Datensatz: Replication data for: Estimating Constituency Preferences from Sparse Survey Data Using Auxiliary Geographic Information
Datum der Erstveröffentlichung
Autor:innen
Andere Beitragende
Repositorium der Erstveröffentlichung
Version des Datensatzes
DOI (Link zu den Daten)
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationsstatus
Zusammenfassung
Measures of constituency preferences are of vital importance for the study of political representation and other research areas. Yet, such measures are often difficult to obtain. Previous survey-based estimates frequently lack precision and coverage due to small samples, rely on questionable assumptions, or require detailed auxiliary information about the constituencies' population characteristics. We propose an alternative Bayesian hierarchical approach that exploits minimal geographic information readily available from digitalized constituency maps. If at hand, social background data is easily integrated. To validate the method, we use national polls and district-level results from the 2009 German Bundestag election, an empirical case for which detailed structural information is missing.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Zitieren
ISO 690
SELB, Peter, Simon MUNZERT, 2011. Replication data for: Estimating Constituency Preferences from Sparse Survey Data Using Auxiliary Geographic InformationBibTex
RDF
<rdf:RDF
xmlns:dcterms="http://purl.org/dc/terms/"
xmlns:dc="http://purl.org/dc/elements/1.1/"
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:bibo="http://purl.org/ontology/bibo/"
xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
xmlns:foaf="http://xmlns.com/foaf/0.1/"
xmlns:void="http://rdfs.org/ns/void#"
xmlns:xsd="http://www.w3.org/2001/XMLSchema#" >
<rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/74922">
<foaf:homepage rdf:resource="http://localhost:8080/"/>
<dc:rights>Creative Commons Zero v1.0 Universal</dc:rights>
<dc:creator>Munzert, Simon</dc:creator>
<dcterms:issued>2011</dcterms:issued>
<dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2025-10-22T08:32:55Z</dc:date>
<void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
<dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/71935"/>
<dc:creator>Selb, Peter</dc:creator>
<dc:contributor>Selb, Peter</dc:contributor>
<dc:contributor>Munzert, Simon</dc:contributor>
<dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/71935"/>
<bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/74922"/>
<dcterms:title>Replication data for: Estimating Constituency Preferences from Sparse Survey Data Using Auxiliary Geographic Information</dcterms:title>
<dcterms:abstract>Measures of constituency preferences are of vital importance for the study of political representation and other research areas. Yet, such measures are often difficult to obtain. Previous survey-based estimates frequently lack precision and coverage due to small samples, rely on questionable assumptions, or require detailed auxiliary information about the constituencies' population characteristics. We propose an alternative Bayesian hierarchical approach that exploits minimal geographic information readily available from digitalized constituency maps. If at hand, social background data is easily integrated. To validate the method, we use national polls and district-level results from the 2009 German Bundestag election, an empirical case for which detailed structural information is missing.</dcterms:abstract>
<dcterms:created rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-02-12T19:37:02Z</dcterms:created>
<dc:language>eng</dc:language>
<dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2025-10-22T08:32:55Z</dcterms:available>
<dcterms:rights rdf:resource="https://creativecommons.org/publicdomain/zero/1.0/legalcode"/>
</rdf:Description>
</rdf:RDF>