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Recent theoretical work on solid-state proposals for the im plementation of quantum computation
and quantum information processing is reviewed. The diere nces and similarities between micro-
scopic and macroscopic qubits are highlighted and exempli  ed by the spin qubit proposal on one
side and the superconducting qubits on the other. Before exp laining the spin and supercondcut-
ing qubits in detail, some general concepts that are relevan t for both types of solid-state qubits
are reviewed. The controlled production of entanglement in  solid-state devices, the transport of
carriers of entanglement, and entanglement detection will be discussed in the nal part of this
review.
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I. INTRODUCTION

The capabilities of information processing devices are déred from their physical properties; in Landauer's words,
\Information is physical" (Landauer, 1991). The pioneers of quantum information processing recognized that if a
device was quantum mechanical, then it could have computatinal powers exceeding those of a classical machine. A
sign for the superiority of quantum hardware is that typical simulations of quantum systems on classical computers
appear to be computationally hard.

This article is intended to give an overview of the theory of ®lid-state quantum information processing. For a
general introduction to quantum computation (QC) and quant um information, we refer the reader to (Nielsen and
Chuang, 2000). Although the distinction between di erent quantum devices is probably less fundamental than that
between quantum and classical devices, Landauer's motto caalso be applied here. In other words, the specic
physical properties of the quantum hardwaredo matter. Two rather di erent categories of this hardware are those
involving atomic systems, e.g.,

atoms in an ion trap,
atoms in an optical lattice,
ensemble of nuclear spins in a liquid,
and those involving solid-state systems, e.g.,
spins of electrons in semiconductor quantum dots,

nuclear spins of donor atoms in a semiconductor,



superconducting microcircuits containing Josephson juntions.

This list is by no means complete; an informative collectionof various proposals can be found in (Braunstein and Lo,
2000). While there have so far been more successful demonrations involving atomic systems in the laboratory, many
solid-state systems are scalable, i.e., one can fabricatgstems with many quantum bits (qubits) using essentially the
same fabrication technique that is proposed or used for a sigle qubit.

A. What actually has to be achieved? DiVincenzo's criteria

For the following discussion of attempts to implement a quarium computer (or parts of it) in solid-state systems,
it may be useful to review what actually has to be achieved. Anexcellent summary of the criteria for the physical
implementation of quantum computation are DiVincenzo's following \ ve requirements” (DiVincenzo, 1997, 2000).
1. A scalable physical system with well characterized qubit

A quantum bit, or qubit, is a suitable quantum-mechanical tw o-state system (see item 1.A.3 for more about what
it means for the qubit to be quantum mechanical). A pure state of the two-state system then takes the form

ji= joi+ jui: (1)

where the amplitudes and are complex numbers such thatj j> + j j> = 1. The states j0i and jli form an
orthonormal basis of the Hilbert spaceH, = spanfj 0i;jlig of the qubit. A good example of a quantum two-state

system is the spin 1/2 of an electron, wherg"i | Oi and j#i | 1li. The Hilbert space of the entire system then
needs to be a tensor product of a large numben of such two-state systems,
H=H,"= H H : 2
2 |'|2 247 g )
n factors

An excellent tutorial on the physical meaning of the tensor product in Eq. (2) and the di erence between classical and
guantum bits can be found in (Mermin, 2003). A system isscalableif it can be realized (in principle) for arbitrary
n. Some early atomic qubit realizations are not (easily) scalble, and one of the biggest motivations for studying
solid-state qubits is the hope that they will be scalable like conventional solid-state integrated circuits. A collecton
of identical particles, e.g., the Fermi sea of electrons in anetal, typically does not represent a set ofwell characterized
qubits. The qubits need to be \labeled" in order to make them distinguishable, e.g., in an arrangement where single
electrons sit on localized sites (quantum dots, donor level of impurity atoms) and can be addressed, e.g., as \spin of
the i-th dot".

2. The ability to initialize the state of the qubits

Before a quantum computation is started, a fresh register ofjubits, e.g., in the state

ji:jOi”:iOijOi{Z ] Oi (3)

n factors

is required. This requirement looks more innocent than it atually is, since it is not always easy to create such
low-entropy states, e.g., if the temperature is not su ciently low. Suppling a quantum computer with fresh \zeros"
is also essential for quantum error correction, where the énopy that accumulates due to decoherence is pumped out
of the quantum memory (Nielsen and Chuang, 2000). For this pupose, it also mattershow fast the fresh \zeros" can
be supplied.

3. Long relevant decoherence times, much longer than the gatperation times

A decoherence time characterizes how long it takes until thequantum phase coherence of a system (e.g., a qubit) is
lost due to its interaction with the environment. Frequentl y used gures of merit are the so-called energy-relaxation
time T, and the decoherence timeT, of a single qubit (the notation originates from the NMR liter ature). To illustrate
the meaning of these two quantities, let us assume for the moant that T; T, (this need not be the caseT; and T,
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can also be of the same order of magnitude). A pure state of a dpit, Eq. (1), has degraded to an incoherent mixture
after a time of the order of T,, described by the density matrix

=} j3j0ih0j + j j?j1ihaj: 4)
An elementary introduction into the meaning of the density operator can be found in quantum mechanics textbooks
or in (Nielsen and Chuang, 2000). Note that, in the case wherg0i and j1i are eigenstates with di erent energies, the
processes involved in the decoherence of the qubit so far diabt involve any energy exchange with the environment.
Nevertheless, this loss of the phase information is su ciemto disrupt a quantum computation. After a time of the order
of T1, energy relaxation has taken place and the system is in the trmal equilibrium state = Z Yexp( H=kgT),
with the partition sum Z = Trexp( H=kgT), the qubit Hamiltonian H, the temperature T, and Boltzmann's
constant kg . The requirement for quantum computation is that T Ty, Where Top denotes the time to perform a
typical operation from the universal set (see Eg. (6) below) In order to achieve quantum computations of arbitrary
length with the help of quantum error correction, it is required that the error probability per gate Top=Tz is

below its threshold value s for fault-tolerant quantum computation (Nielsen and Chuang, 2000). The number
thres depends on the error-correcting codes used and the type of rers they have to protect against.

4. A universal set of quantum gates

It is required that there is a set S of unitary operators, called gates or quantum gates operating on a bounded
number of qubits at a time, from which all unitary operators U on any number of qubits can be composed by applying
them in series,

U= UU 1 UoUq; (5)

where U; 2 S. It has been shown that there are universal sets consistingfaquantum gates that operate only on one
or two qubits (DiVincenzo, 1995), e.g., the union of one suiable two-qubit gate U, with the set of all operations on
a single qubit,

S=1fUxgl SU2): (6)

Examples of suitable two-quits gatesU; are the CNOT gate, also known as quantum-XOR or simply XOR (Barenco
et al., 1995a), with the following matrix representation in H, H »,

0 1

1000
0100
Uxor = %0 00 1&: @)
0010
or the square-root of SWAP (Loss and DiVincenzo, 1998),

0 1

10 0 O

0Ll &lo

0 0 01

It should be added here that there are ways of achieving unitey gates by performing non-unitary operations on a
larger Hilbert space. There have been several proposals faloing universal quantum computation by performing von
Neumann measurements on a subset of the qubits of a large emtgled state or cluster state (Leung, 2004; Nielsen,
2003; Raussendorf and Briegel, 2001). Another example whemeasurements are used to generate unitary gates is
that of free-electron quantum computation (Beenakkeret al., 2004).

5. The ability to measure speci ¢ single qubits

At the end of a computation, the qubits (or, at least, a subset of them) need to be measured individually in some
xed basis, e.g., the computational basis given by the stats jOi and jli. The observable that is measured in this
procedure is the Pauli matrix

1
70

0
1 9)



B. Microscopic vs. macroscopic solid-state qubits

The existing and proposed solid-state qubits can roughly begrouped into two categories. The qubits of the rst
category, which we will label microscopic, are similar to the atomic qubits in the sense that they are baed on
guantum objects on the atomic scale whose statef)i and jli are distinguishable only by measuring a microscopic
observable, such as an angular momentum on the order of Plakts constant ~ or a magnetic dipole moment of the
order of one Bohr magneton, g. Electron and nuclear spin qubits, as well as the orbital stde of an electron in a
semiconductor quantum dot, fall under this category. The seond category of qubits we callmacroscopic for their
distinguishability under measurement of a macroscopic obarvable, such as a current carried by a large number of
electrons, the magnetic eld induced by such a current, or the position of an electron charge in a system with two
macroscopically distinguishable sites. The typical examfes in this category are the superconducting qubits (with
exceptions).

C. Scope of this review article

This is not intended to be a comprehensive review of all theagtical work that has been done in the eld of solid-
state quantum computation. Besides the discussion of someegeral concepts that apply for a broad range of possible
implementations in Sec. I, we concentrate on qubits basedmthe electron spin (Sec. IIl) in semiconductor structures
(quantum dots) and on superconducting circuits (Sec. 1V), representing an example of a microscopic and a macroscopic
qubit.

Other solid-state proposals for quantum computation include quantum Hall systems (Privman et al., 1998; Yang
et al., 2002), anyons in fractional quantum Hall systems (Kitaev,2003), the nuclear spin of donors in a semiconductor
(Kane, 1998), electron charge degrees of freedom in quantuadots (Barencoet al., 1995b; Brum and Hawrylak, 1997;
Landauer, 1996; Tanamoto, 2000; Zanardi and Rossi, 1998), ying" electron spin qubits in surface acoustic waves
(Barnes et al., 2000) or ballistic quantum wires (Popescu and lonicioiu, D04), ferroelectrically coupled quantum dots
(Levy, 2001), excitons (Biolatti et al., 2000; Chenet al., 2001; Troiani et al., 2000), SiGe quantum dots (Vrijen et al.,
2000), paramagnetic impurities in semiconductor quantum vells (Bao et al., 2003), Si-based solid-state NMR (Ladd
et al., 2002), and electrons on the surface of liquid He (Platzman tad Dykman, 1999).

Il. GENERAL CONCEPTS
A. The Loss-DiVincenzo proposal

The underlying idea of this proposal is that the spins of sinde electrons con ned in semiconductor quantum dots
(e.g., in a two-dimensional semiconductor heterostructue) are to be used as qubits (Loss and DiVincenzo, 1998). The
required coupling between the qubits in this case is provide by the tunneling between adjacent quantum dots, giving
rise to a nearest-neighbor exchange coupling. The resulta spin Hamiltonian is that of the Heisenberg model,

X X
H() = Jj S S+ 8 gB(ri) Si; (10)
hisj i i

where S; denotes the spin operator of the electron in the -th quantum dot and Jj the exchange energy between spins
iandj.

It has to be noted, however, that this proposal for exchangebased QC extends far beyond electron spins in quantum
dots. Subsequent proposals for QC, using the nuclear sping donor atoms buried in a silicon substrate (Kane, 1998),
or using electron spins in SiGe quantum dots (Vrijenet al., 2000), electrons trapped by surface acoustic waves (Barse
et al., 2000), and spins of paramagnetic impurities (Bacet al., 2003), rely on the same type of interaction.

In Eg. (10), we have also taken into account the Zeeman couplig to an external magnetic eld B which may
be spatially varying. It may also be that the Lande g-factor g is also be site-dependent in some semiconductor
heterostructures. The Bohr magnetic moment is denoted by g. Structures with two coupled quantum dots where
the electron number could be controlled one-by-one down to aingle electron per dot have recently been demonstrated
in GaAs-AlGaAs heterostructures (Elzerman et al., 2003), see Fig. 6.

In the \idle" phase, i.e., when no quantum gates are performd on the register, the exchange coupling would be
switched o Jj =0 between all dotsi and j. In order to perform an elementary two-qubit gate between dds i and j,
the exchange coupling between dots and j is temporarily switched on, while leaving the other exchang couplings o .
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FIG. 1 Schematics of a quantum-dot array for quantum computi ng according to (Loss and DiVincenzo, 1998). Quantum dots
(dashed circles) are de ned in a two-dimensional semiconductor heterostructure with metal gates (shown schematicall y in grey)
and host one (excess) electron (e) with a spin 1/2 each. By cortrolling the gate voltages, the coupling of adjacent quantu m
dots is switched on and o for quantum gate operations.

! ! FIG. 2 Circuit notation of two exam-
(a) (b) ples of two-qubit gates that are universal
for quantum computation when combined
2 2 with single-qubit gates. (a) The “square-

N

root-of-swap' (S) gate, (b) the XOR gate.

Several non-overlapping pairs of qubits can be coupled sinftaneously in this way. A pulse Jj (t) with the property
z

% Jj (tdt°= 5

5 (mod2 )

(11)

generates the above-mentioned square-root of SWAP gate (uf an unimportant global phase factore = & which we
omit below),

S' exp i:Z dtH (%) =exp iESi S| (12)
The quantum gate S can be combined with single-spin rotations
Ui()=exp(i Si); (13)
to produce a controlled phase ip (CPF) (Loss and DiVincenzo, 1998),
Ucpr = € 7€ 251e 12523dS i5; (14)
which, up to a basis change, equals the quantum XOR gate:
Uxor = VUcpe VY; (15)
V = exp( iS 3=2): (16)

The e ect of an inhomogeneous external magnetic eld on the &change interaction and the robustness of the
procedure described here are discussed in (de Sousiaal., 2001).
B. QC with anisotropic couplings
1. Ising and transverse (XY) coupling

Both for photon-mediated spin-spin coupling in a semicondetor microcavity (Imamaylu et al., 1999) and for
inductively coupled superconducting qubits (Makhlin et al., 1999, 2001), which will both be further discussed in



Secs. lII.E and IV below, the coupling takes an anisotropic érm instead of being described by the isotropic Heisenberg
Hamiltonian Eq. (10). In both cases, the form of the coupling turns out to be that of the XY (transverse) spin
Hamiltonian,

y O0000?
JBOO1O
— X QX yay v
ny—J.(SS +5'sY) 2?@01002 (17)
"l 0000

where we chose the5* basis of the two interacting qubits for the matrix representation of Hyy .

It is known that any generic two-qubit Hamiltonian gives rise to a universal set of gates when combined with
single-qubit operations. In two notable cases of anisotrog spin couplings, the Ising and the XY interactions, it is
known how the CPF and XOR gates can be constructed. In the case of a system described bye Ising Hamiltonian
H, = JSfS5 and a homogeneous magnetic eld inz direction, there is a particularly simple realization of the CPF
gate with constant parameters, namelyUcpr = exp(i (1 2Sf 2S5 +4S7S5)=4) (Loss and DiVincenzo, 1998).

For the transverse spin-spin coupling of Eq. (17), we nd tha a useful two-qubit gate, such as the conditional-
phase- ip (CPF) operation, can be carried out by combining Hxy with one-bit rotations. The unitary evolution
operator generated by the Hamiltonian of Eq. (17) is

z
Uxy () = Texp i dtHxy =exp i (S ij + S?,S]),) (18)

R
where = dtJ(t). The CPF gate (Ucpr) can be realized by the sequence of operators (Burkaret al., 1999b;
Imamaylu et al., 1999)

UCPF - ei= 4ei n; i=3€i nj j=3UXY ( — 2)ei iZzzUXY ( — 2)ei ;=4ei {,24 (19)
where denotes the vector Pauli operator, whereS = =2, and n; = (1;1,; 1):p§ andnj =( 1,1 1):p 3. The
XOR gate can be realized by combining the CPF operation with sintg-qubit rotations as in Egs. (15) and (16).

While it is impossible to generate the CNOT gate with a singleuse of the XY Hamiltonian (Burkard et al., 1999b),
it is possible to generate a di erent universal quantum gatewith the XY interaction in a single pulse; the CNOT +
SWAP (CNS) gate Ucns = Uswap Uxor , is generated as (Schuch and Siewert, 2003)

Ucns = HiUxy ( e’ :4e | j2:4H2; (20)
where H; is the Hadamard gate
1 11

applied to qubit i.
Gate errors due to unwanted inhomogeneous magnetic elds ding an otherwise isotropic coupling, e ectively
creating an anisotropy, have been studied and quanti ed in Hu and Das Sarma, 2003).

2. Anisotropy due to the spin-orbit coupling
The exchange interaction, Eq. (10), between electron spinsn tunnel-coupled sites (such as quantum dots) can

acquire anisotropic terms due to spin-orbit coupling during tunneling between the sites (Kavokin, 2001). Surprisingy,
it turns out that the rst-order e ect of the spin-orbit coup ling during quantum gate operations can be eliminated

1 GZ G I FIG. 3 A circuit representation for
the conditional phase ip ( CPF),
Eq. (14). The single qubit rotations
are G = €75, GY = e 7%, and
G2 = &S °. The CPF is related to
2 G+ — the XOR gate Eq. (7) by the basis
transformation Eq. (15).
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by using time-symmetric pulse shapes for the coupling betwen the spins (Bonesteelet al., 2001). A related, but
independent, result shows that the spin-orbit e ects exactly cancel in the gate sequence on the right hand side
of EqQ. (14) required to produce the quantum XOR gate, provided that the pulse form for the spin-orbit and the
exchange couplings are identical (Burkard and Loss, 2002)The XOR gate being universal when complemented with
single-qubit operations, this result implies that the spin-orbit coupling can be dealt with in any quantum computation .
In any real implementation, there will be some (small) discepancy between the pulse shapes for the exchange and
the spin-orbit coupling; however, one can choose two pulsehapes which are very similar. It was shown that the
cancellation still holds to a very good approximation in sud a case, i.e. the e ect of the spin-orbit coupling will still
be strongly suppressed (Burkard and Loss, 2002). There is s an e ect of dipolar interactions between adjacent
spins, providing another anisotropic coupling; this couplng can also be treated as an anisotropic contribution to
Eqg. (10) and therefore cancels out in the gate sequence Eq. 41 for the same reasons as the spin-orbit interaction.

