hemal</dc:contributor>
    <dcterms:created rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2023-03-09T14:27:09.000Z</dcterms:created>
    <dc:creator>Yang, Junran</dc:creator>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2025-04-02T09:11:28Z</dc:date>
    <dc:rights>Creative Commons Attribution 4.0 International</dc:rights>
    <dcterms:issued>2023</dcterms:issued>
    <dc:contributor>Delacoux, Mathilde</dc:contributor>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/72869"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:creator>Couzin, Iain D.</dc:creator>
    <dcterms:abstract>The 3DPOP dataset is a large scale 2D to 3D posture, identity and trajectory dataset for freely moving pigeons. We use marker-based motion tracking to first track precise head and body position and orientation for multiple individuals, then propagated custom keypoints based on the relative positions of markers and keypoints.</dcterms:abstract>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/71914"/>
    <dc:creator>Naik, Hemal</dc:creator>
    <dc:contributor>Nagy, Mate</dc:contributor>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/71920"/>
    <dc:creator>Chan, Hoi Hang</dc:creator>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/71914"/>
    <dc:contributor>Chan, Hoi Hang</dc:contributor>
    <dcterms:rights rdf:resource="https://creativecommons.org/licenses/by/4.0/legalcode"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/71920"/>
    <dc:creator>Nagy, Mate</dc:creator>
  </rdf:Description>
</rdf:RDF>
URL (Link zu den Daten)

Prüfdatum der URL

Kommentar zur Publikation

Universitätsbibliographie
Ja
Diese Publikation teilen