Datensatz: BuckTales : A multi-UAV dataset for multi-object tracking and re-identification of wild antelopes
Datum der Erstveröffentlichung
Autor:innen
Andere Beitragende
Repositorium der Erstveröffentlichung
Version des Datensatzes
DOI (Link zu den Daten)
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationsstatus
Zusammenfassung
The dataset contains UAV footage of wild antelopes (blackbucks) in grassland habitats. It can be mainly used for two tasks: Multi-object tracking (MOT) and Re-Identification (Re-ID). We provide annotations for the position of animals in each frame, allowing us to offer very long videos (up to 3 min) completely annotated while maintaining the identity of each animal in the video. The Re-ID dataset offers two videos, that capture the movement of some animals simultaneously from two different UAVs. The Re-ID task is to find the same individual in two videos taken simultaneously from a slightly different perspective. The relevant paper will be published in the NeurIPS 2024 Dataset and Benchmarking Track. https://nips.cc/virtual/2024/poster/97563 Resolution: 5.4 K MOT: 12 videos ( MOT17 Format) Re-ID: 6 sets (each with a pair of drones) (Custom) Detection: 320 Images (COCO, YOLO)
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Link zu zugehöriger Publikation
Zitieren
ISO 690
NAIK, Hemal, Junran YANG, Dipin DAS, Margaret C. CROFOOT, Akanksha RATHORE, Vivek H. SRIDHAR, 2024. BuckTales : A multi-UAV dataset for multi-object tracking and re-identification of wild antelopesBibTex
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/72689"> <dc:contributor>Yang, Junran</dc:contributor> <dcterms:issued>2024</dcterms:issued> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/71914"/> <dcterms:isReferencedBy>10.48550/arXiv.2411.06896</dcterms:isReferencedBy> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/71914"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/71920"/> <dc:language>eng</dc:language> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2025-03-17T16:48:26Z</dcterms:available> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/72689"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2025-03-17T16:48:26Z</dc:date> <dc:creator>Das, Dipin</dc:creator> <dc:creator>Yang, Junran</dc:creator> <dc:contributor>Das, Dipin</dc:contributor> <dc:contributor>Sridhar, Vivek H.</dc:contributor> <dc:creator>Rathore, Akanksha</dc:creator> <dcterms:title>BuckTales : A multi-UAV dataset for multi-object tracking and re-identification of wild antelopes</dcterms:title> <dc:rights>Creative Commons Attribution Share Alike 4.0 International</dc:rights> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/71920"/> <dc:creator>Naik, Hemal</dc:creator> <dc:contributor>Crofoot, Margaret C.</dc:contributor> <dc:creator>Sridhar, Vivek H.</dc:creator> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:contributor>Naik, Hemal</dc:contributor> <dcterms:abstract>The dataset contains UAV footage of wild antelopes (blackbucks) in grassland habitats. It can be mainly used for two tasks: Multi-object tracking (MOT) and Re-Identification (Re-ID). We provide annotations for the position of animals in each frame, allowing us to offer very long videos (up to 3 min) completely annotated while maintaining the identity of each animal in the video. The Re-ID dataset offers two videos, that capture the movement of some animals simultaneously from two different UAVs. The Re-ID task is to find the same individual in two videos taken simultaneously from a slightly different perspective. The relevant paper will be published in the NeurIPS 2024 Dataset and Benchmarking Track. https://nips.cc/virtual/2024/poster/97563 Resolution: 5.4 K MOT: 12 videos ( MOT17 Format) Re-ID: 6 sets (each with a pair of drones) (Custom) Detection: 320 Images (COCO, YOLO)</dcterms:abstract> <dcterms:created rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2024-10-09T15:36:00Z</dcterms:created> <dc:creator>Crofoot, Margaret C.</dc:creator> <dcterms:rights rdf:resource="https://creativecommons.org/licenses/by-sa/4.0/legalcode"/> <dc:contributor>Rathore, Akanksha</dc:contributor> </rdf:Description> </rdf:RDF>