The spin-orbit coupling for a conduction-band electron is gven by the following Hamiltonian (Gantmakher and
Levinson, 1987), being linear in the 2D momentum operatomp;, i = x;y ([100] orientation of the 2D plane),

X
Hso = i iR, (22)
L) =Xy

where the constants j depend on the strength of the con nement in z-direction and ae of the order (1 3) 10° cm=s

for GaAs heterostructures. Combining the isotropic Heiseiberg coupling (10) with the anisotropic exchange between
two localized spinsS; and S, one obtains the Hamiltonian (Burkard and Loss, 2002)

H(t) = J(t)(S1 S+ A(t); (23)
where the anisotropic part is given by the expression (Kavokn, 2001),
A= () (S S)+ (O (1) SI)( (1) S2); (24)
P
and ;= . jh 4jipjj 2i is the spin-orbit eld, j ;i the ground state in site (dot) i =1;2, and O( 9). As was

j
discussed in Sec. II.A, forA = 0, the quantum XOR gate can be obtained by applyingH (t) twice, together with

single-spin rotations, see Eqgs. (14) and (16). Moreover, iA = 0, then H (t) commutes with itself at di erent times

and the time-ordered exponential
!

Z o,
U()=Texp i H (t) dt (25)
s=2
R _ -
is a function of the integrated interaction strength only, ' = s;iz\](t)dt. In particular, U(' = =2)= Ul = Sis

the \square-root of swap" gate.

The interesting situation is of courseA & 0. If in this case, and (and thus A) are time-independent, thenH (t)
still commutes with itself at di erent times and one can nd a xed c oordinate system in which is parallel to the
z axis. In this basis, the anisotropic term Eq. (24) can be expessed as

A= (SfS) S{S})+ Sisi; (26)

with p= 2. In the singlet-triplet basis with basis vectors fj T.i = j™i ;jSi = (j"#i j#"i )=IO 2;jToi = (j"#i +
j#'i)= 2;jT i = j##ig the gate sequence Eq. (14), including the anisotropy Eq. (24 yields the unitary operation

Ug = diag(ie " @* );1;1; ie " O )y; (27)

where diags;:::;x4) denotes the diagonal matrix with diagonal entries x1;:::;X4. Note that the pulse strength

' and the spin-orbit parameters only enter Uy in the S* = 1 subspaces. Moreover, the terms linear in have

canceled out exactly inUg. With the choice' = =2(1+ ), one obtains the conditional phase ip gateUy = Ucpr =

diag(1; 1;1; 1), being equivalent to the XOR up to the basis change, Eq. (16). Therefore, the anisoptrof terms
A = const: in the spin Hamiltonian cancel exactly in the gate sequence g. (15) for the quantum XOR .

We brie y discuss what happens if, as can be expected in realystems, the anisotropic terms in the Hamiltonian H
are not exactly proportional to J(t), i.e. if A(t) is time-dependent. Generally, both and depend on time. In this
more general case, we cannot exactly eliminate the e ect oftte anisotropy because of the time-ordering in Eq. (25)
and since the Hamiltonian cannot be expected to commute withitself at di erent times, [ H(t);H (t9] 6 0. The
estimated gate errors = jjUy; Ucpr jj2 due to the anisotropy in the case whereA(t) is only weakly time-dependent
are 2wherewe use (t)= (t) o and

=( 1] 0=2) max jGM=J0) (=0 1) (28)
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where Jo stands for the average exchange couplinglp = '= 5 6 0. It can be shown (Burkard and Loss, 2002) that for
tunnel-coupled quantum dots, it is possible to choose a wedk time-dependent A by using Eq. (52) for the exchange
coupling and the result

bd;0) | I(d:q) (d;a)j = bo" Gdexp( 2qP); (29)

where by = a=a8, a3 = P ~=m! o, and where a is a constant depending on the spin-orbit parameter (for a 5 m
wide [100] GaAs quantum wella 2 meVnm), q = !=! o. The minimal value of the quantum dot con nement
energy! is denoted by! o. A possible model for the switching process is the use of a tistdependent con nement
strength q(t) = ! (t)=!o = cosh?®(t= ) (where alpha is a number of order 1, e.g., = 4). This pulse shape has
favorable adiabatic properties (Burkard et al., 1999a; Schliemanret al., 2001b), as detailed in Sec. II.E, and leads to
a pulsed exchange interactionJ (t) = J(d; q(t)) and spin-orbit eld b(t) = b(d;q(t)), where =2 t s=2. The
resulting error was estimates in (Burkard and Loss, 2002) as 7 10 3, leading to gate errors occurring at a rate

4 2 2 10 * being around the currently known threshold for fault tolerant quantum computation (Preskill,
1998a,b). The error can be further reduced by performing the gates more slowly, th a long period of constant A
between the rise and fall of the pulses.

C. Universal QC with the exchange coupling

In some situations, a local controllable eld B; or g-factor g; in the Hamiltonian Eq. (10) and thus the single-qubit
operations SU(2) in the universal set Eqg. (6) may be more costly to implemen than the tunable exchange coupling
generating the spin-spin couplingU,, (note, however, that there exist all-electric switching sthhemes using g-factor
modulation, see Sec. I11.D). A scheme has been developed inhich the Heisenberg interaction alone su ces to exactly
implement any quantum computer circuit, at a price of a factor of three in additional qubits and about a factor of
ten in additional two-qubit operations. However, the Heisenberg interaction by itself is not a universal gate (Barenco
et al.,, 1995a), in the sense that it cannot generate any arbitrary witary transformation on a collection of spin-1/2
qubits. This is why in Eq. (6), the Heisenberg interaction needs to be combined with some other means of applying
independent one-qubit gates. The Heisenberg interactionlane does not give a universal quantum gate because it has
too much symmetry: it commutes with the operators S? and S,, where the total spin is de ned as

and therefore it can only rotate among states with the sameS; S; quantum numbers.

1. Encoding

The exchange coupling is thus not universal in the full Hilbet space; but, by working exclusively in one symmetry
sector of the Hilbert space with xed S; S, quantum numbers, the exchange coupling can be made univerkaThis
restriction is achieved by de ning coded qubit states, onesfor which the spin quantum numbers always remain the
same (Baconet al., 2000; Kempeet al., 2001; Viola et al., 2000). The smallest number of spins 1/2 for which two
orthogonal states with identical S; S, exist is three. The space of three-spin states with spin quamm numbers
S=1=2,S, = +1 =2 is two-dimensional and will serve to represent our coded duit. An explicit choice for the basis
states of this qubit are

jOL i
i1 |

iSij i ; 0 (1)
2=3T, ij #i 1=3jToij "i ; (32)

where jSi = P 1=2(j "#i _j #'i ) is the singlet state of spins 1 and 2 (see Fig. 4a) of the threspin block, and

jTei=j™ andjToi = 1=2(j "#i + j#"i) are triplet states of these two spins. While in principle this solves the
problem of exchange-only QC, in practice we would like to knav what the overhead in terms of qubits (for coding) and
gates (for operating on encoded qubits with the exchange ir@raction) will be, and how a universal set of operations
on the encoded qubits can be achieved (DiVincenzet al., 2000). It has also been found that the anisotropic XY
interaction (17) alone is su cient for quantum computation (Kempe and Whaley, 2002), a result which was later
generalized to large class of anisotropic exchange Hamilbéans (Vala and Whaley, 2002). An encoding involving two
spins per qubit has also been demonstrated for universal quum logic starting from locally alternating g-factors
(Levy, 2002) and from a homogeneous magnetic eld combined ith anisotropic exchange interactions (Wu and Lidar,
2002a,b; Wu et al., 2004).
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a. FIG. 4 Possible layouts of spin-1/2 de-
1 2 3 : 4 S 6 : vices. a) One-dimensional layout. We con-
O .H.H.H.H.H. O sider two di erent assumptions about how
: : : the exchange interactions can be turned
qubit 1 qubit 2 on and o in this layout: 1) At any given
time each spin can be exchange-coupled to
at most one other spin (we refer to this
as \serial operation" in the text), 2) All
b exchange interactions can be turned on

O Q Q simultaneously between any neighboring

O pair of spins in the line shown (\1D parallel
¢ © ’H,H

| |

N

O

O

array. We imagine that any exchange in-
teraction can be turned on between neigh-
boring spins in this array (\2D parallel op-
eration"). Of course other arrangements
are possible, but these should be represen-
tative of the constraints that will be faced

in actual device layouts.

operation"). b) Possible two-dimensional
O 0O @

layout with interactions in a rectangular

.o
00 0 0

00 0 0
©0 0 0

©

@

2. One-qubit gates

A one-qubit gate on a single three-spin block is performed afollows. The Hamiltonian Hi, generates a rotation
Upp = exp(i=~ JS; Spdt) which is just a z-axis rotation (in Bloch-sphere notation) on the coded qubt, while
H,3 produces a rotation about an axis in the x-z plane, at an angle of 120 from the z-axis. Since simultaneous
application of H1, and H,3 can generate a rotation around thex-axis, three steps of 1D parallel operation (de ned in
Fig. 4a) permit any one-qubit rotation, using the classic Euer-angle construction. In serial operation, it can be fourd
numerically that four steps are always adequate when only nerest-neighbor interactions are possible (e.g. the sequea
H12-Ho3-H12-H23 shown in Fig. 5a, with suitable interaction strengths), while three steps su ce if interactions can
be turned on between any pair of spins (e.gH12-H23-H13, see Fig. 5b).

3. Two-qubit gates

The implementation of two-qubit gates for universal QC with the exchange interaction on two three-spin code
blocks is less intuitive that the corresponding task for onequbit gates. Much of the di culty of these searches arises
from the fact that while the four basis statesjO_; 1, ijO_;1 i have total spin quantum numbersS =1, S, = +1, the
complete space with these quantum numbers for six spins hadme states, and exchanges involving these spins perform
rotations in this full nine-dimensional space. Numerical ®arches for the implementation of two-qubit gates using a
simple minimization algorithm (DiVincenzo et al., 2000) aided by the two-qubit gates invariants (Makhlin, 2002) have
resulted in a sequence for an encoded CNOT operation that is epicted in Fig. 5. The solution shown in Fig. 5¢c
appears to be optimal for serial operation and happens to inglve only nearest neighbors in the 1D arrangement of
Fig. 4a. There also are (apparently) optimal numerical soldions for parallel operation mode. For the 1D layout of
Fig. 4a, the simplest solution found involves 8 clock cyclesvith just 8*4 di erent interaction-time parameters ( Hi»
can always be zero in this implementation). For the 2D paralel mode of Fig. 4b, a solution was found using just 7
clock cycles (7*7 interaction times).

In the present scheme, quantum computation would proceed a%ollows. In the beginning, all the computational
qubits would be set to the jO_i state which is easily obtained using the exchange interactin: if a strong Hi» is
turned on in each coded block and the temperature made lowerhan the strength J of the interaction, these two
spins will equilibrate to their ground state, which is the singlet state. The third spin in the block should be in the
j"i state, which can be achieved by also placing the entire syste in a moderately strong magnetic eld B, such that
ke T <<g B <J (it can be shown that in a slightly more general scheme involing boththe S, =+1and S, = 1
subspaces, the last step can be omitted). After the computabn, with the one- and two-qubit gates implemented
according to the schemes mentioned above, the nal qubit mesurement, we note that determining whether the spins
1 and 2 of the block are in a singlet or a triplet su ces to perfectly distinguish (DiVincenzo et al., 1999)jO_i from
j1 i (again, the state of the third spin does not enter).
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1 1 FIG. 5 Circuits for implementing single-qubit and two-qubi t

t 1t ty rotations using serial operations. a) Single-qubit rotati ons by

2 2 nearest-neighbor interactions. Four exchanges (double-headed

Lot |l arrows) with variable time parameters ; are always enough to
perform any such rotation, one of the two possible layouts is

shown. b) Non-nearest neighbor interactions. Only three in ter-

actions are needed, one of the possible layouts is shown. c) @-

cuit of 19 interactions that produce a cNOT between two coded

qubits (up to one-qubit gates before and after). The duratio ns

- of each interaction are given in units such that for t = 1=2 the
) rotation U; = exp(iJtS; Sj=~)is a SWAP, interchanging the

t, |t [ts [ts [t; [t qubit 1 quantum states of the two spins i, j. The t; parameters are

3 not independent, they are related to the t;s as indicated. The

****** L £ S A TN A 2 uncertainty of the nal digits of these times are indicated i n

parentheses. With these uncertainties, the absolute inaccuracy

E R qubit 2 of the matrix elements of the two-qubit gate rotations achie ved
i T is no greater than 6 10 °. Further ne tuning of these time
3 8 parameters would give the cNOT to any desired accuracy. In
a practical implementation, the exchange couplings J(t) would
be turned on and o smoothly; then the time valugs given here

t,=0.410899(2)  t;=0.414720(10)

t,=0.207110(20) t5=0.147654(12) provide a speci cation for the integrated value ~ J(t)dt. The
t,=0.2775258(12) t,=0.813126(12) functional form of J(t) is irrelevant, but its integral must be
t,=0.640505(8) tan(rt) tan(xt) = -2 controlled to the precision indicated.

4. Protection against errors

Codes of the type of Egs. (31) and (32) have rst been introdued as a computational basis indecoherence-free
subspacesi.e., subspaces of a Hilbert space which are protected agst errors with a certain type of symmetry (Bacon
et al., 2000; Kempeet al., 2001; Lidar et al., 1999, 1998; Zanardi and Rasetti, 1997). Moreover, it has kEn suggested
that the logical subspace may be energetically separated dm the remaining Hilbert space and thus protected against
errors in a system where a certain combination of exchange aplings always remains switched on (Bacoret al., 2001;
Weinstein and Hellberg, 2004).

5. Related ideas

Encoded qubits of a dierent kind, so-called spin-cluster qubits (Meier et al., 2003a,b), have been proposed in
order to relax the requirements for control on the single-sin level while inheriting the favorable single-spin propeties
such as long decoherence time and fast gate operating time.p cluster qubits are nite spin chains with Heisen-
berg or anisotropic (XY and Ising-like) antiferromagnetic exchange interaction that can have uniform or nonuniform
interaction constants.

The use of many-electron QDs for exchange-based quantum cgmtations has been analyzed in (Vorojtsovet al.,
2004). A particular implementation of three-spin QDs encodng one qubit has been put forward in (Kyriakidis and
Penney, 2004).

D. Optimization of quantum circuits

A quantum gate operating on n qubits can be represented as a™ 2" unitary matrix. Any quantum computation
or algorithm can be split up into a series of elementary gate perations drawn from a universal set involving only one or
two qubits, as in Eq. (6). This is the quantum circuit representation of quantum algorithms (or, unitary operations).
For a simple example, see Fig. 3 for a circuit representation of CPF in terms of sqrt-of-SWAP gates. However,
guantum circuits are in general not the most e cient way of im plementing a quantum computation (Burkard et al.,
1999b). There are a number of related but di erent approache using, e.g., genetic algorithms and chirped Gaussian
pulses (Sanderst al., 1999) or control theory (Khaneja et al., 2001).

If one is interested in optimizing the switching time ¢ for a desired unitary U, with a given Hamiltonian, e.g., the
spin Hamiltonian Eqg. (10), one can depart from the circuit representation of the unitary by allowing arbitrary time
dependent parametersp(t) in the Hamiltonian. In the case of the spin Hamiltonian (10), we havep=(J; B1;B2;:::).
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We will only demonstrate this optimization in the case of a simple two-qubit unitary, the XOR (CNOT) gate. The
optimization method can in principle be applied to unitaries of any size; note, however, that the optimization as an
arbitrary classical computational task is typically a hard computation in itself.

1. Serial pulse mode

We rst restrict ourselves to a special class of parameter factions §(t), in which at every time t, only one component
of g(t) is non-zero. If we further restrict ourselves to parameterfunctions in which the duration of the J-pulses with
p£=1(J;0;0;:::) are =2 pulses generating the sqrt-of-swajs, then we are back to the circuit model with the universal
set Eq. (6) and Uy = S. In this case we can optimize circuits, e.g., to have as few stances ofS as possible.
E.g., it turns out that the use of two S for a CPF as in the sequence Eg. (14), and therefore, foXOR , is optimal.
Such minimal requirements for the implementation of a unitary | can be proven by analyzing the setP(U) of

product states j i2H = H, My iz qi j mi;] ii2H 2 which are mapped back onto product states by

U (Burkard et al., 1999b). An alternative method for determining whether a Hamiltonian generates a gate in a single
pulse involves the invariants under addition of single-qulit gates (Makhlin, 2002).

2. Parallel pulse mode

In the case where several or all parameterg can be changed simultaneously, we expect that a given quanta gate,
say XOR , can be performed faster than by changing only one parameteat a time as in the serial pulse mode. The
unitary time evolution operator after time t is the following functional in p,

L Z,
WIR)I= Texp = RLICOLEE (33)

whereT denotes the time-ordering. For a given quantum gately, the integral equation U;[g( )] = Uy has to be solved
for the functions #( ). An optimal solution is given by a set of bounded functiongp;( )j < M j requiring minimal time

t for a xed set of bounds M;. In order to simplify the problem, one can restrict the problem to piecewise-constant
functions,

Un (5 p™); )
Ue(p™)

¢ Un(™)  Ua(p®)Ui(®);
exp itH (p™) : (34)

For each of the N time intervals, one has the freedom to choose a new set of pareters p) = (J;B1;B,). The
discretized problem can now be treated both analytically am numerically (Burkard et al., 1999b).

