Datensatz:

Replication Data for: Uncertainty-Aware Principal Component Analysis

Lade...
Vorschaubild

Datum der Erstveröffentlichung

2022

Andere Beitragende

Repositorium der Erstveröffentlichung

Universitätsbibliothek Stuttgart

Version des Datensatzes

V1
Link zur Lizenz
oops

Angaben zur Forschungsförderung

Deutsche Forschungsgemeinschaft (DFG): 251654672

Projekt

SmartDataLake - Sustainable Data Lakes for Extreme-Scale Analytics
Core Facility der Universität Konstanz
Bewerten Sie die FAIRness der Forschungsdaten

Gesperrt bis

Titel in einer weiteren Sprache

Publikationsstatus
Published

Zusammenfassung

This dataset contains the source code for uncertainty-aware principal component analysis (UA-PCA) and a series of images that show dimensionality reduction plots created with UA-PCA. The software is a JavaScript library for performing principal component analysis and dimensionality reduction on datasets consisting of multivariate probability distributions. Each plot of the image series used UA-PCA to project a dataset consisting of multivariate normal distributions. The covariance matrices of the dataset instances were scaled with different factors resulting in different UA-PCA projections. The projected probability distributions are displayed using isolines of their probability density functions. As the scaling value increases, the projection changes, showing the sensitivity of UA-PCA to changes in variance.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
004 Informatik

Schlagwörter

Information Visualization, Uncertainty, Dimension Reduction (Statistics)

Zugehörige Publikationen in KOPS

Publikation
Zeitschriftenartikel
Uncertainty-Aware Principal Component Analysis
(2020) Görtler, Jochen; Spinner, Thilo; Streeb, Dirk; Weiskopf, Daniel; Deussen, Oliver
Erschienen in: IEEE Transactions on Visualization and Computer Graphics. Institute of Electrical and Electronics Engineers (IEEE). 2020, 26(1), S. 822-831. ISSN 1077-2626. eISSN 1941-0506. Verfügbar unter: doi: 10.1109/TVCG.2019.2934812
Link zu zugehöriger Publikation
Link zu zugehörigem Datensatz

Zitieren

ISO 690GÖRTLER, Jochen, Thilo SPINNER, Daniel WEISKOPF, Oliver DEUSSEN, 2022. Replication Data for: Uncertainty-Aware Principal Component Analysis
BibTex
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/72851">
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/72851"/>
    <dcterms:relation>10.18419/darus-2321/17</dcterms:relation>
    <dcterms:hasPart>10.18419/darus-2321/12</dcterms:hasPart>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2025-04-01T08:38:47Z</dc:date>
    <dc:creator>Weiskopf, Daniel</dc:creator>
    <dcterms:hasPart>10.18419/darus-2321/5</dcterms:hasPart>
    <dcterms:relation>10.18419/darus-2321/2</dcterms:relation>
    <dcterms:relation>10.18419/darus-2321/3</dcterms:relation>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/71925"/>
    <dc:contributor>Spinner, Thilo</dc:contributor>
    <dc:creator>Görtler, Jochen</dc:creator>
    <dcterms:hasPart>10.18419/darus-2321/1</dcterms:hasPart>
    <dc:contributor>Weiskopf, Daniel</dc:contributor>
    <dc:creator>Spinner, Thilo</dc:creator>
    <dc:contributor>Hägele, David</dc:contributor>
    <dcterms:relation>10.18419/darus-2321/8</dcterms:relation>
    <dcterms:hasPart>10.18419/darus-2321/10</dcterms:hasPart>
    <dcterms:relation>10.18419/darus-2321/9</dcterms:relation>
    <dc:contributor>Görtler, Jochen</dc:contributor>
    <dcterms:relation>10.18419/darus-2321/13</dcterms:relation>
    <dcterms:relation>10.18419/darus-2321/14</dcterms:relation>
    <dcterms:relation>10.18419/darus-2321/16</dcterms:relation>
    <dcterms:hasPart>10.18419/darus-2321/9</dcterms:hasPart>
    <dc:language>eng</dc:language>
    <dcterms:relation>10.18419/darus-2321/6</dcterms:relation>
    <dcterms:relation>10.18419/darus-2321/7</dcterms:relation>
    <dcterms:issued>2022</dcterms:issued>
    <dcterms:created rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-12-22T10:54:42.000Z</dcterms:created>
    <dcterms:relation>10.18419/darus-2321/1</dcterms:relation>
    <dcterms:hasPart>10.18419/darus-2321/11</dcterms:hasPart>
    <dcterms:hasPart>10.18419/darus-2321/14</dcterms:hasPart>
    <dcterms:hasPart>10.18419/darus-2321/13</dcterms:hasPart>
    <dcterms:title>Replication Data for: Uncertainty-Aware Principal Component Analysis</dcterms:title>
    <dcterms:hasPart>10.18419/darus-2321/16</dcterms:hasPart>
    <dcterms:hasPart>10.18419/darus-2321/7</dcterms:hasPart>
    <dcterms:hasPart>10.18419/darus-2321/6</dcterms:hasPart>
    <dcterms:hasPart>10.18419/darus-2321/3</dcterms:hasPart>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:hasPart>10.18419/darus-2321/2</dcterms:hasPart>
    <dcterms:relation>10.18419/darus-2321/11</dcterms:relation>
    <dcterms:relation>10.18419/darus-2321/12</dcterms:relation>
    <dcterms:relation>10.18419/darus-2321/4</dcterms:relation>
    <dcterms:relation>10.18419/darus-2321/5</dcterms:relation>
    <dcterms:hasPart>10.18419/darus-2321/15</dcterms:hasPart>
    <dcterms:abstract>This dataset contains the source code for uncertainty-aware principal component analysis (UA-PCA) and a series of images that show dimensionality reduction plots created with UA-PCA. The software is a JavaScript library for performing principal component analysis and dimensionality reduction on datasets consisting of multivariate probability distributions. Each plot of the image series used UA-PCA to project a dataset consisting of multivariate normal distributions. The covariance matrices of the dataset instances were scaled with different factors resulting in different UA-PCA projections. The projected probability distributions are displayed using isolines of their probability density functions. As the scaling value increases, the projection changes, showing the sensitivity of UA-PCA to changes in variance.</dcterms:abstract>
    <dcterms:relation>10.18419/darus-2321/10</dcterms:relation>
    <dc:contributor>Deussen, Oliver</dc:contributor>
    <dcterms:hasPart>10.18419/darus-2321/8</dcterms:hasPart>
    <dcterms:hasPart>10.18419/darus-2321/4</dcterms:hasPart>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/71925"/>
    <dcterms:relation>10.18419/darus-2321/15</dcterms:relation>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2025-04-01T08:38:47Z</dcterms:available>
    <dc:creator>Deussen, Oliver</dc:creator>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:hasPart>10.18419/darus-2321/17</dcterms:hasPart>
  </rdf:Description>
</rdf:RDF>
URL (Link zu den Daten)

Prüfdatum der URL

Kommentar zur Publikation

Universitätsbibliographie
Ja
Diese Publikation teilen