Datensatz:

Data from: Predicting invasion success of cultivated naturalized plants in China

Lade...
Vorschaubild

Datum der Erstveröffentlichung

2025

Andere Beitragende

Repositorium der Erstveröffentlichung

DRYAD

Version des Datensatzes

Angaben zur Forschungsförderung

National Natural Science Foundation of China: 31500331

Projekt

Core Facility der Universität Konstanz
Bewerten Sie die FAIRness der Forschungsdaten

Gesperrt bis

Titel in einer weiteren Sprache

Publikationsstatus
Published

Zusammenfassung

Plant invasions pose significant threats to native ecosystems, human health, and global economies. However, the complex and multidimensional nature of factors influencing plant invasions makes it challenging to predict and interpret their invasion success accurately. Using a robust machine learning algorithm, random forest, and an extensive suite of characteristics related to environmental niches, species traits, and propagule pressure, we developed a classification model to predict the invasion success of naturalized cultivated plants in China. Based on the final optimal model, we evaluated the relative importance of individual and grouped variables and their prediction performance. Our study identified key individual variables within each of three groupings: climatic suitability and native range size (environmental niches), phylogenetic distance to the closest native taxon and vegetative propagation mode (species traits), and the number of botanical gardens and provinces where species were cultivated (propagule pressure). Remarkably, when grouped variables were evaluated, the relative importance of grouped variables increased dramatically—by 13.5 to 17.7 times—compared to the cumulative importance of individual variables within a category. However, the relative importance of one category was primarily due to the number of variables within each category rather than its inherent characteristics. Synthesis and applications. Our findings emphasize the necessity of developing data-driven predictive tools for effective invasion risk assessment using large datasets. We also highlight the importance of grouped variables in enhancing model interpretability. For practical application in China, we recommend prioritizing surveillance of alien plant species with large native ranges and high climatic suitability. Implementing a tiered risk assessment system based on our random forest model can allow for a more effective allocation of resources for monitoring and managing invasive species. Ultimately, interdisciplinary collaboration is crucial for implementing and applying these predictive tools, thereby protecting biodiversity, ecosystem services, and economic interests.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
570 Biowissenschaften, Biologie

Schlagwörter

FOS: Biological sciences, FOS: Biological sciences, environmental niches, feature importance, individual and grouped variables, naturalized cultivated plants, Plant invasions, Propagule pressure, random forest, species traits

Zugehörige Publikationen in KOPS

Publikation
Zeitschriftenartikel
Predicting invasion success of naturalized cultivated plants in China
(2025) Dong, Bi-Cheng; Dong, Ran; Yang, Qiang; Kinlock, Nicole L.; Yu, Fei‐Hai; van Kleunen, Mark
Erschienen in: Journal of Applied Ecology. Wiley. 2025, 62(3), S. 651-660. ISSN 0021-8901. eISSN 1365-2664. Verfügbar unter: doi: 10.1111/1365-2664.14873
Link zu zugehöriger Publikation
Link zu zugehörigem Datensatz

Zitieren

ISO 690DONG, Bi-Cheng, Ran DONG, Qiang YANG, Nicole L. KINLOCK, Fei-Hai YU, Mark VAN KLEUNEN, 2025. Data from: Predicting invasion success of cultivated naturalized plants in China
BibTex
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/72227">
    <dcterms:created rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2025-01-03T12:55:20Z</dcterms:created>
    <dc:contributor>Yang, Qiang</dc:contributor>
    <dc:creator>Yang, Qiang</dc:creator>
    <dc:contributor>Dong, Ran</dc:contributor>
    <dc:creator>Dong, Ran</dc:creator>
    <dc:contributor>Dong, Bi-Cheng</dc:contributor>
    <dc:creator>van Kleunen, Mark</dc:creator>
    <dc:contributor>Yu, Fei-Hai</dc:contributor>
    <dcterms:abstract>Plant invasions pose significant threats to native ecosystems, human health, and global economies. However, the complex and multidimensional nature of factors influencing plant invasions makes it challenging to predict and interpret their invasion success accurately. Using a robust machine learning algorithm, random forest, and an extensive suite of characteristics related to environmental niches, species traits, and propagule pressure, we developed a classification model to predict the invasion success of naturalized cultivated plants in China. Based on the final optimal model, we evaluated the relative importance of individual and grouped variables and their prediction performance. Our study identified key individual variables within each of three groupings: climatic suitability and native range size (environmental niches), phylogenetic distance to the closest native taxon and vegetative propagation mode (species traits), and the number of botanical gardens and provinces where species were cultivated (propagule pressure). Remarkably, when grouped variables were evaluated, the relative importance of grouped variables increased dramatically—by 13.5 to 17.7 times—compared to the cumulative importance of individual variables within a category. However, the relative importance of one category was primarily due to the number of variables within each category rather than its inherent characteristics. Synthesis and applications. Our findings emphasize the necessity of developing data-driven predictive tools for effective invasion risk assessment using large datasets. We also highlight the importance of grouped variables in enhancing model interpretability. For practical application in China, we recommend prioritizing surveillance of alien plant species with large native ranges and high climatic suitability. Implementing a tiered risk assessment system based on our random forest model can allow for a more effective allocation of resources for monitoring and managing invasive species. Ultimately, interdisciplinary collaboration is crucial for implementing and applying these predictive tools, thereby protecting biodiversity, ecosystem services, and economic interests.</dcterms:abstract>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/71914"/>
    <dc:rights>Creative Commons Zero v1.0 Universal</dc:rights>
    <dcterms:title>Data from: Predicting invasion success of cultivated naturalized plants in China</dcterms:title>
    <dc:creator>Dong, Bi-Cheng</dc:creator>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2025-02-07T11:03:46Z</dcterms:available>
    <dcterms:rights rdf:resource="https://creativecommons.org/publicdomain/zero/1.0/legalcode"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/71914"/>
    <dc:creator>Yu, Fei-Hai</dc:creator>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/72227"/>
    <dc:contributor>Kinlock, Nicole L.</dc:contributor>
    <dc:contributor>van Kleunen, Mark</dc:contributor>
    <dcterms:issued>2025</dcterms:issued>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2025-02-07T11:03:46Z</dc:date>
    <dc:creator>Kinlock, Nicole L.</dc:creator>
    <dc:language>eng</dc:language>
  </rdf:Description>
</rdf:RDF>
URL (Link zu den Daten)

Prüfdatum der URL

Kommentar zur Publikation

Universitätsbibliographie
Ja
Diese Publikation teilen