One nds analytically that CPF can be implemented in a single step by xingN =1, i.e., all parameters in Eq. (10)
simultaneously non-zero but constant,

Ucpr =explitH (J;B1;B2)]; (35)
The parameters are (in units of 2 ~=t),
1 1
J=k 2 = = + =
nIO m 5 (n 2) ;
B, = :—ZL(O;O;n+ :—2L+ k2 J2) ; B, = %(O;O;n+ % k2 J2); (36)

where n, and m are arbitrary integers, and k is an integer satisfying 34kj j n+2m+ %j. In the speci c case where
all constraints are equal toM, we nd that the solution for k=1, m = n =0,

p

1 _ 1 _
3= Bi=Za+'3) Bi=,1 "3 =

NI =

@37)

N

has the shortest switching time,

2 ~ p_ 2 ~
tch P = m(l + 3) = 0683—M X (38)
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less than half the time which is used for the serial pulse quamm circuit Eq. (14), tcpr:s =1:5 2 ~=M. Numerically,
one nds that XOR requires at leastN = 2 steps,

o i h i
Uxor = € € exp itH (p?) exp itH (p?) ; (39)

with the parameter values (in units of 2 ~=t)

(k) (k) (k) (k) (k) (k)
K ‘](k) le BZX B1y BZy Blz BZz

1/0:187 0:025 Q464 (0205 Q195 0:420 Q395 (40)
2|0:617 0:220 0345 0:384 0244 0353 Q108

and the global phase = 0:8481 , where the timet has to be chosen such that none of the parameters exceeds the
bound M . The total switching time for equal bounds is in this casetxor ;p = (0:4643+0:6170)2 ~=M = 1:08132 ~=M,
compared totxor:s =2 2 ~=M for the serial switching.

3. Anisotropic systems

Parallel switching is also possible with the XY dynamics Eq.(17). It can be shown that Ucpr requires two pulses,

Ucpr = € UoUy; (41)
h [
where  Ug=exp 2iH xys J®;BE;BM) . k=1;2
Note that all magnetic elds can be chosen homogeneousB((lk) = B(zk) B () and perpendicular to the y-axis
(By = 0). Here we give one possible realization which is found numrically ( = 3=4):

k| a0k gl Q)
1| 0:7500 0:7906 0:5728 (42)
2|/0:5000 0:0000 02500

The total switching time for CPF, assuming equal boundM; = Mg M for J and B, is t35: p =1:291 2 ~=M,
compared to t3y- s =2:167 2 ~=M for the serial pulse sequence de ned in Eq. (19).

In order to produce the XOR gate Eqg. (7) we can implement the bais change Eq. (15) using the single-qubit
rotation V. This procedure requires a total of four steps for the XOR gaé. Another way of achieving XOR is the
following sequence which we found numerically and which ta&s only three steps:

Uxor = exp(3i= 4)UsUpUy; (43)

with the following parameters:

R AN Y A A
1| 1:802 @615 2:045 0:020 Q316 Q794 Q130 (44)
2|3:344 0:348 Q718 0259 Q493 1583 1062

3(1:903 1:193 Q705 Q413 0:305 0589 0604

The total switching time of t¥{s p = 17129 2 ~=M (compared to 267 2 ~=M using CPF and a basis change) indicates
that Eq. (44) is not an optimal solution.

E. Adiabaticity

Quantum gates are generated by controlling the parametersri the Hamiltonian Eg. (10), J; (t) and B;(t) (or
g (1)), as a function of time. E.g., the exchange coupling) depends on time via some physically controlled quantity,
such as an electric gate voltaggy(t), i.e., J(t) = J(v(t)) (similarly for the e ective g-factor g(t)). According to
Eg. (11), only the time integral , J(v(t))dt needs to assume a certain value (modulo 2 in order to generate the
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correct quantum gate and the pulse form ofv(t) does not matter. However, the exchange interaction] (t) needs to be
switched adiabatically in order to avoid unwanted excitations in the system. The adabaticity condition is (Burkard
et al., 2000a, 1999a,bjv=yj "=~, where " is the energy scale on which excitations may occur. Here; denotes
the energy-level separation of a single dot, i.e., the smadl of either the single-electron level spacing or the on-si
Coulomb energy U required to add a second electron to a dot. A rectangular pule leads to excitation of higher
levels, whereas an adiabatic pulse with amplitudevy is e.g. given byv(t) = vo sech{= t) where t controls the width
of the pulse. We need to use a switching time s > t, such that v(t = ¢=2)=vw, becomes vanishingly small. We
then havejv=yj = jtanh(t= t)j= t 1= t,sowe need & t "=~ for adiabatic switching. The Fourier transform
v(!)= tvg sech(! t) hasthe same shape as(t) but width 2 = t. In particular, v(! ) decays exponentially in
the frequency! , whereas it decays only with E! for a rectangular pulse.

Adiabatic switching of the exchange coupling in two coupledquantum dots and the error probability for di erent
pulse forms have been studied numerically in (Schliemanret al., 2001b). Furthermore, corrections to the fully
adiabatic result have been investigated (Requistet al., 2004).

I1l. ELECTRON SPINS

Being a natural two-level system, the spin 1/2 of the electran represents an ideal candidate for a qubit. On the
one hand, the electron spin is typically quite well isolatedfrom charge degrees of freedom (not completely, though,
due to, e.g., the spin-orbit coupling). In some situations, electron spin decoherence times in solids appear to be
relatively long, exceeding microseconds (Awschalom and Kkawa, 1999; Kikkawa and Awschalom, 1998; Kikkawa
et al., 1997). On the other hand, single spins in solid-state struttires are not readily available and controllable.
However, large experimental e orts are currently made to i®late and control single spins in solid-state structures.
The spin-based proposals for quantum information procesag which will be discussed below are all based on arti cial
nano- or micrometer-scale semiconductor structures, suchs quantum dots (QDs) or microcavities.

A. Quantum Dots

In (Loss and DiVincenzo, 1998), a quantum register is proposd in which single electrons are trapped in quantum
dots (QDs) that are arranged in an array or lattice in a semicanductor structure, e.g., as in Fig. 1. Electrically de ned
QDs in two-dimensional semiconductor heterostructures (ypically, GaAs) are well-studied objects (Kouwenhoven
et al., 2001) in which charge transport has attracted much attention (Averin and Nazarov, 1992; Kouwenhoveret al.,
1997a; van der Wielet al., 2003). In recent years, the controlled storage of &ingle electron|and thus a spin 1/2 or
qubitjin a QD has been achieved (Ciorga et al., 2000; Elzermanet al., 2003). Structures in which two QDs, each
containing a well-controlled number of electrons (down to asingle electron), are adjacent and tunnel-coupled, have
been fabricated and studied (Elzermanet al., 2003). In Fig. 6, we show an electron micrograph of a structte of the
type that was used in (Elzerman et al., 2003). The tunneling of electrons between the two dots is prdicted to give
rise to the spin exchange coupling S; S, in Eq. (10). In the next section, we are going to outline a theay of this
spin exchange mechanism.

- source2

FIG. 6 Electron micrograph of a structure comprising two
QDs, de ned by metal electrodes (bright structures) on the
surface of a GaAs/AlGaAs heterostructure (Courtesy of J.
Elzerman, TU Delft). The charge on the dots is controlled
in steps of single electron charges, down to one electron per
dot, by tuning the voltage applied to the plunger gates P .r
and is monitored by measuring the conductance of (i.e., the
currents I gpc through) the quantum point contacts (QPCs)
Q-R and Q-L. Conductance spectroscopy was performed by
measuring the current 140t (Elzerman et al., 2003).

IQPC

sourcel 7 B8 % £x drain2
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B,z FIG. 7 Two coupled QDs with one va-

Q [ uantum dot lence electron per dot. Each electron is
/\i T/ ’ SZ /q con ned to the xy plane. The spins of
B ‘ P i E,x the electrons in dots 1 and 2 are de-

& noted by S; and S;. The magnetic

eld B is perpendicular to the plane,
i.e. along the z axis, and the elec-
tric eld E is in-plane and along the x
axis. The quartic potential is given in
Eq. (48) and is used to model the cou-
pling of two harmonic wells centered at

X ( a;0;0). The exchange couplingJ be-
tween the spins is a function of B, E,
and the inter-dot distance 2 a.

B. Exchange in laterally coupled QDs

Due to the Coulomb interaction and the Pauli exclusion principle, the ground state of two coupled electron sites
(atoms, QDs) in the absence of a magnetic eld is a spin singke(a highly entangled spin state), while the spin triplet
states (one of them entangled) are typically separated by sme energy gapJ. This energy gap is calledexchange
coupling, as it arises from virtual electron exchange between the twaites due to the interaction. The virtual electron
exchanges are allowed for opposite spins (spin single§ = 0) but forbidden by the Pauli principle for parallel spins
(spin triplet, S = 1), therefore the energy of the singlet is lowered by the ineraction.

We now introduce a model for the two laterally coupled QDs comaining one (conduction band) electron each
(Burkard et al., 1999a). The two-dot system is shown schematically in Fig. 7 It is essential that the electrons are
allowed to tunnel between the dots, and that the total wave function of the coupled system must be antisymmetric. It
is this fact which introduces correlations between the spis via the charge (orbital) degrees of freedom. The electroni
Hamiltonian in the e ective-mass approximation for the coupled system is then given by

X
H = h(ri;pi)+ C+ Hz = Hop + Hz; (45)
i=1;2

where the single-particle Hamiltonian,
hriip) = — pi SA(N) + exE + V(r): (46)
val - 2m pl c ] | 1/

describes the electron dynamics con ned to thexy-plane and

e?
C= —; 47
Jra 1z 47

represents the Coulomb interaction (unscreened in this cas where the dot diameter is small or comparable to the
screening length). The electrons have an e ective massn (m = 0:067m¢ in GaAs) and carry a spin-1/2 S;. The

dielectric constant in GaAs is = 13:1. We allow for a magnetic eld B = (0;0;B) applied along the z-axis and

which couples to the electron charge via the vector potentib A (r) = %( y;X; 0). We also allow for an electric eld

E applied in-plane along the x-direction, i.e. along the lineconnecting the centers of the dots. The coupling of the
dots (which includes tunneling) can be modeled by a quartic jptential,

1o a2 l+y? (48)

which separates (forx around a) into two harmonic wells of frequency! ¢, one for each dot, in the Iimibof large
inter-dot distance, i.e. for 2a  2ag, wherea is half the distance between the centers of the dots, andg = ~=m! ¢
is the e ective Bohr radius of a single isolated harmonic wel This choice for the potential is motivated by the
experimental fact (Kouwenhovenet al., 1997b; Taruchaet al., 1996) that the spectrum of single dots in GaAs is well
described by a parabolic con nement potential, e.g. with~! o = 3meV (Kouwenhoven et al., 1997b; Taruchaet al.,
1996). We note that in this simpli ed model, increasing (deaeasing) the inter-dot distance is physically equivalent ©
raising (lowering) the inter-dot barrier, which can be achieved experimentally by e.g. applying a gate voltage between
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the dots (Livermore et al., 1996; Waughet al., 1995). Thus, the e ect of such gate voltages is described ithis model
simply by a change of the inter-dot distance 2. p

The magnetic eld B also couples to the electron spins via the Zeeman ternlz; = g g ;B S;, whereg is
the e ective g-factor (g 0:44 for GaAs), and g the Bohr magneton. The ratio between the Zeeman splitting
and the relevant orbital energies is small for allB-values of interest here; indeedg gB=~! . 0:03, for B Bo =
(~! o= B)(Mm=mg) 35T, and g gB=~! . 0:03, for B Bo, where! | = eB=2mc is the Larmor frequency, and
where we used~! = 3meV. Thus, we can safely ignore the Zeeman splitting when w discuss the orbital degrees of
freedom and include it later into the e ective spin Hamilton ian.

1. The Heitler-London approach

We consider rst the Heitler-London (HL) approximation (al so known as valence orbit approximation), and then
re ne this approach by including hybridization as well as double occupancy in a Hund-Mulliken approach, which will
nally lead us to an extension of the Hubbard description. We will see, however, that the qualitative features ofJ as a
function of the control parameters are already captured by he simplest HL approximation for the arti cial hydrogen
molecule described by Eq. 45.

The HL approximation is borrowed from molecular physics. Inthe present case, think of a hydrogen molecule §
The HL approach starts from single-dot ground-state & wave) orbital wavefunctions ' (r) and combines them into
the (anti-) symmetric two-particle orbital state vector

- g2zl (49)

21 S?)°

the positive (negative) sign corresponding to the spin sintgt (triplet) state, and S = Rdzr' La(r) a(r) = h2jli
denoting the overlap of the right and left orbitals. A non-vanishing overlap implies that the electrons tunnel between
the dots (see also Sec. 1l1.B.3). Here, ,(r) = hrjli and' . (r) = hrj2i denote the one-particle orbitals centered
atr = ( @a;0), and jiji = jiijji are two-particle product states. The exchange energy is the obtained through
J= 1t s=h JjHopnj i h 4+jHowj +i. The single-dot orbitals for harmonic con nement in two dim ensions in
a perpendicular magnetic eld are the Fock-Darwin states (Darwin, Jp930; Fock, 1928), which are the usual harmonic
oscillator states, magnetically compressed by a factob = !=! o = = 1+ !2=17 where! = eB=2mc denotes the
Larmor frequency. The ground state (energy~! = b~! ) centered at the origin is

r—
oy = e m (), (50)

Shifting the single particle orbitals to ( a;0) in the presence of a magnetic gld we obtain' ,(x;y) =

exp( iya=213)' (x a;y), where the phase factor involving the magnetic lengthls = = ~c=eB is due to the gauge
transformation A ;= B( y;x a;0)=2! A = B( y;Xx;0)=2. We obtain (Burkard et al., 1999a)

282 _ ... Rell2iC+ Wj21i
J= 1 o4 h2C + Wjl2 2 ; (51)
where the overlap becomes$ = exp( mla 2=~ a?~=4l3 m! ). Evaluation of the matrix elements of C and W yields
) #
J= o ’be o | bf) e 1B (Pfh  Lg) + — 1+bd (52)
sinh 2d2(2b %) b 4b ’

where we introduce the dimensionless distancd = a=ag, and lg is the zeroth order Bessel function. The rst and
second terms in Eci3 (52) are due to the Coulomb interactionC, where the exchange term enters with a minus sign.
The parameterc= =2(e?=ag)=!o ( 2:4, for ~ o = 3meV) is the ratio between Coulomb and con ning energy.
The last term comes from the con nement potential W. The result J(B) is plotted in Fig. 8 (dashed line). Note that
typically jd=~!j . 0:2. Also, we see thatd > 0 for B = 0, which must be the case for a two-particle system that
is time-reversal invariant (Mattis, 1988). The most remarkable feature ofJ(B), however, is the change of sign from
positive to negative at B = B*, which occurs over a wide range of parameters and a. This singlet-triplet crossing
occurs at aboutBs =1:3T for ~! g =3meV (c=2:42) andd = 0:7. The transition from antiferromagnetic (J > 0)
to ferromagnetic (J < 0) spin-spin coupling with increasing magnetic eld is caugd by the long-range Coulomb
interaction, in particular by the negative exchange term, the second term in Eq. (52). AsB Bo ( 35T for
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FIG. 8 Exchange energy J in units of meV plotted against
the magnetic eld B (in units of Tesla), as obtained from the
s-wave Heitler-London approximation (dashed line), Eq. (5 2),
and the result from the improved sp-hybridized Heitler-Lon don
approximation (triangles) which is obtained numerically a s ex-
plained in the text. Note that the qualitative behavior of th e
two curves is similar, i.e. they both have zeroes, the s-wave
approximation at B, and the sp-hybridized approximation at
B*®P, and also both curves vanish exponentially for large elds.
Bo = (~! 0= 8)(M=m¢) denotes the crossover eld to magneti-
cally dominated con ning ( B Bo). The curves are given for
a con nement energy ~! o = 3meV (implying for the Coulomb
0 2 4 6 8 B/T parameter ¢ = 2:42), and inter-dot distance a=0:7ag.

~l o = 3meV), the magnetic eld compresses the orbits by a factorb B=By 1 and thereby reduces the overlap
of the wavefunctions, S?>  exp( 2d?(2b  1=b), exponentially strongly. Similarly, the overlap decays exponentially
for large inter-dot distances,d 1. Note however, that this exponential suppression is party compensated by the
exponentially growing exchange termhl2jCj21i=S?/ exp(2d’(b 1=b). As a result, the exchange couplingd decays
exponentially as exp( 2d?b) for large b or d, as shown in Fig. 9b forB = 0 (b= 1). Thus, the exchange couplingJ
can be tuned through zero and then suppressed to zero by a magtic eld in a very e cient way.

2. Limitations and extensions of HL

We note that the HL approximation breaks down explicitly (i. e. J becomes negative even wheB = 0) for certain
inter-dot distances if the interaction becomes too strong ¢ exceeds 2:8).

The HL method can be improved by taking into account more than one single-dot orbital. Admixture of higher
orbitals can be taken into account using a variational apprach; the orbitals obtained in this way are termedhybridized
orbitals, in analogy to hybridized molecular orbitals in chemistry. Some results obtained with sp-hybridized QD
orbitals are plotted in Fig. 8.

Another limitation of the HL approximation its restriction to quantum dots that are occupied with a single electron.
Even with a single orbital, the Pauli principle allows for th e presence of a second electron with opposite spin on a
QD orbital. While this admixture of double occupancy is suppressed by the repulsive Coulomb interaction between
electrons, it nevertheless plays a relevant role.

