Datensatz:

Data and code from: 3D-SOCS: synchronized video capture for posture estimation

Lade...
Vorschaubild

Datum der Erstveröffentlichung

2025

Autor:innen

Andere Beitragende

Repositorium der Erstveröffentlichung

DRYAD

Version des Datensatzes

Angaben zur Forschungsförderung

Deutsche Forschungsgemeinschaft (DFG): EXC 2117-422037984

Projekt

Core Facility der Universität Konstanz
Bewerten Sie die FAIRness der Forschungsdaten

Gesperrt bis

Titel in einer weiteren Sprache

Publikationsstatus
Published

Zusammenfassung

This repository provides the data and code necessary to reproduce the manuscript "Peering into the world of wild passerines with 3D-SOCS: synchronized video capture for posture estimation".This repository also contains sample datasets for running the code and bounding box and keypoint annotations. Collection of large behavioral data-sets on wild animals in natural habitats is vital in ecology and evolution studies. Recent progress in machine learning and computer vision, combined with inexpensive microcomputers, have unlocked a new frontier of fine-scale markerless measurements. Here, we leverage these advancements to develop a 3D Synchronized Outdoor Camera System (3D-SOCS): an inexpensive, mobile and automated method for collecting behavioral data on wild animals using synchronized video frames from Raspberry Pi controlled cameras. Accuracy tests demonstrate 3D-SOCS’ markerless tracking can estimate postures with a 3mm tolerance. To illustrate its research potential, we place 3D-SOCS in the field and conduct a stimulus presentation experiment. We estimate 3D postures and trajectories for multiple individuals of different bird species, and use this data to characterize the visual field configuration of wild great tits (Parus major), a model species in behavioral ecology. We find their optic axes at approximately ±60◦ azimuth and −5◦ elevation. Furthermore, birds exhibit functional lateralization in their use of the right eye with conspecific stimulus, and show individual differences in lateralization. We also show that birds’ convex hulls predicts body weight, highlighting 3D-SOCS’ potential for non-invasive population monitoring. 3D-SOCS is a first-of-its-kind camera system for wild research, presenting exciting potential to measure fine-scaled behavior and morphology in wild birds.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
570 Biowissenschaften, Biologie

Schlagwörter

FOS: Biological sciences, FOS: Biological sciences, 3D tracking, Parus major, Visual Field, Animal behavior, Raspberry Pi

Zugehörige Publikationen in KOPS

Publikation
Zeitschriftenartikel
Peering into the world of wild passerines with 3D-SOCS : Synchronized video capture and posture estimation
(2025) Chimento, Michael; Chan, Alex Hoi Hang; Aplin, Lucy M.; Kano, Fumihiro
Erschienen in: Methods in Ecology and Evolution. Wiley. ISSN 2041-2096. eISSN 2041-210X. Verfügbar unter: doi: 10.1111/2041-210x.70051
Link zu zugehöriger Publikation
Link zu zugehörigem Datensatz

Zitieren

ISO 690CHIMENTO, Michael, Alex Hoi Hang CHAN, Lucy M. APLIN, Fumihiro KANO, 2025. Data and code from: 3D-SOCS: synchronized video capture for posture estimation
BibTex
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/73177">
    <dcterms:rights rdf:resource="https://creativecommons.org/publicdomain/zero/1.0/legalcode"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2025-04-30T08:45:46Z</dcterms:available>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:creator>Chan, Alex Hoi Hang</dc:creator>
    <dc:contributor>Kano, Fumihiro</dc:contributor>
    <dcterms:issued>2025</dcterms:issued>
    <dcterms:created rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2025-04-24T21:13:17Z</dcterms:created>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/71920"/>
    <dc:creator>Aplin, Lucy M.</dc:creator>
    <dc:contributor>Aplin, Lucy M.</dc:contributor>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2025-04-30T08:45:46Z</dc:date>
    <dc:creator>Kano, Fumihiro</dc:creator>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/71920"/>
    <dc:creator>Chimento, Michael</dc:creator>
    <dcterms:title>Data and code from: 3D-SOCS: synchronized video capture for posture estimation</dcterms:title>
    <dcterms:abstract>This repository provides the data and code necessary to reproduce the manuscript "Peering into the world of wild passerines with 3D-SOCS: synchronized video capture for posture estimation".This repository also contains sample datasets for running the code and bounding box and keypoint annotations. Collection of large behavioral data-sets on wild animals in natural habitats is vital in ecology and evolution studies. Recent progress in machine learning and computer vision, combined with inexpensive microcomputers, have unlocked a new frontier of fine-scale markerless measurements. Here, we leverage these advancements to develop a 3D Synchronized Outdoor Camera System (3D-SOCS): an inexpensive, mobile and automated method for collecting behavioral data on wild animals using synchronized video frames from Raspberry Pi controlled cameras. Accuracy tests demonstrate 3D-SOCS’ markerless tracking can estimate postures with a 3mm tolerance. To illustrate its research potential, we place 3D-SOCS in the field and conduct a stimulus presentation experiment. We estimate 3D postures and trajectories for multiple individuals of different bird species, and use this data to characterize the visual field configuration of wild great tits (Parus major), a model species in behavioral ecology. We find their optic axes at approximately ±60◦ azimuth and −5◦ elevation. Furthermore, birds exhibit functional lateralization in their use of the right eye with conspecific stimulus, and show individual differences in lateralization. We also show that birds’ convex hulls predicts body weight, highlighting 3D-SOCS’ potential for non-invasive population monitoring. 3D-SOCS is a first-of-its-kind camera system for wild research, presenting exciting potential to measure fine-scaled behavior and morphology in wild birds.</dcterms:abstract>
    <dc:contributor>Chimento, Michael</dc:contributor>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/73177"/>
    <dc:rights>Creative Commons Zero v1.0 Universal</dc:rights>
    <dc:language>eng</dc:language>
    <dc:contributor>Chan, Alex Hoi Hang</dc:contributor>
  </rdf:Description>
</rdf:RDF>

Prüfdatum der URL

Kommentar zur Publikation

Universitätsbibliographie
Ja
Diese Publikation teilen