KonIQ-10k IQA Database

dc.contributor.authorHosu, Vlad
dc.contributor.authorLin, Hanhe
dc.contributor.authorSzirányi, Tamas
dc.contributor.authorSaupe, Dietmar
dc.contributor.otherWiedemann, Oliver
dc.date.accessioned2025-05-09T14:00:07Z
dc.date.available2025-05-09T14:00:07Z
dc.date.created2022-01-19T14:00:17Z
dc.date.issued2022
dc.description.abstractKonIQ-10k is, at the time of publication, the largest IQA dataset to date consisting of 10,073 quality scored images. This is the first in-the-wild database aiming for ecological validity, with regard to the authenticity of distortions, the diversity of content, and quality-related indicators. Through the use of crowdsourcing, we obtained 1.2 million reliable quality ratings from 1,459 crowd workers, paving the way for more general IQA models. We introduce a novel, deep learning model (KonCept512), to show an excellent generalization beyond the test set (0.921 SROCC), to the current state-of-the-art database LIVE-in-the-Wild (0.825 SROCC). The model derives its core performance from the InceptionResNet architecture, being trained at a higher resolution than previous models (512x384). A correlation analysis shows that KonCept512 performs similar to having 9 subjective scores for each test image. The two zip files contain the same images, once in the original resolution of 1024x768px that was used in the study and once downscaled to 512x384px. Mean opinion scores (MOS) as well as the raw distributions acquired through the absolute category ratings are contained in the koniq10k_scores_and_distributions.tab. We additionally provide the auxiliary indicators discussed in the paper in the koniq10k_indicators.tab.
dc.description.versionpublisheddeu
dc.identifier.doi10.18419/darus-2435
dc.identifier.urihttps://kops.uni-konstanz.de/handle/123456789/73286
dc.language.isoeng
dc.relation.haspart10.18419/darus-2435/4
dc.relation.haspart10.18419/darus-2435/1
dc.relation.haspart10.18419/darus-2435/2
dc.relation.haspart10.18419/darus-2435/3
dc.relation.isreferencedbyhttps://doi.org/10.1145/2812802
dc.subjectComputer and Information Science
dc.subjectImage Quality
dc.subjectQuality Assessment
dc.subjectIQA
dc.subject.ddc004
dc.titleKonIQ-10k IQA Databaseeng
dspace.entity.typeDataset
kops.citation.bibtex
kops.citation.iso690HOSU, Vlad, Hanhe LIN, Tamas SZIRÁNYI, Dietmar SAUPE, 2022. KonIQ-10k IQA Databasedeu
kops.citation.iso690HOSU, Vlad, Hanhe LIN, Tamas SZIRÁNYI, Dietmar SAUPE, 2022. KonIQ-10k IQA Databaseeng
kops.citation.rdf
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/73286">
    <dcterms:relation>10.18419/darus-2435/2</dcterms:relation>
    <dc:creator>Saupe, Dietmar</dc:creator>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/71925"/>
    <dcterms:hasPart>10.18419/darus-2435/4</dcterms:hasPart>
    <dcterms:relation>10.18419/darus-2435/4</dcterms:relation>
    <dc:contributor>Szirányi, Tamas</dc:contributor>
    <dc:creator>Lin, Hanhe</dc:creator>
    <dc:contributor>Wiedemann, Oliver</dc:contributor>
    <dcterms:issued>2022</dcterms:issued>
    <dcterms:title>KonIQ-10k IQA Database</dcterms:title>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/73286"/>
    <dcterms:hasPart>10.18419/darus-2435/3</dcterms:hasPart>
    <dcterms:abstract>KonIQ-10k is, at the time of publication, the largest IQA dataset to date consisting of 10,073 quality scored images. This is the first in-the-wild database aiming for ecological validity, with regard to the authenticity of distortions, the diversity of content, and quality-related indicators. Through the use of crowdsourcing, we obtained 1.2 million reliable quality ratings from 1,459 crowd workers, paving the way for more general IQA models.

We introduce a novel, deep learning model (KonCept512), to show an excellent generalization beyond the test set (0.921 SROCC), to the current state-of-the-art database LIVE-in-the-Wild (0.825 SROCC). The model derives its core performance from the InceptionResNet architecture, being trained at a higher resolution than previous models (512x384). A correlation analysis shows that KonCept512 performs similar to having 9 subjective scores for each test image. The two zip files contain the same images, once in the original resolution of 1024x768px that was used in the study and once downscaled to 512x384px. Mean opinion scores (MOS) as well as the raw distributions acquired through the absolute category ratings are contained in the koniq10k_scores_and_distributions.tab. We additionally provide the auxiliary indicators discussed in the paper in the koniq10k_indicators.tab.</dcterms:abstract>
    <dc:contributor>Lin, Hanhe</dc:contributor>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:contributor>Saupe, Dietmar</dc:contributor>
    <dc:creator>Szirányi, Tamas</dc:creator>
    <dc:creator>Hosu, Vlad</dc:creator>
    <dcterms:hasPart>10.18419/darus-2435/2</dcterms:hasPart>
    <dcterms:relation>10.18419/darus-2435/1</dcterms:relation>
    <dc:contributor>Hosu, Vlad</dc:contributor>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2025-05-09T14:00:07Z</dc:date>
    <dcterms:isReferencedBy>https://doi.org/10.1145/2812802</dcterms:isReferencedBy>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/71925"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2025-05-09T14:00:07Z</dcterms:available>
    <dcterms:created rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-01-19T14:00:17Z</dcterms:created>
    <dcterms:relation>10.18419/darus-2435/3</dcterms:relation>
    <dc:language>eng</dc:language>
    <dcterms:hasPart>10.18419/darus-2435/1</dcterms:hasPart>
  </rdf:Description>
</rdf:RDF>
kops.datacite.repositoryUniversitätsbibliothek Stuttgart
kops.description.funding{"second":"251654672","first":"dfg"}
kops.flag.knbibliographytrue
relation.isAuthorOfDataset46e43f0d-5589-4060-b110-18519cbf61e0
relation.isAuthorOfDataset72057485-5f84-41aa-b6cb-8d616362e6a8
relation.isAuthorOfDatasetfffb576d-6ec6-4221-8401-77f1d117a9b9
relation.isAuthorOfDataset.latestForDiscovery46e43f0d-5589-4060-b110-18519cbf61e0
relation.isContributorOfDatasetc39b7364-a777-46ff-bf56-4e613f766410
relation.isContributorOfDataset.latestForDiscoveryc39b7364-a777-46ff-bf56-4e613f766410
relation.isPublicationOfDatasetcb146377-59ec-4c1a-af1a-87c07397b665
relation.isPublicationOfDataset.latestForDiscoverycb146377-59ec-4c1a-af1a-87c07397b665
temp.internal.duplicatesitems/a87c105a-b1bb-4cc7-8489-c43f83cfc8ba;true;KonIQ-10k: Towards an ecologically valid and large-scale IQA database

Dateien