Datensatz:

Replication data for: Estimating Constituency Preferences from Sparse Survey Data Using Auxiliary Geographic Information

Lade...
Vorschaubild

Datum der Erstveröffentlichung

2011

Andere Beitragende

Repositorium der Erstveröffentlichung

Harvard Dataverse

Version des Datensatzes

V1

Angaben zur Forschungsförderung

Projekt

Core Facility der Universität Konstanz
Bewerten Sie die FAIRness der Forschungsdaten

Gesperrt bis

Titel in einer weiteren Sprache

Publikationsstatus
Published

Zusammenfassung

Measures of constituency preferences are of vital importance for the study of political representation and other research areas. Yet, such measures are often difficult to obtain. Previous survey-based estimates frequently lack precision and coverage due to small samples, rely on questionable assumptions, or require detailed auxiliary information about the constituencies' population characteristics. We propose an alternative Bayesian hierarchical approach that exploits minimal geographic information readily available from digitalized constituency maps. If at hand, social background data is easily integrated. To validate the method, we use national polls and district-level results from the 2009 German Bundestag election, an empirical case for which detailed structural information is missing.

Zusammenfassung in einer weiteren Sprache

Fachgebiet (DDC)
320 Politik

Schlagwörter

Zugehörige Publikationen in KOPS

Publikation
Zeitschriftenartikel
Estimating constituency preferences from sparse survey data using auxiliary geographic information
(2011) Selb, Peter; Munzert, Simon
Erschienen in: Political Analysis. 2011, 19(4), S. 455-470. ISSN 1047-1987. eISSN 1476-4989. Verfügbar unter: doi: 10.1093/pan/mpr034
Link zu zugehöriger Publikation
Link zu zugehörigem Datensatz

Zitieren

ISO 690SELB, Peter, Simon MUNZERT, 2011. Replication data for: Estimating Constituency Preferences from Sparse Survey Data Using Auxiliary Geographic Information
BibTex
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/74922">
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:rights>Creative Commons Zero v1.0 Universal</dc:rights>
    <dc:creator>Munzert, Simon</dc:creator>
    <dcterms:issued>2011</dcterms:issued>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2025-10-22T08:32:55Z</dc:date>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/71935"/>
    <dc:creator>Selb, Peter</dc:creator>
    <dc:contributor>Selb, Peter</dc:contributor>
    <dc:contributor>Munzert, Simon</dc:contributor>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/71935"/>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/74922"/>
    <dcterms:title>Replication data for: Estimating Constituency Preferences from Sparse Survey Data Using Auxiliary Geographic Information</dcterms:title>
    <dcterms:abstract>Measures of constituency preferences are of vital importance for the study of political representation and other research areas. Yet, such measures are often difficult to obtain. Previous survey-based estimates frequently lack precision and coverage due to small samples, rely on questionable assumptions, or require detailed auxiliary information about the constituencies' population characteristics. We propose an alternative Bayesian hierarchical approach that exploits minimal geographic information readily available from digitalized constituency maps. If at hand, social background data is easily integrated. To validate the method, we use national polls and district-level results from the 2009 German Bundestag election, an empirical case for which detailed structural information is missing.</dcterms:abstract>
    <dcterms:created rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-02-12T19:37:02Z</dcterms:created>
    <dc:language>eng</dc:language>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2025-10-22T08:32:55Z</dcterms:available>
    <dcterms:rights rdf:resource="https://creativecommons.org/publicdomain/zero/1.0/legalcode"/>
  </rdf:Description>
</rdf:RDF>
URL (Link zu den Daten)

Prüfdatum der URL

Kommentar zur Publikation

Universitätsbibliographie
Ja
Diese Publikation teilen