3. The Hund-Mulliken approach and the Hubbard Limit

The Hund-Mulliken (HM) approximation (also known as molecular orbit approximation (Mattis, 1988)) extends
the HL approach by including also the two doubly occupied stdes, which both are spin singlets (Burkard et al.,
1999a). This extends the orbital Hilbert space from two to f(ubdimensions. First, the single particle states have to

be orthonormalized, Ieadingpto thestates ,=(' a ¢ a)= 1 2Sg+ g2, whereS again denotes the overlap of
" awith' ,gandg=(1 1 S2)=S. Then, diagonalization of

0 p_ 1
U X 2ty O
U 2ty O
Hop =2 + — — 53
oro Ez? '8(2tH P V. 0 (3)
0 0 0 \Y
. p-
in the space spanned by d alri;ra) = a(ry) a(r2), S(rir2)=[ +«a(r1) a(r2) a(r1) +a(r2)]= 2yields

the eigenvalues s =2 + Uy=2+ V. UZ=4+4t%, =2 + Uy 2X +V, (singlet), and { =2 +V (triplet),
where the quantities are given in (Burkard et al., 1999a). The exchange energy then becomes

J= 1+ s =V —/+ < Uj+16ts: (54)

In the standard H%)bard approach for short-range Coulomb irteractions (and without B- eld) (Mattis, 1988) J
reduces to U=2+ U2+ 16t2=2, wheret denotes the hopping matrix element, andU the on-site repulsion. Thus,
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FIG. 9 The exchange coupling J obtained from HM (full line), Eqg. (54), and from the extended Hubbard approximation
(dashed line), Eq. (55). For comparison, we also plot the usual Hubbard approximation where the long-range interaction term
V is omitted, i.e. J = 4t%=Uy (dashed-dotted line). In (a), J is plotted as a function of the magnetic eld B at xed inter-dot
distance (d = a=ag = 0:7), and for c =2:42, in (b) as a function of inter-dot distance d = a=ag at zero eld ( B = 0), and again
c = 2:42. For these parameter values, the s-wave Heitler-London J, Eq. (52), and the HM J (full line) are almost identical.

ty and Uy are the extended hopping matrix element and the on-site replsion, resp., renormalized by long-range
Coulomb interactions. The remaining two singlet energies s+ and ¢ are separated from { and s by a gap of
order Uy and are therefore neglected for the study of low-energy progrties. Typically, the \Hubbard ratio" ty=Uy
is less than 1, e.g., ifd=0:7, ~! o =3meV, and B =0, we obtain ty=Uy = 0:34, and it decreases with increasind.
Therefore, we are in anextendedHubbard limit, where J takes the form
2
J= Aty + V: (55)
Un

The rst term has the form of the standard Hubbard approximat ion (Fradkin, 1991) but with ty and Uy being
renormalized by long-range Coulomb interactions. The seawd term V is new and accounts for the dierence in
Coulomb energy between the singly occupied singlet and trilet states . It is precisely this V that makes J
negative for high magnetic elds, whereast3=Uy > 0 for all values of B (see Fig. 9a). Thus, the usual Hubbard
approximation (i.e. without V) would not give reliable results, neither for the B-dependence (Fig. 9a) nor for the
dependence on the inter-dot distancea (Fig. 9b). Since only the singlet space has been enlarged, it clear that we
obtain a lower singlet energy s than that from the s-wave Heitler-London calculation, but t he same triplet energy ¢,
and thereforeJ = ; ¢ exceeds the s-wave Heitler-London result, Eq. (52). Howevethe on-site Coulomb repulsion
U / c strongly suppresses the doubly occupied states ¢, and already for the value ofc = 2:4 (corresponding to
~l o = 3meV) we obtain almost perfect agreement with the s:wave Héler-London result (Fig. 8). For large elds,
ie. B Bo, the suppression becomes even stronget)(/ = B) because the electron orbits become compressed
with increasing B and two electrons on the same dot are con ned to a smaller areéeading to an increased Coulomb
energy. Being a completely orbital e ect, the exchange inteaction between spins of course competes with the Zeeman
coupling Hz of the spins to the magnetic eld. In our case, however, the Zeman energyH; is small and exceeds the
exchange energy (polarizing the spins) only in a narrow windw (about 0:1 T wide) around B*" and again for high
elds (B > 4T).

4. Numerical work

While the calculation discussed in Sec. I11.B.3 above take oly the ground-state orbital in each QD into account, the
HM, like the HL, approximation can be re ned to include more orbital levels of the QDs. Such extended calculations
are usually done numerically, and are very closely relatedd Hartree-Fock (HF) calculations. Note, however, that HF
is not su cient for the purpose of calculating a spin exchange coupling, since it is not capable of including entangled
(quantum correlated) states such as the spin singlet om = 0 triplet. This is typically remedied by invoking the
so-called con guration-interaction method which includes linear superpositions of HF states. Numerical studies of
the double-dot system with one (Hu and Das Sarma, 2000) and ttee (Hu and Das Sarma, 2001) electrons per QD
showed good agreement with the somewhat more crude approxiations discussed above.

At nite magnetic eld, the exchange coupling Eq. (52) can be tuned through zero by changing electrostatic
properties (QD size, distance, electric eld). It has been onrmed both numerically and in actual experiment
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- FIG. 10 The exchange coupling J measured as a func-
- tion of the applied magnetic eld B- using conductance
spectroscopy in a two-electron dot system de ned in
0.1F a GaAs/AlGaAs heterostructure. There are signatures
s - that a double has been formed although a single dot
structure was used in the experiment (Zumbshl et al.,
% < 2004). The shape of the dot is not circular, but some-
e 8 0 e e \%m """""" what elongated. The dot spectra appear to be consis-
foie tent with a parabolic potential with harmonic energies
- %ﬁ@f@ ~la=1:2meV and + , = 3:3meV, corresponding to a
k - spatial elongation of = ! ,=!y  1:6. (Figure courtesy of
0 1 2 D. M. Zumbshl, Harvard University).

(Kyriakidis et al., 2002) that singlet-triplet crossings can be induced in a sigle QD by changes in the dot potential
at constant magnetic eld.

5. Measurements of QD exchange

Signatures of singlet-triplet crossings have been obserdeusing transport spectroscopy in lateral GaAs quantum
dot structures (Zumbuhl et al., 2004) (see Fig. 10). Although a single dot structure was ugg there are signatures
that a double dot was formed in the experiment (Engelet al., 2004).

These data seem to be in rather good qualitative agreement wh theory (Burkard et al., 1999a), bearing in mind that
the absolute magnitude of the exchange coupling strongly depends on the inter-dot distance which is a free paameter
of the theory. Similar double-dot experiments with the double-dot systems shown in Fig. 6 are in preparation.

C. Exchange in vertically coupled QDs

While lateral QDs are adjacent to each other in a two-dimensbnal electron gas, vertically coupled QDs are stacked
on top of each other in a three-dimensional semiconductor sticture. Vertical coupling occurs both in QDs etched
out of multilayer structures and electrically gated (Austi ng et al., 1998) and in self-assembled QDs originating from
the Stranski-Krastanov growth (Fafard et al., 1999; Frickeet al., 1996; Luykenet al., 1998). A system of vertically
coupled QDs is shown schematically in Fig. 11. There are a nuber of works on the exchange coupling between spins
located in this type of coupled QDs (Burkard et al., 2000c; Imamuraet al., 1998, 1996, 1999; Ofet al., 1996; Tokura
et al.,, 1999). This Section in devoted to the exchange coupling bateen spins in vertically coupled dots under the
in uence of both in-plane magnetic and electric elds, By and E,, and perpendicular elds B, , E, (Burkard et al.,
2000c). Electronic spectra and charge densities for two edérons in a system of vertically tunnel-coupled QDs at
zero magnetic eld, B = 0, were calculated in (Bryant, 1993). Singlet-triplet crossings in the ground state of single
(Wagner et al., 1992; Wojs et al., 1996) and coupled dots with two (Ohet al., 1996) to four (Imamura et al., 1998,

z,B ,E z
y
aB+ +a FIG. 11 (a) Sketch of the vertically coupled double
é >y """"""" dl guantum-dot system. The two dots may have di erent
— lateral diameters, ag+ and ag . We consider magnetic
_— X, BH’ EH 1 and electric elds applied either in-plane ( By, Ey) or per-
g) ... -ad pendicularly (B-, E» ). (b) The model potential for the
vertical con nement is a double well, which is obtained
aB- by combining two harmonic wells at z= a.

V(2)
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1996, 1999; Tokuraet al., 1999) electrons in vertically coupled dots in the presencef a magnetic eld perpendicular

to the growth direction (B» in Fig. 11) have been predicted. In order to apply the HL and HM methods introduced

in Sec. Ill.B to vertically coupled QDs, a Hamiltonian of the same form as Eq. (45) can be used, but with the
single-particle Hamiltonian replaced by (Burkard et al., 2000c)

A(ip)= oo B SA() + eZE+ Vil + Vu(r): (56)

Also note that r is a three-dimensional vector here, as opposed to a two-dimeional vector in Sec. IlIl.B. The
potential V| in h describes the lateral con nement, whereasv, models the vertical double-well structure. For the
lateral con nement the parabolic potential

2 2 + 2)- z> 0
Vigy)= Drz o o (Y ’ 57
|( y) z (2) (X2 + yz), 7<0: ( )

N3

is chosen, where we have introduced the anisotropy paramete o determining the strength of the vertical relative
to the lateral con nement. In the presence of a magnetic eld B, perpendicular to the 2DES, the one-particle
problem has the Fock-Darwin states (Darwin, 1930; Fock, 198) as an exact solution. Furthermore, it has been shown
experimentally (Fricke et al., 1996) and theoretically (Wojs et al., 1996) that a two-dimensional harmonic con nement
potential is a reasonable approximation to the real con nenent potential in a lens-shaped SAD. In describing the
con nement V, along the inter-dot axis, a (locally harmonic) double well potential of the form (see Fig. 11b)

2
mbs 5 2

V, = 22 a? ”; 58
can be used; in the limit of large inter-dot distancea  ag, the potential V, in the vicinity of z becomes a
harmonic well of frequency! ;. Here a is half the distance between the centers of the dots andg = ~=(m! ;) is

the vertical e ective Bohr radius. For most vertically coup led dots, the vertical con nement is determined by the

conduction band o set between di erent semiconductor layers; therefore in principle a square-well potential would
be a more accurate description of the real potential than theharmonic double well (note however, that the required
conduction-band o sets are not always known exactly). There is no qualitative di erence between the results presented
below obtained with harmonic potentials and the correspondhg results obtained using square-well potentials (Seelig
1999).

1. Perpendicular Magnetic FieldB -

For a magnetic eld B = B, (cf. Fig. 11) and E = 0, one obtains the ground-state Fock-Darwin (Darwin, 1930
Fock, 1928) solution

3=4
Coa(xyiz) = m!~z p—e moo (0 (xP+y?)H(z a)z):2~; (59)
aorresponding to the around—state energy = ~1,(1+2 )=2. In Eqg. (59) we have introduced (B) =
3 +1.(B)2=12= 5 + B2=BZ, with ! | (B) = eB=2mc the Larmor frequency and B, = 2mc! ,=e the mag-
netic eld for which !, = ! . The parameters (B) describe the compression of the one-particle wave functio
perpendicular to the magnetic eld. The HL with this Hamilto nian yields
252 P_ ,q2 P — c .+
J = ~! 207 1 erf d 2 ~p + 1
T oz c e er P = 1)2arccos(+ )
1 2 2 + 3 2 .

Tz o 0 — (1 erf(d) + 2 1+d° (60)
where erf(x) denot&-st_he error function. We have introduced the dimensinless parametersi = a=ag for the inter-dot
distance, andc= =2(e?=ag)=!, for the Coulomb interaction. Note that , =2 + =( ++ ), andthe
overlap

P

S=2 + exp( d?); (61)

+
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FIG. 12 Exchange energy J (left graph) and single-electron tunneling amplitude t (right graph) as a function of the applied
magnetic eld for two vertically coupled small (height 6nm, width 12nm) InAs ( m = 0:08m., = 14:6) self-assembled QDs
in a center-to-center distance of 9nm (d = 1:5). The box-shaped symbols correspond to the magnetic eld B, applied in z
direction, the circle symbols to the eld By in x direction. The plotted results were obtained using the HM me thod and are
reliable upto a eld By 15T where higher levels start to become important.

depend on the magnetic eldB. The rst term in the square brackets in Eq. (60) is an approximate evaluation of the
direct Coulomb integral h12jCj12i for d & 0:7 and for magnetic elds B . Bg. The second term in Eq. (60) is the
(exact) exchange Coulomb integralhl2jCj21i=S?, while the last two terms stem from the potential integrals, which
were also evaluated exactly. If the two dots have the same siz the expression for the exchange energy Eq. (60) can
be simpli ed considerably.

For two vertically coupled dots of equal size, we set o+ = ¢ o in Eq. (60) and using Eq. (61), we obtain
" 4
~l, P— 542 P— c 2 3 2
Sinh(2d?) c e er T 7 arccos( ) I (62)
where = P 2+ B2=Bj. As before, the rst term in Eq. (62) is the direct Coulomb ter m, while the second term

(appearing with a negative sign) is the exchange Coulomb ten. Finally, the potential term in this case equals
W = (3=4)(1 + d?) and is due to the vertical con nement only. For two dots of equal size neither the prefactor
2S°=(1  S*) nor the potential term depends on the magnetic eld. Since te direct Coulomb term depends onB»
only weakly, the eld dependence of the exchange energy is nstly determined by the exchange Coulomb term. The
exchange coupling can also be calculated using the HM metho@Burkard et al., 2000c).

The dependence of the exchange energy on an electric eld E, applied in parallel to the magnetic eld, i.e.
perpendicular to the xy plane, withing the HL approximation, was found to be

282 3 E, °

J(|3;Ef_))=J(B;0)+~!ZWE o (63)

where Ep = m! 2=eg;. The growth of J is thus proportional to the square of the electric eld E,, if the eld is
not too large. This result is supported by a HM calculation, yielding the same eld dependence at small electric
elds, whereas if eE» a is larger than Uy, double occupancy must be taken into account. The electric eld causes
the exchangeJ at a constant magnetic eld B to cross through zero fromJ(E =0;B) < 0toJ > 0. This eect is
signaled by a change in the magnetizatiorM (Burkard et al., 2000c).

2. In-plane magnetic eldBy

In this section we consider two dots of equal size in a magnati eld B, which is applied along the x-axis, i.e.
in-plane (see Fig. 11). Since the two dots have the same size, the latdrcon ning potential Eq. (I11.B) reduces
to V(x;y) = m! 2 3(x? + y?)=2, where the parameter o describes the ratio between the lateral and the vertical
con nement energy. The vertical double-dot structure is modeled using the potential Eqg. (58). The situation for an
in-plane eld is a bit more complicated than for a perpendicular eld, because the planar and vertical motion do
not separate. In order to nd the ground-state wave function of the one-particle Hamiltonian h® ,, an approximate
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variational method can be applied (Burkard et al., 2000c) with the result

m!, % 1 m! _ya
o 20 Vep X oty (2 @) 2y (64)
~ 2~ 28
where the parameters (B) = P 2+(B=Bg)2and (B)= P 1+ (B=By)?, describing the wave-function compression
in y and z direction, respectively, have been introduced.
The resulting exchange couplingd in this case is
482 B °
od) = . - 2 =2 .
J(B;d) = Jo(B;d) ~!, o d B, (65)

where Jg denotes the expression from Eq. (51). The variation of the eghange energyd as a function of the magnetic
eld B is, through the prefactor 252=(1 S#), determined by the overlap S(B;d) = exp[ d?( (B)+(B=B¢)?)= (B)],

depending exponentially on the in-plane eld, while for a papendicular eld the overlap is independent of the eld

(for two dots of equal size), see Eq. (61). The HL result can agin be improved by performing a molecular-orbital
(HM) calculation of the exchange energy, which we plot in Fig 12 (left graph, circle symbols).

3. Electrical switching of the interaction

Operating a coupled quantum dot as a quantum gate requires tk ability to switch on and o the interaction
between the electron spins on neighboring dots. A simple mébd of achieving a high-sensitivity switch for vertically
coupled dots involves a horizontally applied electric eld Ex. The idea is to use a pair of QDs with di erent lateral
sizes, e.g. a small dot on top of a large dot (o+ > o , see Fig. 11). Note that only the radius in the xy plane has
to be dierent, while it can be assumed that the dots have the ame height. Applying an in-plane electric eld Ey
in this case causes a shift of the single-dot orbitals by x = eE,=m!2 3 = Ey=Ey 3 , whereEq = ~! ,=ea, see
Fig. 13. It is clear that the electron in the larger dot moves further in the (reversed) direction of the electric eld
( x > Xx4), since its con nement potential is weaker. As a result, the mean distance between the two electrons
changes from 2 to 2d° where

r S

E 2
d°= 2+ :—L( X x: )%= 2+ A2 . (66)
4 Eo

with A = (1= 3 1= 2,)=2. Using Eq. (61), we nd that the wavefunction overlap scales asS / exp( d°2) /
exp[ A%(Ey=Ep)?]. Due to this high sensitivity, the electric eld is an ideal \switch" for the exchange coupling J
which is (asymptotically) proportional to S? and thus decreases exponentially on the scalgy=2A. Note that if the
dots have exactly the same size, therA = 0 and the e ect vanishes. An estimate of J as a function of E, can be
obtained by substituting d° from Eqg. (66) into the HL result, Eq. (60). A plot of J(E\) obtained in this way is shown
in Fig. 13 for a speci c choice of GaAs dots. Note that this procedure is not exact, since it neglects the tilt of the
orbitals with respect to their connecting line. Exponential switching is highly desirable for quantum computation,
because in the \o " state of the switch, uctuations in the ex ternal control parameter (e.g. the electric eld Ey)
or charge uctuations cause only exponentially small uctuations in the coupling J. If this were not the case, the
uctuations in J would lead to uncontrolled coupling between qubits and theefore to multiple-qubit errors. Such
correlated errors cannot be corrected by known error-corretion schemes, which are designed for uncorrelated errors
(Preskill, 1998b).

