Datensatz:

Codebase release 0.5 for HarmonicBalance.jl

Lade...
Vorschaubild

Datum der Erstveröffentlichung

2022

Andere Beitragende

Repositorium der Erstveröffentlichung

DataCite

Version des Datensatzes

Link zur Lizenz
oops

Angaben zur Forschungsförderung

Deutsche Forschungsgemeinschaft (DFG): 449653034
Swiss National Science Foundation: PP00P2_190078
Swiss National Science Foundation: CRSII5 177198/1

Projekt

Core Facility der Universität Konstanz
Bewerten Sie die FAIRness der Forschungsdaten

Gesperrt bis

Titel in einer weiteren Sprache

Publikationsstatus
Published

Zusammenfassung

HarmonicBalance.jl is a publicly available Julia package designed to simplify and solve systems of periodic time-dependent nonlinear ordinary differential equations. Time dependence of the system parameters is treated with the harmonic balance method, which approximates the system's behaviour as a set of harmonic terms with slowly-varying amplitudes. Under this approximation, the set of all possible steady-state responses follows from the solution of a polynomial system. In HarmonicBalance.jl, we combine harmonic balance with contemporary implementations of symbolic algebra and the homotopy continuation method to numerically determine all steady-state solutions and their associated fluctuation dynamics. For the exploration of involved steady-state topologies, we provide a simple graphical user interface, allowing for arbitrary solution observables and phase diagrams. HarmonicBalance.jl is a free software available at https://github.com/NonlinearOscillations/HarmonicBalance.jl.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
530 Physik

Schlagwörter

Zugehörige Publikationen in KOPS

Publikation
Zeitschriftenartikel
HarmonicBalance.jl : A Julia suite for nonlinear dynamics using harmonic balance
(2022) Kosata, Jan; del Pino, Javier; Heugel, Toni L.; Zilberberg, Oded
Erschienen in: SciPost Physics Codebases. SciPost Foundation. 2022(6). Verfügbar unter: doi: 10.21468/SciPostPhysCodeb.6
Link zu zugehörigem Datensatz

Zitieren

ISO 690KOSATA, Jan, Javier DEL PINO, Toni L. HEUGEL, Oded ZILBERBERG, 2022. Codebase release 0.5 for HarmonicBalance.jl
BibTex
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/72776">
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/71934"/>
    <dc:contributor>Zilberberg, Oded</dc:contributor>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:isReferencedBy>https://github.com/NonlinearOscillations/HarmonicBalance.jl</dcterms:isReferencedBy>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2025-03-25T07:33:59Z</dcterms:available>
    <dc:contributor>del Pino, Javier</dc:contributor>
    <dc:creator>del Pino, Javier</dc:creator>
    <dc:contributor>Heugel, Toni L.</dc:contributor>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2025-03-25T07:33:59Z</dc:date>
    <dc:contributor>Kosata, Jan</dc:contributor>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/72776"/>
    <dc:language>eng</dc:language>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/71934"/>
    <dc:creator>Kosata, Jan</dc:creator>
    <dc:creator>Zilberberg, Oded</dc:creator>
    <dcterms:abstract>HarmonicBalance.jl is a publicly available Julia package designed to simplify and solve systems of periodic time-dependent nonlinear ordinary differential equations. Time dependence of the system parameters is treated with the harmonic balance method, which approximates the system's behaviour as a set of harmonic terms with slowly-varying amplitudes. Under this approximation, the set of all possible steady-state responses follows from the solution of a polynomial system. In HarmonicBalance.jl, we combine harmonic balance with contemporary implementations of symbolic algebra and the homotopy continuation method to numerically determine all steady-state solutions and their associated fluctuation dynamics. For the exploration of involved steady-state topologies, we provide a simple graphical user interface, allowing for arbitrary solution observables and phase diagrams. HarmonicBalance.jl is a free software available at https://github.com/NonlinearOscillations/HarmonicBalance.jl.</dcterms:abstract>
    <dc:creator>Heugel, Toni L.</dc:creator>
    <dcterms:title>Codebase release 0.5 for HarmonicBalance.jl</dcterms:title>
    <dcterms:issued>2022</dcterms:issued>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
  </rdf:Description>
</rdf:RDF>
URL (Link zu den Daten)

Prüfdatum der URL

Kommentar zur Publikation

Universitätsbibliographie
Ja
Diese Publikation teilen