Datensatz:

KonIQ-10k IQA Database

Lade...
Vorschaubild

Datum der Erstveröffentlichung

2022

Autor:innen

Andere Beitragende

Repositorium der Erstveröffentlichung

Universitätsbibliothek Stuttgart

Version des Datensatzes

Link zur Lizenz
oops

Angaben zur Forschungsförderung

Deutsche Forschungsgemeinschaft (DFG): 251654672

Projekt

Core Facility der Universität Konstanz
Bewerten Sie die FAIRness der Forschungsdaten

Gesperrt bis

Titel in einer weiteren Sprache

Publikationsstatus
Published

Zusammenfassung

KonIQ-10k is, at the time of publication, the largest IQA dataset to date consisting of 10,073 quality scored images. This is the first in-the-wild database aiming for ecological validity, with regard to the authenticity of distortions, the diversity of content, and quality-related indicators. Through the use of crowdsourcing, we obtained 1.2 million reliable quality ratings from 1,459 crowd workers, paving the way for more general IQA models.

We introduce a novel, deep learning model (KonCept512), to show an excellent generalization beyond the test set (0.921 SROCC), to the current state-of-the-art database LIVE-in-the-Wild (0.825 SROCC). The model derives its core performance from the InceptionResNet architecture, being trained at a higher resolution than previous models (512x384). A correlation analysis shows that KonCept512 performs similar to having 9 subjective scores for each test image. The two zip files contain the same images, once in the original resolution of 1024x768px that was used in the study and once downscaled to 512x384px. Mean opinion scores (MOS) as well as the raw distributions acquired through the absolute category ratings are contained in the koniq10k_scores_and_distributions.tab. We additionally provide the auxiliary indicators discussed in the paper in the koniq10k_indicators.tab.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Computer and Information Science, Image Quality, Quality Assessment, IQA

Zugehörige Publikationen in KOPS

Publikation
Zeitschriftenartikel
KonIQ-10k : An Ecologically Valid Database for Deep Learning of Blind Image Quality Assessment
(2020) Hosu, Vlad; Lin, Hanhe; Sziranyi, Tamas; Saupe, Dietmar
Erschienen in: IEEE Transactions on Image Processing. IEEE. 2020, 29, S. 4041-4056. ISSN 1057-7149. eISSN 1941-0042. Verfügbar unter: doi: 10.1109/TIP.2020.2967829
Link zu zugehöriger Publikation
Link zu zugehörigem Datensatz

Zitieren

ISO 690HOSU, Vlad, Hanhe LIN, Tamas SZIRÁNYI, Dietmar SAUPE, 2022. KonIQ-10k IQA Database
BibTex
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/73286">
    <dcterms:relation>10.18419/darus-2435/2</dcterms:relation>
    <dc:creator>Saupe, Dietmar</dc:creator>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/71925"/>
    <dcterms:hasPart>10.18419/darus-2435/4</dcterms:hasPart>
    <dcterms:relation>10.18419/darus-2435/4</dcterms:relation>
    <dc:contributor>Szirányi, Tamas</dc:contributor>
    <dc:creator>Lin, Hanhe</dc:creator>
    <dc:contributor>Wiedemann, Oliver</dc:contributor>
    <dcterms:issued>2022</dcterms:issued>
    <dcterms:title>KonIQ-10k IQA Database</dcterms:title>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/73286"/>
    <dcterms:hasPart>10.18419/darus-2435/3</dcterms:hasPart>
    <dcterms:abstract>KonIQ-10k is, at the time of publication, the largest IQA dataset to date consisting of 10,073 quality scored images. This is the first in-the-wild database aiming for ecological validity, with regard to the authenticity of distortions, the diversity of content, and quality-related indicators. Through the use of crowdsourcing, we obtained 1.2 million reliable quality ratings from 1,459 crowd workers, paving the way for more general IQA models.

We introduce a novel, deep learning model (KonCept512), to show an excellent generalization beyond the test set (0.921 SROCC), to the current state-of-the-art database LIVE-in-the-Wild (0.825 SROCC). The model derives its core performance from the InceptionResNet architecture, being trained at a higher resolution than previous models (512x384). A correlation analysis shows that KonCept512 performs similar to having 9 subjective scores for each test image. The two zip files contain the same images, once in the original resolution of 1024x768px that was used in the study and once downscaled to 512x384px. Mean opinion scores (MOS) as well as the raw distributions acquired through the absolute category ratings are contained in the koniq10k_scores_and_distributions.tab. We additionally provide the auxiliary indicators discussed in the paper in the koniq10k_indicators.tab.</dcterms:abstract>
    <dc:contributor>Lin, Hanhe</dc:contributor>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:contributor>Saupe, Dietmar</dc:contributor>
    <dc:creator>Szirányi, Tamas</dc:creator>
    <dc:creator>Hosu, Vlad</dc:creator>
    <dcterms:hasPart>10.18419/darus-2435/2</dcterms:hasPart>
    <dcterms:relation>10.18419/darus-2435/1</dcterms:relation>
    <dc:contributor>Hosu, Vlad</dc:contributor>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2025-05-09T14:00:07Z</dc:date>
    <dcterms:isReferencedBy>https://doi.org/10.1145/2812802</dcterms:isReferencedBy>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/71925"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2025-05-09T14:00:07Z</dcterms:available>
    <dcterms:created rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-01-19T14:00:17Z</dcterms:created>
    <dcterms:relation>10.18419/darus-2435/3</dcterms:relation>
    <dc:language>eng</dc:language>
    <dcterms:hasPart>10.18419/darus-2435/1</dcterms:hasPart>
  </rdf:Description>
</rdf:RDF>
URL (Link zu den Daten)

Prüfdatum der URL

Kommentar zur Publikation

Universitätsbibliographie
Ja
Diese Publikation teilen