D. Single-qubit operations

Single-qubit operations with the Hamiltonian Eq. (10) require a time-varying Zeeman coupling @ 8 S B)(t)
(Burkard et al., 1999a; Loss and DiVincenzo, 1998), which can be controllelby changing the magnetic eld B or the
g-factor g. E ective magnetic elds/g-factors can be produced by coupling the spin via exchange to a ferromagnet
(Loss and DiVincenzo, 1998) or to polarized nuclear spins (Brkard et al., 1999a). We review here how the g-factor
of an electron in a semiconductor heterostructure can be madaated by shifting its orbital between layers of host
material with di erent g-factors (DiVincenzo et al., 1999; DiVincenzo and Loss, 1999).

The spin-orbit coupling can leads to large deviations of theLande g-factor (both in the positive and negative
direction) in bulk semiconductors from the free-electron alue gy = 2:0023. The e ective g-factors in these materials
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] FIG. 13 Controlled switching of the exchange coupling J between
1 dots of dierent size by means of an in-plane electric eld Ey at
zero magnetic eld, B = 0. The coupling is \on" at E = 0. When
.E 1 E\ is applied, the larger dot is shifted to the right by ~ x , whereas
] the smaller dot is shifted by x+ < x ,where x = Ex=Eg 3
2d>2d 1 and Eo = ~! ;=eas . With Ey increasing, J decreases exponentially,
. 1 J S%  exp[ 2A%(Ex=Eo)?]. The parameters used for this plot
] are~!, =7meV, d =1, o« =1=2and o = 1=4, yieldin
"off" 1 Eo= ~l,=ea = 0:56mV=nmand A = ( 2 2)y=2 3 3 =
‘ ‘ ‘ 6. The coupling J decreases exponentially on the scaleEo=2A =
0.10 0.15 020 0:047 mv=nm for the electric eld.
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FIG. 14 E ective g-factor ge of electrons con ned in
a AlxGa: xAs{GaAs{In yAl,Ga: x yAs{Al xGa: xAs
heterostructure (x = 0:3, y = 0:1) as a function
of the applied electric eld E in growth direction.
The widths of the quantum well and the barriers are
w = wg = 10nm. The g-factors which are used for the
materials are indicated with dashed horizontal lines.

E (mV/nm)

range from large negative to large positive humbers. In conned structures such as quantum wells, wires, and dots,
the g-factor is modi ed with respect to the bulk value and sersitive to an external bias voltage (lvchenko et al.,
1997). In the case of a layered structure, the e ective g-far of electrons can be varied by electrically shifting ther
equilibrium position from one layer (with g-factor g;) to another (with another g-factor g, 6 g;). The bulk g-factors of
the layer materials and linear interpolations between them have been used here as an approximation which becomes
increasingly inaccurate as the layers become thinner (Kidev et al., 1998).

Let us assume that by replacing some fractiory of Ga atoms in the upper half of a AIGaAs-GaAs-AlGaAs quantum
well by In atoms (we have usedy = 0:1) we obtain the following layered heterostructure:

Al,Ga; xAs{GaAs{In yAl,Ga; x yAs{AlxGa; xAs,

wherex denotes the Al content in the barriers (typically around 30%). In such a structure, the e ective g-factor can be
modi ed by changing the vertical position of the electrons via top or back gates. If the electron is mostly in a pure GaAs
environment, then its e ective g-factor will be around the G aAs bulk value (gcaas = 0:44) whereas if the electron is
in the InAlGaAs region, the g-factor will be more negative due to the large negative InAs value @nas = 15). The
one-dimensional problem of one electron in such a structurbas been analyzed numerically. When the e ective mass
m(z) is spatially varying, the Hamiltonian in the e ective mass approximation can be written as

d ~2 d
-tV = E : 67
Zam@at V@ (9=E(2 (67)
This problem can be discretized in real space and subsequéytdiagonalized numerically (DiVincenzo et al., 1999).
Finally, the e ective g-factor is calculated by averaging the local g-factor g(z) over the electronic density in the
ground-state (see Fig. 14),

4
g = dzg(2)j( 2)i* (68)

The option of performing single-qubit rotations by electrostatically controlling the g-factor makes all-electric control of
a spin-based quantum computer (an array of QDs as in Fig. 1) pssible and thus o ers a way around the problematic
local magnetic eld implementation of single-qubit gates. Another method to circumvent single-spin operations
completely (however, at a higher cost of gates and exchangegperations) is the exchange-only architecture outlined in
Sec. II.C.
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FIG. 15 Left: QDs embed-
ded inside a microdisk struc-
ture, from (Imamaylu et al.,
1999). Each QD is ad-
dressed selectively by a laser
eld from a ber-tip. The
laser frequencies are chosen
to select out the pair of QDs
that will participate in gate
operation. All dots strongly
couple to a single cavity-

Imy = -3/2> Im, =3/2> mode. Right: Energy lev-
els of a lllI-V (or 1I-VI) semi-
Imy = -1/2>  |my =1/2> conductor QD. It is assumed

that con nement along the
z-direction is strongest.

E. Semiconductor microcavities

Here, we present a modi cation of the Loss-DiVincenzo schem (Sec. I1.A) for QC based on QD electron spins. In
contrast to the original scheme (Loss and DiVincenzo, 1998)where the spins are coupled via direct exchange, this
coupling which is mediated through a single microcavity moa and uses laser elds to mediate coherent interactions
between distant QD spins (Imamalu et al., 1999).

The cavity scheme is shown in Fig. 15: the doped QDs are embedd in a microdisk structure with diameter
d' 2 m and thicknessd ' 0:1 m. Experiments have shown that InAs self-assembled QDs canéembedded in
microdisk structures with a cavity quality factor Q' 12000 (Gerard and Gayral, 1999). It is assumed that the QDs
are designed such that the quantum con nement along the z-diection is the strongest. The in-plane con nement is
also assumed to be large enough to guarantee that the electnowill always be in the ground-state orbital. Because
of the strong z-axis con nement, the lowest energy eigenst&s of such a IlI-V or 1I-VI semiconductor QD consist
of jm, = 1=2i conduction-band states andjm, = 3=2i valence-band states. The QDs are doped such that each
QD has a full valence band and a single conduction band eleabn: we assume that a uniform magnetic eld along
the x-direction (By) is applied, so the QD qubit is de ned by the conduction-band states jmy = 1=2i = j#i and
jmy =1=2i = |'i (Fig. 15, right).

1. Single-qubit operations

Single-bit operations are carried out in this scheme by appling two laser elds E_ . (t) and E,y (t) with Rabi
frequencies x and |y, and frequencies! |, and! ., (polarized along the x and y directions, respectively) that
exactly satisfy the Raman-resonance condition betweelji and j"i . The laser elds are turned on for a short time
duration that satis es a =r -pulse condition, wherer is any real number. The process can be best understood as a
Raman =r -pulse for the hole in the conduction band state. The laser eld polarizations should have non-parallel
components in order to create a non-zero Raman coupling (iftere is no heavy-hole light-hole mixing). These arbitrary
single-bit rotations can naturally be carried out in parall el. In addition, the QDs that are not doped by a single electram
never couple to the Raman elds and can safely be ignored.

2. Two-qubit operations
Two-qubit operations are mediated by virtual photons that are emitted to and reabsorbed from the microcavity

eld. It is assumed that the x-polarized cavity-mode with energy ! .oy (~ = 1) and a laser eld (assumed to be y-
polarized) establish the Raman transition between the two onduction-band states, in close analogy with the atomic
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cavity-QED schemes (Pellizzariet al., 1995). The Hamiltonian for a single QD is written asH = Hg + Hijy, with

X
H 0 = ! ey e + ! cav a)éav a.cav + ! L a{ aL , (69)
="# 3=2

where e+, e; annihilate an electron with spin ", # along the x direction in the conduction band and e ;-, annihilates
an electron with spin  3=2 along the z direction in the valence band, cf. Fig. 15 (right). The interaction can be
written as

Hin =g ale, e 10 @ €_e+hec ; (70)

where the operators for the circularly poleri_zed light are expressed in terms of the x-polarized cavity mode and the
y-polarized laser eld, a = (acav iaL)= 2, gnd the conduction-band operators in thez basis can be expressed in
terms of those in thex basis,e 1-, = (e e)= 2. With | 3, =15, !, andthe denition e, = (€ 3, €3-5)=2,
the following result for the cavity Hamiltonian is obtained,

Hie = g &, e + eeac ig aees eea (71)

The valence band states are eliminated by a Schrie er-Wol transformation (Madelung, 1978; Schrie er and Wol ,
1966),H. = e SHeS, with

S= % alaee  eeac i% aj ejex + ejea (72)
where !-=1. 1, lg,and 'x=14 !, ! . NeglectingalltermsO(g®) and replacing e/e, by its expectation
value he¥e,i =1 and ga. by  exp( il _t) one obtains the e ective Hamiltonian

" . #
X g (2. hoo i
He = !cavagavacav"' !'I'# " % #I##agavacav + o |g:3 a)éa\, ;';y-e Yt ohier (73)
: I by
!
i Ocav I_ (t) 1 1
g (t) = 5 Tt T (74)
s #
where the sum runs over all QDs of the systemg., is the e ective 2-photon coupling coe cient, !, = j"ih#j the
spin projection operator for the i-th QD, and !!, = Il 1L, The exact two-photon-resonance condition would be
Ph=1l 1l legy = ty=1L 1l 11, The derivation of He assumes !,  Gea, !’y kg T, and

! .i.i gie > v, Where .o denotes the cavity decay rate (not included in Eq. (73)). Thethird and fourth terms
of Eq. (73) describe the ac-Stark-e ect caused by the cavityand laser elds, respectively.

In order to implement a CNOT quantum gate, one would turn on laser elds! | and!| to establish near two-photon
resonance condition for both the control (i) and the target (j) qubits,

i = ! 'i'# Pcav + ! II_ = i ! 'i'gf : (75)

If the two-photon detunings  are chosen large compared to the cavity linewidth andgie (t), the cavity modes can
be eliminated with a second Schrie er-Wol transfornﬁation to obtain an e ective two-qubit interaction Hamiltonian

in the rotating frame (interaction picture with Ho= " ;!l, L),
) X h i
HY = e 4 he e b ohelnt (76)
i6]
whereg; (t) = g} (t)g"e ()= jand 5 = i . The implementation of the conditional phase- ip (CPF) and the

CNOT or quantum XOR gates between two spinsi and j from a transversal (XY) spin coupling of the form Eq. (76)

has been discussed in Sec. II.B.
The interaction Hamiltonian Hi(nzt) describes the coupling of the QD spins via the following virtial process. One of

the QDs emits a virtual photon into the cavity while absorbin g a laser photon. The cavity photon is then reabsorbed

by the other QD while a laser photon is emitted. Due to the spinsplitting in the QD spectrum, Fig. 15 (right), this

process is spin sensitive and leads to the spin-spin coupljH i(ft) between the QDs.
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3. Measurement

In the cavity QED scheme, measurement of a single QD spin canéachieved by applying a laser eldE,, to the
QD to be measured, in order to realize exact two-photon resosnce with the cavity mode. If the QD spin is in state
j#i, there is no Raman coupling and no photons will be detected. flon the other hand, the spin state isj"i , the
electron will exchange energy with the cavity mode and evenially a single photon will be emitted from the cavity.
A single photon detection capability is thus su cient for de tecting a single spin.

4. Related proposals

A related proposal is to use optically controlled virtual excitations of delocalized excitons as mediators of RKKY
type spin interaction between electrons localized in neighoring QDs (Piermarocchiet al., 2002). The spin interaction
in this case is isotropic,H = JS; §;.

F. Decoherence

The spin coherence time in semiconductors|the time over which the phase of a superposition of spin-up and spin-
down states, Eq. (1), is well-de ned|can be much longer than the charge coherence time (a few nanoseconds). In
fact it is known from experiment that they can be orders of maqitude longer. This is of course one of the reasons for
using spin as a qubit (Loss and DiVincenzo, 1998) rather tharcharge. In bulk GaAs and in CdSe quantum dots, the
ensemble spin coherence tim&;, being a lower bound on the single-spin decoherence timg,, was measured using a
technique called time-resolved Faraday rotation (Guptaet al., 1999; Kikkawa et al., 1997). For a detailed account of
these experiments, we refer the reader to Chaps. 4 and 5 of (Asehalomet al., 2002). The spin relaxation time Ty in
a single-electron QD in a GaAs heterostructure was probed w transport measurements and found to approach one
microsecond (Hansoret al., 2004, 2003). It has been proposed to also measure the singlpin T, in such a structure in
a transport experiment by applying electron spin resonancdESR) techniques (Engel and Loss, 2001). In this scheme,
the stationary current exhibits a resonance whose line widh is determined by the single-spin decoherence timé.

Below, a number of decoherence mechanisms for spin in semimhuctor nanostructures will be listed. It Should be
emphasized, though, that it is usually hard for theory to predict which mechanism is dominant. Nevertheless, the
understanding of the underlying mechanisms for a list of posible causes can be a very valuable tool for the purpose
of achieving long coherent operation in a future quantum deice.

1. Phonons and the spin-orbit coupling

Phonon-assisted transitions between di erent discrete errgy levels (or Zeeman sublevels) in GaAs quantum dots
can cause spin ips and therefore spin decoherence (Khaetgk2001; Khaetskii and Nazarov, 2000, 2001). There are
various mechanisms originating from the spin-orbit couplng which lead to such spin ip processes; the most e ective
mechanisms in 2D have to do with the broken inversion symmety, either in the elementary crystal cell or at the
heterointerface. The spin-orbit Hamiltonian for the electron in such a structure is given by Eq. (22). The relaxation
rates = T, 1 are evaluated in leading perturbation order in this coupling, with and without a magnetic eld. The
spin-orbit coupling Hse mixes the spin-up and spin-down states of the electron and kds to a non-vanishing matrix
element of the phonon-assisted transition between two stas with opposite spins. However, one of the main ndings
of (Khaetskii, 2001; Khaetskii and Nazarov, 2000, 2001) ishat the spin relaxation of the electrons localized in the
dots di ers strongly from that of delocalized electrons. It turns out that in quantum dots (in contrast to extended
2D states), the contributions to the spin- ip rate proporti onal to 2 are absent in general. This greatly reduces
the spin- ip rates of electrons con ned to dots. The nite Ze eman splitting in the energy spectrum also leads to

contributions / 2,

2

2
m- 9geB (77)

" o(B) Ty

__!O

where ~! ¢ is the orbital energy level splitting in the QD and (B) is the inelastic rate without spin ip for the
transition between neighboring orbital levels.
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Spin- ip transitions between Zeeman sublevels occur with arate that is proportional to the fth power of the
Zeeman splitting,

. (g 8B)°
2 gy v (78)
The dimensionless constant , / 2 characterizes the strength of the e ective spin{piezo-phmon coupling in the
heterostructure and ranges from 7 10 3to 6 10 2 depending on . To give a number, , 1.5 10®s ! for
~l o =10K and at a magnetic eld B =1T.

It can be shown that under realistic conditions, a general synmetry argument leads to the conclusion that the spin
decoherence timeT, does not have a transverse contribution (in leading order)jn other words, T, = 2 T; for spin-orbit
(phonon) related processes (Golovaclet al., 2004).

2. Nuclear spins

The nuclear spins of the host material can cause decoherencga spin ips that are caused by the hyper ne
interaction. A rough perturbative estimate of this e ect (B urkard et al., 1999a) suggests that the rate of such processes
can be suppressed by either polarizing the nuclear spins orybapplying an external magnetic eld. The suppression
factor is (B,=B)?=N, where B, = Al=g g is the maximal magnitude of the e ective nuclear eld (Overh auser eld),
N the number of nuclear spins in the vicinity of the electron, and A the hyper ne coupling constant. In GaAs, the
nuclear spin of both Ga and As isl = 3=2. The eld B denotes either the external eld, or, in the absence of an
external eld, the Overhauser eld B = pB, due to the nuclear spin polarization p, which can be obtained e.g. by
optical pumping (Dobers et al., 1988) or by spin-polarized currents at the edge of a 2DEG (Dion et al., 1997). In
the latter case, the suppression of the spin ip rate becomed=p’N .

A more detailed analysis treats a single electron con ned toan isolated QD under the in uence of the hyper ne
interaction with the surrounding nuclei (Khaetskii et al., 2002). It turns out that the electron spin decoherence time
T, is shorter than the nuclear spin relaxation time T,, determined by the dipole-dipole interaction between nuclé and
therefore the problem can be considered in the absence of thauclear dipole-dipole interaction. Since the hyper ne
interaction depends on the position via a factorj (r)j> where (r) is the electron wavefunction, the value of the
hyper ne interaction varies spatially. It turns out that th is is the relevant cause of decoherence. The analysis is
complicated by the fact that in a weak external Zeeman eld (smaller than a typical uctuating Overhauser eld seen
by the electron, 100 Gauss in a GaAs QD), the perturbative treatment of the eletron spin decoherence breaks
down and the decay of the spin precession amplitude is not exgnential in time, but either described by a power law,
1=t%=2 (for nite Zeeman elds) or an inverse logarithm, 1 =(In t)9=2 (for vanishing elds).

The decay rate =T, is thus roughly given by A=~N, where A is the hyper ne interaction constant, and N is the
number of nuclei within the dot, with N typically 10°. This time is of the order of several s. However, it needs to
be stressed that there is no simple exponential decay whictstrictly speaking, means that decoherence cannot simply
be characterized by the decay timesT; and T, in this case. The case of a fully polarized nuclear spin statevas
solved exactly in (Khaetskii et al., 2002). The amplitude of the precession which is approachedfter the decay, is
of order one, while the decaying part is N, in agreement with earlier results (Burkard et al., 1999a), see above. A
large di erence between the values ofT, (decoherence time for a single dot) andr; (dephasing time for an ensemble
of dots), i.e. T; T, is found and indicates that it is desirable to have direct experimental access to single spin
decoherence times.

The non-Markovian dynamics of a localized electron spin ineracting with an environment of nuclear spins with
arbitrary polarization p was calculated in (Coish and Loss, 2004) from a perturbativeanalysis of the generalized
master equation for the longitudinal and transverse compoents of the electron spin.

IV. SUPERCONDUCTING MICRO-CIRCUITS
A. Overview

Roughly speaking, three prototypes of superconducting (S qubits are studied experimentally. We only brie y
review them here, and refer the reader to (Makhlinet al., 2001) for a comprehensive review. The charge qubit (Averin
1998; Makhlin et al., 1999; Nakamuraet al., 1999; Pashkinet al., 2003; Shnirmanet al., 1997; Vion et al., 2002),
operating in the regimeEc  E;, and the ux qubit (Chiorescu et al., 2003; Mooij et al., 1999; Orlandoet al., 1999;
van der Wal et al., 2000), operating in the regimeE; Ec, are distinguished by their Josephson junctions' relative
magnitude of charging energyEc and Josephson energ¥ ;. A third type, the phase qubit (lo e et al., 1999; Martinis
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et al., 2002), operates in the same regime as the ux qubit, but is rpresented purely in the SC phase and is not
associated with any magnetic ux or circulating current. Th e Josephson phase qubit consists of a single Josephson
junction (Martinis et al., 2002). In ux qubits, the quantum state of the SC phase di er ences across the Josephson
junctions in the circuit contain the quantum information, i .e., the state of the qubit. A micrograph of the circuit for
a SC ux qubit studied in (Chiorescu et al., 2003) is shown in Fig. 16. In charge qubits, the quantum sta¢ of the
charge on SC islands contains the quantum information.

Both charge and ux qubits have been described by an approximate pseudo-spin Hamiltonian of the type (Makhlin
et al., 2001),

H = 5 X + > zi (79)
where denotes the tunnel coupling between the two qubit states jOi and jli (eigenstates of ;) and the bias
(asymmetry). In Sec. IV.C, a more general model, including he full Hilbert space of a SC circuit, will be discussed.

B. Decoherence, visibility, and leakage

1. Decoherence

Decoherence within the model Eqg. (79) can be understood ph@&menologically as follows_ If the qubit is initially
prepared in state j1i, then it will undergo free Larmor oscillations with frequency = h ¥ 2+ 2. |[deally, the
probability for nding the qubit in state jli after time t would be a perfect cosine function oft. This ideal Larmor
precession is shown as a thin dotted line in Fig. 17. Such a Lanor precession experiment (also known as Ramsey
fringe experiment) determines how well the qubit satis es tem I.A.3 of DiVincenzo's ve criteria. Decoherence is a
process in which the amplitude of the oscillations decays @r time, as shown by the thick solid line in Fig. 17. This
decay is often (but not always) exponential with a charactetistic decoherence timeTs,.

All types of SC qubits su er from decoherence that is caused ¥ a several sources. Decoherence in charge qubits has
been investigated using the spin-boson model in (Makhliret al., 2001; Makhlin and Shnirman, 2004). In ux qubits,
the Johnson-Nyquist noise from lossy circuit elements (e.g current sources) has been identi ed as one important
cause of decoherence (Tiamt al., 2000, 2002; van der Walet al., 2003; Wilhelm et al., 2003). A systematic theory
of decoherence of a qubit from such dissipative elements, bad on the network graph analysis (Devoret, 1997) of the
underlying SC circuit, was developed for SC ux qubits (Burkard et al., 2004b), and applied to study the e ect of
asymmetries in a persistent-current qubit (Burkard et al., 2004a). The circuit theory for SC qubits will be discussed
further below in Sec. IV.C. For the Josephson phase qubit (Matinis et al., 2002), decoherence due to bias noise and
junction resonators was studied in (Martinis et al., 2003; Simmondset al., 2004).

2. Visibility

A di erent type of imperfection that typically a ects SC qub its is a limited visibility v. This e ect means that the
maximum range v of the read-out probability of the qubit being in state jli is smaller than one. This means, e.g.,
that the probability p(0) of measuring the qubit in state j1i right after preparation in this state is less than one. In
the case of a symmetric reduction of the visibility, the relaion is p(0) = (1+ v)=2. This e ect is schematically shown
in Fig. 17.

FIG. 16 Electron micrograph of the SC ux qubit circuit
studied in (Chiorescu et al., 2003). The logical qubit ba-
sis states correspond to circulating SC currents in the
smaller loop as indicated. The bright areas are the Al
wires; the double-layer structure from the shadow evap-
oration deposition is clearly visible. (Figure courtesy of
I. Chiorescu and J. E. Mooij, TU Delft).
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FIG. 17 Theoretical Larmor precession (Ramsey
fringe) curve with decoherence time T, < 1 and
limited visibility v < 1 (solid thick line), compared
to the ideal curve (dotted thin line). The proba-
bility p(t) to nd the qubit in state j1i is plotted
as a function of the free evolution time t. The
Larmor frequency of the coherent oscillations is
denoted with . The visibility v is the maximum
range of p(0) whereas the decoherence time T» is
the time over which the oscillations are damped
out (in the case of an exponential decay). For this
plot, we have chosenT, =20= and v = 70 %.

3. Leakage

Limitations of the visibility are often attributed to a mech anism called leakage. Since the SC phase is a continuous
variable as, e.g., the position of a particle, supercondudhg qubits (two-level systems) have to be obtained by trunca
tion of an in nite-dimensional Hilbert space. This truncat ion is only approximate for various reasons; (i) because it
may not be possible to prepare the initial state with perfect delity in the lowest two states, (ii) because of erroneous
transitions to higher levels (leakage e ects) due to imperéct gate operations on the system, and (iii) because of erro-
neous transitions to higher levels due to the unavoidable iteraction of the system with the environment. Apparent
leakage e ects may occur if the read-out process is not 100%caurate. Leakage e ects due to the non-adiabaticity of
externally applied elds were studied in (Fazio et al., 1999). Recent work (Meier and Loss, 2004) shows that leakag
in microwave-driven Josephson phase qubits leading to a redted visibility can occur, even if the microwave source is
pulsed slowly.

C. Circuit theory

A recently developed method for deriving the Hamiltonian of SC circuits from their classical dynamics, combined
with the theory of dissipative quantum systems, can be utilzed to describe decoherence in arbitrary SC circuits
(Burkard et al., 2004b).

There exists a variety of theoretical models for dissipati\e environments in general, and dissipative electrical cingit
elements (impedances) in particular. A dissipative (resifive) element can be modeled as a transmission line (Werner
and Drummond, 1991; Yurke, 1987; Yurke and Denker, 1994), &. an in nite set of dissipation-free elements (capacitors
and inductors), or, alternatively, within the widely known Caldeira-Leggett model (Caldeira and Leggett, 1983; Legge
et al., 1987; Weiss, 1999) as a continuum of harmonic oscillatordat is coupled to the degrees of freedom of the system
(in this case, the SC circuit). In the following, the Caldeira-Legget approach will be used.

The systematic derivation of the dynamical equations for a @neral (classical) electric circuit is a well-known problen
in electric engineering that has been tackled using the elemt and convenient network graph analysis methods (Peikar;
1974). It has been suggested early on that these methods maysa be used for a description of the dissipative quantum
dynamics of superconducting circuits (Devoret, 1997). We kall now explain the circuit graph analysis applied to SC
qubits, both of the ux (Sec.lV.D) and charge (Sec.IV.E) typ e.

D. Flux qubits

In this Section, the results of the circuit theory for ux qub its are presented; for a derivation, see (Burkardet al.,
2004b). The IBM qubit (Koch et al., 2003) will be used as a rst example, and then followed by otler examples. The
IBM qubit is described by the electrical circuit drawn in Fig . 18.
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1. The network graph

As a rst step in the circuit analysis of a SC ux qubit, the network graphof the SC circuit is drawn and labeled. In
the graph, each two-terminal element (Josephson junctioncapacitor, inductor, external impedance, current source)
is represented as a branch connecting two nodes. In Fig. 184ft panel), the IBM qubit is represented as a network
graph, where thick lines are used as a shorthand for resistaly shunted Josephson junctions, or RSJ (see Fig. 18,
right panel). A convention for the direction of all branches has to be chosen{in Fig. 18, the direction of branches is
represented by an arrow.

2. The tree of the network graph

As a second step, aree of the network graph needs to be speci ed. A tree of a graph is aet of branches connecting
all nodes without containing any loops. Here, the tree is cheen such that it contains all capacitors, as few inductors
as possible, and neither resistors (external impedances)on current sources. The conditions under which such a choice
can be made are discussed in (Burkarett al., 2004b). The tree of Fig. 18(right) that will be used here is fiown in
Fig. 18(center). The branches in the tree are calledree branches all other branches are calledchords Each chord is
associated with exactly one so-called fundamental loop thiais obtained when adding the chord to the tree.

3. The loop matrices

In a next step, the loop sub-matricesFc., Fcz, Fcs, FkL s Fkz , and Fxg need to be found. The loop sub-
matrices Fxy have entries +1, 1, or 0, and hold the information about which tree branches oftype X belong to

which fundamental loop associated with the chords of typeY. E.g., for our example,
0 1

1 O
FcL = % 1 1%; (80)
0 1

where the rst column determines that the capacitor C; (part of J1) belongs to the large loop (associated withl ),
capacitor C, (part of J,) belongs to the large loop (with di erent orientation), whi le capacitor C3 (part of J3) does
not belong to the large loop at all. Similarly, the second colimn of F¢ says which of the capacitors are contained in
the small loop (associated withL 3).

The loop matrices have the purpose of systematically incorprating Kirchho 's laws of current and energy conser-
vation in the circuit,

FOI = (LjF)I =0; (81)
FOv = FTja v = _; (82)

FIG. 18 Left: The IBM qubit is an example of a network graph. Ea ch thick line represents a Josephson element, i.e. three
branches in parallel, see right panel. Thin lines represent simple two-terminal elements, such as linear inductors (L, K), external
impedances (Z), and current sources (g). Center: A Josephson subgraph (thick line) consists of thr ee branches; a Josephson
junction (cross), a shunt capacitor (C), a shunt resistor (R ), and no extra nodes. Right: A tree for the circuit shown on th e
right. A tree is a subgraph containing all nodes and no loop. H ere, a tree was chosen that contains all capacitors (C), some
inductors (K), but no current sources ( Ig) or external impedances (Z).
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where the external magnetic uxes are denoted with , and where the loop sub-submatrices
|

- Fco Feo Fer Fez Fes 83)
Fkai Fku Fkr Fkz Fks

are related to the full fundamental loop and cutset matricesF(“) and F(©) via the grouping of the branch currents
and voltages into a tree and a chord part,] = (lg;len) and V = (Vy;Ven).

4. Current-voltage relations (CVRS)

In order to derive the equations of motion and eventually, the Hamiltonian of the SC circuit, Kirchho 's laws,
Egs. (81) and (82) need to be combined with the CVRs of the vamwus branch elements. For this purpose, the tree
and chord currents and voltages are divided up further, accaling to the various branch types, I+ = (l¢;lk ), and
lch = (1351 1R;12;18), and similarly for the voltages. The tree current and voltage vectors contain a capacitor (C)
and tree inductor (K) part, whereas the chord current and voltage vectors consist of parts for chord inductors, both
non-linear (J) and linear (L), shunt resistors (R) and other external impedances (Z), and bias current sources (B).
The branch charges and uxes K = C;K;J;L;R;Z;B ) are formally de ned as

Ix (1) = Qx(b); (84)
Vx () = —x(1): (85)

Using the second Josephson relation and Eq. (85), we identifthe formal uxes associated with the Josephson junctions
as the superconducting phase di erence$ across the junctions,

_J - .
o 2
where ¢ = h=2eis the superconducting ux quantum. Each branch type has its own current-voltage relation (CVR);
e.g., the Josephson junction branches follow the rst Josepson relation,

(86)

Iy =lcsin' ; (87)
with the critical current matrix |, while the external impedances are described by the integtaelation,
z t
Vz(t) = Z(t )iz()d (2 1z)(1): (88)
1
The total inductance matrix |
L L ik .
L = ; 89
S (89)

is used for the CVR of the chord (L) and tree (K) inductances,
! !

Loy, b (90)
K Ik

whereL and Lk are the self inductances of the chord and tree branch inductes, resp., o -diagonal elements describing
the mutual inductances among chord inductors and tree indutors separately, andL  k is the mutual inductance matrix
between tree and chord inductors.

5. The Hamiltonian

The elements described above are su cient to determine the Himiltonian of the dissipation-free system,
2

1

Hs = 5QIC 'Qc+ > U(); (91)
X ’

ue) = 2':' cos‘i+%'TM0' +2_0'T(N «+ Slg); (92)
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where Q¢ are the charges conjugate to the uxes ; = ( ¢=2 )’ and C is the capacitance matrix of the circuit.
The matrices M o, N, and S are obtained from the inductance and loop matricesL; and F (Burkard et al., 2004b).
The Hamiltonian Eq. (91) is quantized using the commutator relation

2—0' i:Qcyj =1i~j: (93)

The system including dissipation can be described using th€aldeita-Legget model,

H = Hs+ Hpg + Hsg; (94)
H _ 1X p2 +m |2X2 . (95)
B = 3 m ! ;
X
Hse = m ' cx + UC) (96)

whereHs is the quantized Hamiltonian Eq. (91), Hg is the Hamiltonian describing a bath of harmonic oscillators with
( ctitious) position and momentum operators x andp with[x ;p ]= i~ , massean , and oscillator frequencies
I . Finally, Hsg describes the coupling between the system and bath degree$ foeedom,' and x , wherec is a
coupling parameter andm are obtained from the inductance and loop matricesL; and F (Burkard et al., 2004Db).
The quantum dynamics of the entire system (qubit plus bath of oscillators) is described by the Liouville equation
()= i[H; ] iL (t) for the density matrix . The state of the system alone is described by the reduced
density matrix s(t) =Tr g (t). In the Born-Markov approximation, the master equation for g(t) can be written in
the form of the Red eld equations (Red eld, 1957),

X
am ()= ' am am (1) Romki ki (1); (97)
K
where ,m = mj sjmi are the matrix elements of in the eigenbasigni of Hg (eigenenergied ), and !y = ' ',
and with the Red eld tensor,
X X
Romk = im S?’k + onk I(rrn)1 I(r;)nk I(mn)k ; (98)
r r
! =2
(+) _ , , . . e nk .
Re Imnk  ~ (m )lm (m )nkJ(J! nkl)m,
2 1o [
m O = (M " Jm(m =P d! '2(')2 [ coth7 ; (99)
0 . . nk

In the two-dimensional qubit subspace, the Bloch vectorp = Tr( ) can be introduced where =( «; y; ;) are
the Pauli matrices, and the Red eld equation (97) takes the form of the Bloch equationp=! p Rp + po, with
I =(0;0;!01)", where in the secular approximation, the relaxation matrix R is diagonal, R = diag( T, 1;T2 l;Tl b.
The relaxation and decoherence timed'; and T, are then given by

1 - g "o

— = ! | -

T, 4jh0jm " j1ij“J (! o1) coth g T’ (100)

1 1 1

T, - 2—T1+ T (101)
I

Ti = jhOjm ' jOi h 1jm ' j1ij? JE—) 2kg T: (102)

't o
In the semiclassical approximotion,T; and T can be related to the parameters and in the Hamiltonian Eq. (79),

2 !

1 . 2 01

— = — ' J(! th —; 103
T ™ ] mj=J(! o1)cO g T’ (103)
1
T

2 I
= — i mp —Jf') kg T: (104)
- 01 : 1o
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FIG. 19 Schematic of the Delft circuit, Fig. 16, where the cro sses

R 1 |0> denote Josephson junctions. The outer loop with two junctio ns
Ig /' L and R forms a dc SQUID that is used to read out the qubit.
—— 2 i ——— The state of the qubit is determined by the orientation of the
N circulating current in the small loop, comprising the junct ions

L 3 1> 1, 2, and 3, one of which has a slightly smaller critical current
than the others. A bias current |g can be applied as indicated
for read-out.

6. Leakage

The leakage rate from a qubit statek = 0;1 into higher levelsn = 2; 3;::: outside the qubit space can be quanti ed
from the Red eld equation Eq. (97) by the sum

1

X
— =4 jnjm ' jkij2I(! kn ) coth
TL;k

!kn .
2kg T

(105)

7. The Delft qubit

A very successful qubit design is the Delft qubit (Chiorescuet al., 2003) which is depicted in Fig. 16, and which
will be discussed in this Section. A schematical drawing of he SC circuit for the Delft qubit is shown in Fig. 19.
This design is intended to be immune to current uctuations in the current bias Ig due to its symmetry properties;
at zero dc bias,lg =0, and independent of the applied magnetic eld, a small uctuating current | g (t) caused by
the nite impedance of the external control circuit (the cur rent source) is divided equally into the two arms of the
SQUID loop and no net current ows through the three-junctio n qubit line. Hence, in the ideal circuit (Fig. 19) the
qubit is protected from decoherence due to current uctuations in the bias current line. However, asymmetries in the
SQUID loop may spoil the protection of the qubit from decohernce. In the case of an inductively coupled SQUID
(Mooij et al., 1999; Orlandoet al., 1999; van der Walet al., 2000) neither a small geometrical asymmetry (imbalance
of self- and mutual inductances in the SQUID loop), nor thejunction (critical current) asymmetry of typically a few
percent, would su ce to cause a relevant amount of decohereoe at zero bias currentlg = 0 (Burkard et al., 2004b).
What turns out to be important here is that the circuit (Fig. 1 6) contains another asymmetry, caused by itsdouble
layer structure, being an artifact of the fabrication method used to produceSC circuits with aluminum/aluminum
oxide Josephson junctions, the so-called shadow evaporati technique. Junctions produced with this technique will
always connect the top layer with the bottom layer, see Fig. .

Thus, while circuits like Fig. 19 can be produced with this technique, strictly speaking, loops will always contain an
even number of junctions. In order to analyze the implications of the double layer structure for the circuit in Fig. 19,
the circuit is drawn again in Fig. 21(a) with separate upper and lower layers. Note that each piece of the upper layer
is connected with the underlying piece of the lower layer viaan \unintentional" Josephson junction.

These extra junctions typically have large areas and thereadre large critical currents; thus, their Josephson energy
can often be neglected. In order to study the lowest-order eect of the double layer structure, one can neglect all
unintentional junctions in this sense and arrive at the circuit Fig. 21(b). It should be emphasized that the resulting
circuit is distinct from the ‘ideal’ circuit Fig. 19 which do es not re ect the double-layer structure. In the real circuit,
Fig. 21(b), the symmetry between the two arms of the dc SQUID & broken, and thus it can be expected that bias
current uctuations cause decoherence of the qubit at zero d bias current, Ig = 0.

Starting from the circuit graph of the Delft qubit, the circu it theory can be used to nd the Hamiltonian of the
circuit, which can subsequently be analyzed numerically. he double-well minima' ;, and' ; was found for a range of
bias currents and applied external ux. The states localized at ' ; and' ; are encoding the logicajOi and j1i states of
the qubit. Two special lines in the plane spanned by the bias arrents and applied external ux can now be determined,
see Fig. 23. (i) The linef (I1g) on which a symmetric double well is predicted, U( o) U( 1)=0. On this line,
the dephasing timeT diverges. (i) The line on whichm ' =0, where ' ="' ,' ;is the vector joining the two
minima of the potential. On this line, the environment is decoupledfrom the system, and both the relaxation and

| \ | \ FIG. 20 Schematics of Josephson junctions produced by the

shadow evaporation technique, connecting the upper with th e

| \ | \ lower aluminum layer. Shaded regions represent the aluminum
oxide.
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KX

,,,,, >VJ<% % o FIG. 21 (a) Double layer structure. Dashed blue lines represent
the lower, solid red lines the upper SC layer, and crosses ind-
‘ cate Josephson junctions. The thick crosses are the intendel
* >‘< junctions, while the thin crosses are the unintended distri buted
junctions due to the double-layer structure. (b) Simplest ¢ ircuit
model of the double layer structure. The symmetry between

(b) the upper and lower arms of the SQUID has been broken by
: the qubit line comprising three junctions. Thick black line s de-
::l i note pieces of the SC in which the upper and lower layer are
e connected by large area junctions.
<
H ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

FIG. 22 External circuit attached to the qubit (Fig. 19) that
allows the application of a bias current Ig for qubit read-out.
qubit — Zg(w) @ |B The inductance L, and capacitance Cg, form the shell circuit,
& SQUID Gsh and Z (! ) is the total impedance of the current source (I1g). The
case where a voltage source is used to generate a current cané
reduced to this using Norton's theorem.

the decoherence times divergeTi.2. !'1 . The curvef (Ig) agrees qualitatively with the experimentally measured
symmetry line (Bertet et al., 2004), but it underestimates the magnitude of the variation in ux f°as a function of
Ig. The point where the symmetric and the decoupling lines inteésect coincides with the maximum of the symmetric
line, as can be understood from the following argument. Takag the total derivative with respect to |g of the relation

= U( o:f (Is)ils) U( 1:f (Is);18) =0 on the symmetric line, and using that ' ., are extremal points of U,
we obtainn ' @f=@4 +(2 = o)m ' =0 for some constant vectorn. Therefore,m ' =0 (decoupling line)
andn ' 60 implies @f =@4 =0.

The relaxation and decoherence timed; and T, on the symmetric line have been evaluated and are plotted (M. 23,
right) where = 0, and therefore, E = . The divergence in T on the symmetric line is cut o by higher-order
e ects, whereas the divergence off; on the decoupling line is cut o by residual impedances, e.g.due to the junctions'
guasiparticle resistance (Burkardet al., 2004a). A peak in the relaxation and decoherence times wherpredicted from

FIG. 23 Left: Decoupling (red solid) and symmetric (blue das hed) curves in the (Is;f % plane, where I is the applied bias
currentand f°=2 9= 4 is the dimensionless externally applied magnetic ux threa ding the SQUID loop. Both curves are
obtained from the numerical minimization of the potential E q. (92). The decoupling line is determined using the conditi on
m ' =0, whereas the symmetric line follows from the condiction = 0. Right: Theoretical relaxation, pure dephasing, and

decoherence timesT1, T , and T» as a function of applied bias current 1g, along the symmetric line (Fig. 23, left).



FIG. 24 Left: Plasma frequency ! sn as a function of the applied bias current 1g. The variation is due to the change the
e ective in Josephson inductances as|g is varied. Right: Rabi frequency of the coupling between the qubit and the plasmon
mode. The coupling disappears at the crossing with the decowling line (Fig. 23), i.e., when m ' =0.

theory can be observed experimentally (Bertetet al., 2004).

The symmetry breaking due to the double layer structure has aother, very interesting, consequence. It causes a
coupling between the qubit and an external harmonic oscill¢or, the plasmon mode formed by LC resonator in the
SQUID (Fig. 22). This coupling can be observed as resonances the microwave spectrum of the system. Moreover,
it can be used to entangle the qubit with another degree of fredom (Chiorescuet al., 2004). Here, the inductanceL g,
and capacitanceCgp, of the \shell" circuit (plasmon mode) are responsible for this resonator. This coupling has been
studied quantitatively in the framework of the circuit theo ry. From the full Hamiltonian Hg, a two-level Hamiltonian
in the well-known Jaynes-Cummings form can be derived,

with the coupling parameter (Rabi frequency)

25
p— 0 Zsh 1 m v

2 Ro Mg

(107)

Note that this coupling vanishes along the decoupling line Fig. 23, left) and also rapidly with the increase of L.
The Rabi frequency atlg =0 is predicted to be 210 MHz. The Rabi frequency as a function of the bias current
I, together with the plasma frequency, is plotted in Fig. 24. Srong coupling between acharge qubit and a quantum
electromagnetic cavity formed by a SC transmission line hadbeen observed in (Wallra et al., 2004).

E. Charge qubits

In analogy to the circuit theory for ux qubits, a general cir cuit theory for charge qubits will be outlined and
illustrated with examples in this Section (Burkard, 2004). As in the case of the circuit theory for ux qubits, we are
not restricted to a Hilbert space of the SC device which isa priori truncated to two levels only. The role of the self
and mutual inductances in SC charge qubits have been previaly studied (You et al., 2001), in particular as a means
of coupling two SC charge qubits (Makhlin et al., 2001; Makhlin and Shnirman, 2004). Here, the self and mutub
inductances in the underlying SC circuit are fully taken into account.

1. Graph theory

Note that the circuit theory for charge qubits is dual to that for ux qubits in the sense that the roles of chord and
tree branches are interchanged,

le =(lasIslvilz) len=C(lcysleilk); (108)
Vi =(V3;VL;VviVz); Ven=(Vc,;Ve:iVk): (109)
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The loop matrix F now acquires the block form,

0 1
1 Fsc Fux
F= %0 Fie Fuw &. (110)
0 Fvc Fvk
0 Fzc Fzk
The Hamiltonian has the form
1
Hs=3(Q CvV)'CHQ CyV)+U( ) (111)
with the potential
U( )= L,tsin' +% ™o + TN (112)
where the Josephson and inductor ux variables are combinedn = (' ; L), with the vector operator of conjugate

charges denoted byQ. The coupling Hamiltonian in a Caldeira-Leggett description H = Hs + Hg + Hsg now takes
the form

X X
Hse=Cm Q c¢cx =m C!Q ©c¢x; (113)

where C is the total capacitance matric of the circuit. The resulting Red eld equation takes the form Eq. (97) and
Eq. (98), but with

Re M = }(m Q)im (M Q)i J (! ')L"k:z-

Imnke 7~ m nk S n;J sinh~ j! j=2"
m e = 2 26 @ 20y e T 114
Mk = —(M Q)m (M Q)nk — Loz ! o coth —— (114)

and with m = C m. Finally, the relaxation and decoherence times in a two-leel description reduce to

1 4. o ~l o1
—_— = = | .
- —jhjm  Qj1ij?J (! 01) coth g T (115)
1 1 1
T, - 2—T1+ o (116)
I
Ti = %j}“ij Qj0i h 1jm Qj1ij2—J~(,') 2kg T: (117)
. 't o
In the semiclassical limit, one nds
2o Ln o — 2J(l )coth —-0L.. (118)
T, Py ThoegeT
230
1. Ejm Qj®? — ¢ 2k T: (119)
T - o1 ~ o

The leakage rates from the logical statek = 0;1 to statesn = 2;3;::: outside the computational subspace can be
estimated as
4 R

~I
= jrkim  Qjnij 23 (! ) coth 2|%BnkT: (120)

1
TL n=2

2. Single charge box

We now illustrate the circuit theory for charge qubits with s ome examples. The rst example is the voltage-biased
charge box, shown in Fig. 25. The inductance of the leads hasden neglected for simplicity (noL and K branches).
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FIG. 25 Circuit graph of a single voltage-biased charge box.
Branches represent a Josephson junction €, ), capacitances (C;
and Cy), a voltage source V, and the impedance Z. The nodes
are shown as black dots; the node connecting the junction (E;)

A to the gate capacitance Cq4 represents the SC island.

T’ QJ —.F

®
= G E1 B2 G—=—
g ool

F FIG. 26 A ux-controlled Josephson junction.

L

| < L

The tree of the graph is given by the Josephson, voltage soue; and impedance branches. For the loop matrices, we
simply nd Fjc = Fyc = Fzc = 1. With the capacitances C Cix = C; + C4 and Cy = Cq4, we arrive at the
Hamiltonian,

_ (Qu+ CgV)?

+ E N 121
Co j cos (121)

Hs

The coupling to the environment is characterized bym = ( C4=Cyt ). As an example, we give here the relaxation and
dephasing times, withm = jmj = C4=Cyt,

| ~1
2m 24jhojnj1ij27"’Re§(' 01) = (122)
Q

|
I o1 coth KT’

1
Ty
1 LAREZ(0) 2ks T

R 1

2 m 2jh0inj0i h 1jnjlij (123)

—

where n = Q=2e and Rq = h=€*. In the semiclassical limit, jnj1i (1=2)( ='o1) n and HOjnjOi h 1jnjli
(=l'o1) n.With n 1, we reproduce the results in (Makhlinet al., 2001). Typical leakage rates are of the form of
1=T;, with the matrix element replaced by jhOjnjkij and jhljnjkij, wherek 2 labels a state other than the two qubit
states, and with ! o; replaced by! (I =0;1).

3. Flux-controlled Josephson junction
A ux-controlled Josephson junction is a SC loop with two junctions which acts as an e ective Josephson

junction with a ux-dependent Josephson energy (Makhlin et al., 1999). The circuit Fig. 26 we use to describe the the
ux-controlled junction comprises a chord inductance (K ) with inductance L. The tree consists of the two Josephson

branches. The only relevant loop matrix isF;x = 1 1 T. In the limit L ! O, andif E;j; = Ej5, we nd
F}K "+ y="'41 "2+ | 0, which leads us to the Hamiltonian
Hs = Q—2 E;()cos (124)
S 2C J ’

where' ="' 1+ =9, C=Cy1+ Cj,, and EJ():2 E; COS(2 = 0).
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FIG. 27 Two inductively coupled charge boxes.

4. Inductively coupled charge boxes

We now turn to the case of two charge boxes of the type discusdein Sec. IV.E.2, coupled via an inductive loop
(Makhlin et al.,, 1999, 2001), as shown in Fig. 27. Here, the tree consists ofl dosephson, voltage source, and
impedance branches, plus the inductive branch., and the loop matrices are

yFice = 11 : (125)
With the two capacitance matrices C = diag(Cy;C;) and C; =diag(C;1;Cj2), we nd Cyt = C+ Cy, Cyy = C,

Cy = CIV =(Cy;Cy)T,and C| = C;+ C,. The vector m consists of the two partsm; = Candm_ = C; C,
With Eqg. (111) and the inverse of the total capacitance matrix,

0 1 0 1 1 1 1
1 (C1+ Cy)Cy, C2 C.C C.Csy2 Cer Gt Cotn
cl== CiCs (Ci+C)Cy C? CC& ©C 1, CL, C.l,K: (126
C.Cj2 CoCy1 Cy1Cy2 C. 1;|_1 C. 1”_2 C, 1”_

where =(C;+ C3)C;:C;2 CfCJZ CZZCJ 1, the Hamiltonian of the coupled system can be written as,

X (Qui + CiVh)? (QL + C1Vi + Cy\,)2 i
= A== 2 +Ejcos; + + =L
Hs s 2Ce Eji cos' 2C. 1 2L (127)
+ (Qi1+ CiVi)(Qaz+ CoVo) X (Qui + CVI)(QL + CiVi + CoVy) |
Ce 12 =1 :2 Ce i '

While the last term in Eq. (127) couples each qubit to the LC mode associated with the inductorL, and is thus
responsible for the inductive coupling of the qubits, the seond last term provides a direct capacitive coupling betwea
the qubits. In the limit C; C,i, we reproduce the results of (Makhlinet al., 2001); however, there are additional
terms of order C;=C;; , in particular the new term / 1=C. .1 in the Hamiltonian that capacitively couples the qubits
directly. Since the coupled system involves at least four leels (more if excited states of theLC coupling circuit or
higher qubit levels are included), it can no longer be deschied by a two-level Bloch equation with parametersT; and
T,. We can however x one of the qubits to be in a particular state, sayjOi, and then look at the \decoherence rates"
of the other qubit. To lowest order in C;=C;;, these rates due to the impedanc&; have the form (g = C;=(Cy + C5))

4AReZ; (! 01) ~l 01
27 R =

Ro I o1 coth e T (128)
2,4ReZ;(0) 2k T |

Ro ~

2 q{4h00in, j10ij

_|||—\ S -

2 q2jhogin,jo0i h 10jn, j10j (129)
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F. Multiple sources of decoherence

In this Section, we show that the total decoherence and relaation rates of a quantum system in the presence of
several decoherence sources amdt necessarily the sums of the rates due to each of the mechanismseparately, and
that the corrections to additivity (mixing terms) can have b oth signs (Burkard and Brito, 2004). To this end, we
investigate the decoherence due to several sources in supenducting (SC) ux qubits; the general idea of the present
analysis may however be applied to other systems as well.

1. Dissipative dynamics

As an example, the gradiometer qubit drawn in Fig. 28 with n = 3 junctions will be discussed. The gradiometer
qubit is controlled by applying a magnetic ux . to the small loop on the left by driving a current 1g; in a cail
next to it, and simultaneously by applying a magnetic ux on one side of the gradiometer usindg,. The classical
equations of motion of the SC circuit have the form

s = QU '
C a M (130)

where C is we capacitance matrix, U the potential, and M (t) the dissipation matrix. The convolution is de ned as
(f o)t)= tl f(t )g( )d . The dissipation matrix in the Fourier representation can be found from circuit theory

(Burkard et al., 2004b) and has the form
M()=mLz(!) 'mT=m(Lz(')+ L) ‘mT; (131)

wherem and L . denote real matrices that can be obtained from the circuit iductances. One can assume the matrices
Z and Lz to be diagonal because the impedances; are independent.

A Caldeira-Leggett Hamiltonian H = Hg + Hg + Hgg can be constructed that reproduces the classical dissipate
equation of motion, Eq. (130), and that is composed of partsdr the system (S), given in Eq. (91), form 1 harmonic
oscillator baths (B), and for the system-bath (SB) coupling,

X 1

He = +Zm: 12 x2 - 132
B -5(:1 2mJ 2mJ ] XJ ! ( )
Hsg = "Te x ; (133)
where x = (X 1;:::;Xm ), and ¢ is a realn m matrix. De ning the matrix spectral density J(!) of the
environment, where j (X) (X ), one obtains the relation
X 0 ° x
J(1) 5 ¢cm bt 1 )= > ImM ()= 3" )m;()m;(1)T; (134)

j=1

where the spectral decomposition (with the eigenvalueg; (! ) > 0 and the real and normalized eigenvectorsn; (! )) of
the real, positive, and symmetric matrix ImM (! ) has been used. The integem n;nz denotes the maximal rank of

FIG. 28 Circuit graph of the gradiometer qubit (Koch et al.,
2004), under the in uence of noise from two sources Z1 and Z».
Branches of the graph denote Josephson junctions J;, induc-
Ls tancesL; and K, current sources | gi , and external impedances
F Z;, and are connected by the nodes (black dots) of the graph.
3 Inset: A resistively-shunted Josephson junction (RSJ) Ji, rep-
z[o LF d resented by a thick line in the circuit graph, is modeled by an
X ideal junction (cross) with critical current |, shunt resistance
Ri, and junction capacitance C;.
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ImM (1), i.e., m =max, (rank[ImM (! )]). Using Eq. (134), and choosingcij = | mi(! p ), we ndthat J;(!)isthe
spectral density of thej -th bath of harmonic oscillators in the environment, J; (! ) = ( =2) ( f =m; ;) (o).
From this model one obtains the Red eld equation, Egs. (97),with a Red eld tensor, Eq. (98), of the form
Dok =2
@ = 0TI ) e ™ :
Re Imnk - Im ng nkJ) nk S|nh( J' nkj=2)' (135)
2 STy !
m® = Zp 7':"2 ( |)2 .S N coth7 ;

0 nk

where' K = mj' jki. For two levelsn = 0;1, and within the secular approximation, the relaxation and decoherence
rates T, * and T, ! are found to be

1 Cy . I ot X 2 ' o

T, 7 = 4" 5,3 01)' o coth 5 =4 i" o1 Mj(!o01)j?d; (! o1) coth 5 ; (136)
j=1

2. , J¢), , 2 X , RN I (

T = _|“|m0( 00 11)y¥( oo 1w)=- im0 (o " i J|( ) : (137)
o : =1 o1t

where we have used the spectral decomposition, Eq. (134), tobtain the second equality in each line.

2. Mixing Terms

In the case whereL ; is diagonal, or if its o -diagonal elements can be neglectechecause they are much smaller
than Lz (!) for all frequencies! , one nds, using Eq. (131)ghat the contributions due to di erent impedancesZ; are
independent, thusm = nz and M (!) = mLz(') *mT =, mym[il=(Z;(*)+ i'L j; ), where m; = m; is simply
the j -th column of the matrix m and L is the j-th diagonal entry of L. As a consequence, the total rates 4T, and

1=T are the sums of the individual rates, 1:Tl(j) and 1=T%) where

2

1 [ .2 o1 COth( ! 01:2)
— =4 — | i]°Re . ; 138
T:EJ) 2 J 01 mIJ Z] (| 01) + il 01ij ( )
1 2 o2 , N
T 7 imj (oo " 11 ReZ,— OF (139)

In general, the situation is more complicated because currg uctuations due to di erent impedances are mixed by
the presence of the circuit. In the regimeL, Lz ('), L, ! can be expanded as

Lot=(Lz()+ Lo) "= L0 Lptlelt+ LMol Mel,t : (140)

The series Eq. (140) can be partially resummed,

L,'(!) = diag z,o)ﬂTLu + Lo (1) (141)

where the rst term simply gives rise to the sum of the individual rates, as in Egs. (138) and (139), while the second
term gives rise to mixed terms in the total rates. The rates can therefore be decomposed asX{(=1;2; )

X
1 _ _(1_) + _(nfix) : (142)
LS P
One nds for the mixing term in the relaxation rate
1 _ 0 2y 1 T, Do |
) =4 > oamImL i (P or)m ' ' o4 coth — (143)
1

One can show that there is no mixing term in the pure dephasingate, i.e., 1=T™ =0, and henceT{™ =279 |
In the case of two external impedancespz =2, Eq. (140) can be completely resummed, with the result
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L.1@)= L12 Ay 1 2L . (144)
M (Za(M)= + Lu)(Zo(M)=I + L2) LY, 1 e Zi(1)Zo(1)

where Lj are the matrix elements ofL. and where the approximation in Eq. (144) holds up toO(Z 3). In lowest
order in 1=Z;, one nds,

2 ' 2
1 0 8 12! gyl12 ' o
i = |m _ COth : 145
Tl(mlx) 2 Zl(! Ol)ZZ(! 01) 2 ( )

with * 15 = (" o1 Ma)(" o1 M2).
If Ri  Z;i(!o1) are real (pure resistances) then, as predicted above, thariaginary part of the second-order term
in Eq. (144) vanishes, and we resort to third order,

13 Lo L 4 Lo
1 12 R; 1 2 :
ML i RiR, Lu 4 Llz Lip ' (146)

neglecting terms in O(R, 4. 1f L1z Lj,weobtain ImL 2 (! 3L12=R;R2)(L11=R1 + L2»2=R;) &, and

mix
1 o "8le lu,la coth -2 (147)
Tl(mix) S22 RiIR;, Ry Ry ¥

For the gradiometer qubit (Fig. 28), we nd L MioM13Mas=LiL3, L1z Lo, L22 L4, whereLy denotes the
self-inductance of branchX i (X =L or K) and My, is the mutual inductance between branches<y and X,, and where

we assumeM j; Lk. The ratio between the mixing the single-impedance contrilution scales as
—7(mix) 2
1=T. I6 Lol
Lo (148)
1=T; R

where we have assume®R; R» R,Li; Lz L,and' oy mg ' 5 mo.

The relaxation time T; was calculated at a temperatureT  ~! o3=kg for the circuit Fig. 28, for a critical 5urrent
Ic =0:3 A for all junctions, and for the inductances L; = 30pH, L3 = 680pH, L, = Ly =12nH, Mo ' Lq.Lo,
Mszs ' L3zLy4 (strong inductive coupling), Mss = 6 pH, with ! 9; =2 30 GHz, and with the impedancesZ; = R,
Z; = R+ iRjn, whereR and Ry, = 10k are real (Rin > 0 corresponds to an inductive,Rij,, < 0 to a capacitive
character of Z;). In Fig. 29, T; was plotted with and without mixing for a xed value of M3i3 = 0:5pH and a range
of R = ReZ;. In the inset of Fig. 29, T; (with mixing) and (( T{Y) 1+ (T#) 1) 1 (without mixing) are plotted for
R =75 for a range of mutual inductances M 3; for this plot, the double minima of the potential U and ' ,; were
computed numerically for each value ofM 3. The plots (Fig. 29) clearly show that summing the decoherere rates
without taking into account mixing term can both underestim ate or overestimate the relaxation rate =T, leading to
either an over- or underestimate of the relaxation and decobrence timesT; and T».

FIG. 29 The relaxation rate T without the mixing term

(dashed blue line), and including the mixing term for

Rim = +10k (solid red line) and Rim = 10k (dot-

dashed light blue line), for M1z = 0:5pH as a function
of ReZ;i. Inset: T, for R = ReZ; = 75 for a range of

mutual inductances M 3.
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V. ENTANGLEMENT

A composite system is entangled if its wavefunction cannot be expressed as a tensor product a g of
wavefunctions , and g for the parts A and B of the system (a more general, but similat de nition exists for
mixed states). A variety of quantum communication scenaris (Bennett and DiVincenzo, 2000), some of which have
been implemented successfully in quantum optics, require aximally entangled states of two qubits, also known as
EPR pairs (Einstein et al., 1935), such as the spin singlet,

. 1

iSi = P—z(j"#l j#o): (149)
The triplet state jToi = j"#i + j#"i is another maximally entangled state, while the other two triplet states jT.i = j™i
and T i = j##i are not entangled. An important feature of these states is ttat they are non-local, in the sense
that they violate Bell's inequalities (Bell, 1966; Mermin, 1993). A universal quantum computer can, by de nition,
produce arbitrary quantum states, and, in particular, entangled ones such as the singlejSi. E.g., the square root
of swap gate S, see Eq. (8), has the ability to turn the unentangled state j"#i into a maximally entangled one,
Si"#i = (j"#i ij#"i)=(1 1), which is equivalent (up to a single-qubit operation) to the singlet. There may be cases
in which only certain entangled states are required for quatum communication, while quantum computation itself
does not need to be performed. In this case, a physical devidkedicated to the task of producing entangled states of
some sort may be su cient. We call devices of this sortentanglers (Burkard et al., 2000b) and discuss a number of
conceivable implementations of entanglers in solid stateystems below.

Experiments with entangled photons have tested Bell's ineqalities (Aspect et al., 1982), and various quantum
communication protocols, such as dense coding (Mattleet al., 1996) and quantum teleportation (Boschiet al., 1998;
Bouwmeesteret al., 1997). However, none of these protocols been implemented §ar with massive particles (such as
electrons).

Unfactorizable states like Eq. (149) are very common in soti-state systems. Interacting many-particle systems
possess very complicated and entangled ground states. Notl@f these are necessarily useful for quantum information
processing, though, because (i) it is essential that theresi a physical mechanism to extract and separate a pair of
entangled particles from the many-body system in such a way hat they can be used for quantum communication,
and (ii) for indistinguishable particles, not all states that \look entangled” really are. A measure of entanglement
which excludes pure antisymmetrization was de ned in (Schiemann et al., 2001a,b).

A. Production of entangled electrons
1. Superconductor-normal junctions

A superconductor (SC) with s-wave pairing symmetry contains an entire \reservoir" of spin singlet states as in
Eq. (149) in the form of Cooper pairs that form the SC condenste (Schrie er, 1964). It is thus natural to think
that such a system can act as a source of spin-entangled eleshs. A proposed setup (Recheet al., 2001) is shown
in Fig. 30. The SC is held at the chemical potential s, and is weakly coupled by tunnel barriers to two separate
guantum dots D; and D, which are in turn weakly coupled to Fermi liquid leads L; and L, both held at the same
chemical potential ; = 5. The tunneling amplitudes between SC and dots, and dots anddads, are denoted byl'sp
and ToL .

Andreev tunneling is a process in which two electrons (one wh spin up and one with spin down) can tunnel
coherently through a normal barrier, while at the same time, single-particle tunneling as suppressed (Hekkinget al.,
1993). The setup Fig. 30 with the intermediate quantum dots s designed to force two electrons from a Cooper pair
to tunnel coherently into separateleads rather than both into the same lead. The double occupabn of a quantum
dot is suppressed by the Coulomb blockade mechanism (Kouwéoven et al., 1997¢).

The ow of entangled electrons from the SC via the dots to the kads is controlled by applying a bias voltage

= s | > 0. The chemical potentials ; and , of the two quantum dots can be tuned by external gate voltages
(Kouwenhoven et al., 1997c) such that the coherent tunneling of two electrons ito di erent leads is at resonance,
while coherent tunneling of two electrons into the same leads suppressed by the on-site Coulomb repulsioty of a
guantum dot.

The relevant parameters describing the device and the desdd regime of operation are discussed in (Recheat al.,
2001). It is required that the barriers of the dots are asymmdric, jTspj j To. j, temperature is su ciently small,

>k gT,and ;U; > > ;kgT,and |, > s, where is the single-level spacing of the dots, is the SC
energy gap, and | =2 jTp. j? are the dot-lead tunnel rates. The gure of merit for the device is the ratio between
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the desired current | ,0f pairwise entangled electrons tunneling intodi erent leads and the unwanted currentl, of
electron pairs that end up in the samelead (Recheret al., 2001),

I, 2E% sinker) 2 .. 11 1

- = — - - —_ = — 4+ —

I 2 Ke r © ' E u’ (150)
where ke denotes the Fermi wavevector, = ;+ 5, and the SC coherence length.

The desired currentl; decreases exponentially with increasing distance = jr; r,j between the tunneling points
on the SC, the scale given by the superconducting coherencerigth . With  typically being on the order of m,
this does not pose severe restrictions for a conventionalwave SC. In the important case 0 r the suppression
is only polynomial / 1=(kr r )2, with kg being the Fermi wavevector in the SC. One also observes thathe e ect of
the quantum dots consists in the suppression factor € E)? for tunneling into the same lead. One therefore has to
impose the additional condition kg r < E= , which can be satis ed for small dots with E= 100 andkg oA

As an alternative to quantum dots as a means to separate the éangled electrons from the SC, it hsa been proposed
to use a Luttinger liquid (see Sec. V.A.2 below) or a resistie lead where the dynamical Coulomb blockade e ect helps
to separate the electron pair (Recher and Loss, 2003).

2. Superconductor{Luttinger liquid junctions

In the Andreev entangler (Sec. V.A.1), entangled electron pirs are separated by the Coulomb repulsion in quantum
dots that are attached to the SC which acts as a source of entagled spin singlets. In related work (Recher and Loss,
2002a,b) and (Benaet al., 2002), it was suggested that the strong Coulomb interactios in a one-dimensional conductor,
forming a Luttinger liquid (Tsvelik, 2003) can play the same role. There is good experimental evidence for Luttinger
liquid (LL) behavior in carbon nanotubes (Bockrath et al., 1999).

The setting discussed in (Recher and Loss, 2002a,b) consisbf a conventional s-wave SC tunnel-coupled to the
center (bulk) of two spatially separated, for all practical purposes in nitely extended, one-dimensional wires (e.g.
carbon nanotubes) each forming a separate LL. While the Coumb interaction within each wire is essential for the
separation of entangled pairs into distinct wires, it is assimed that the interaction between carriers in di erent wire s is
negligible. In the absence of backscattering, the low eneggexcitations of the LL are long-wavelength charge and spin
density oscillations propagating with velocitiesu = vg=K for the charge andu = v for the spin (Schulz, 1990),
where vg is the Fermi velocity and K < 1 due to interaction. Transfer of electrons from the SC to thelLL-leads is
described by a tunneling Hamiltonian,

X
HT = to

ns

ns s(rn)+H:c; (151)

where s(rp) annihilates an electron with spin s at the point r, on the SC nearest to the LL-leadn =1;2, and )
creates it again with same spin and amplitudet, at the point x, in LL n. By applying a bias = s | between
the SC, with chemical potential s, and the leads, held at the same chemical potential |, a stationary current of
pairwise spin-entangled electrons can ow from the SC to theleads.

As in the case of the Andreev entangler with attached quantumdots, the performance of this device can be quanti ed
by the ratio between the two competing currents|; and I, (see Sec. V.A.1). From a T-matrix calculation (Recher
and Loss, 2002a,b), one obtains in leading order in= and at zero temperature,

2
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FIG. 30 The Andreev entangler. A Cooper pair is split up into
two entangled electrons which hop with amplitude Tsp from two
points r1, r, of the superconductor, SC, (distance r = jr1 ryj)
onto two dots D 1.2 by means of Andreev tunneling. The dots
are coupled to normal leads L;.» with tunneling amplitude Tp. .
In order to maximize the e ciency of the device, we require
asymmetric barriers, jTsp j5jToL j 1. The chemical potentials
of the SC and leads are | and s.
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where is the Gamma function, a short distance cut-o on the order of the lattice spacing in the LL, =
2 s Ijtoj? the probability per spin to tunnel from the SC to the LL-leads, s and ;| the energy DOS per spin for
the superconductor and the LL-leads at the chemical potentals s and |, resp., and r the separation between the
tunneling points on the SC. The current | ; has a characteristic non-linear dependence on the voltageslectro-chemical
potential ), 1;/ 2 *!, with aninteraction dependent exponent = (K +K 1)=4 1=2> 0, which is the exponent
for tunneling into the bulk of a single LL, i.e. (") j "j , where (") is the single-particle density of states (Schulz,
1990). In the non-interacting limit = 0 the current is given by 19. As in Sec. V.A.1, the coherence length of
the Cooper pairs should exceedr in order to obtain a nite measurable current. Note that the s uppression of the
current by 1=(ke r )? can be considerably reduced with the use of lower dimensioh&Cs (Recher and Loss, 2002a,b).
The desired current I; now has to be compared withunwanted current consisting of electron pairs tunneling into the
same lead and havingr = 0. It is found (Recher and Loss, 2002a,b) that the currentl, for tunneling into the same
lead (1 or 2) is suppressed if <  with the result, again in leading order in =,

X 2 20
l2=11 A, — ; (153)
b= 1

where Ay is an interaction dependent constant of order one, and where . = , and = ++(1 K)=2> ..
Note that in Eq. (153) the current |; needs to be evaluated atr = 0. In the non-interacting limit, 1, = 1, =10 is
obtained by putting = p =0,and u = vg. The expression Eq. (153) forl, shows that the unwanted injection
of two electrons into the same lead is suppressed compared tq by a factor of (2=) 2 +,where . = , if both
electrons are injected into the same direction (left or right movers), or by (2 =) 2 if the two electrons travel in
di erent directions. It is more likely that the two electrons move in the same direction than in opposite directions,
because > .. The suppression of the currentl, by 1= is a manifestation the two-particle correlations in
the LL when the electrons tunnel into the same lead, which is snilar to the Coulomb blockade e ect in the case of
tunneling into quantum dots in Sec. V.A.1. As the SC gap becomes larger, the delay time between the arrivals
of the two partner electrons of a Cooper pair becomes shorteiand the e ect the rst electron in the LL has on the
second electron tunneling into the LL increases. Increasipthe bias opens more available channels into which the
electron can tunnel, and therefore the e ect of the SC gap is less pronounced. This correlation e ect disappears
when interactions in the LL are absent, = | =0. Experimental systems with LL behavior are e.g. metallic carbon
nanotubes with similar exponents as derived here (Egger anéogolin, 1997; Kaneet al., 1997).

3. Transport through quantum dots

Entanglers with a single quantum dot attached to leads with a very narrow bandwidth (Oliver et al., 2002) or
with three coupled quantum dots (Saraga and Loss, 2003) haveeen proposed. The idea behind these proposals is
the harness the singlet ground state of a single two-electro quantum dot by extracting the two electrons into two
separate leads. In both proposals, the separation is enhaad due to two-particle energy conservation. A double-dot
turnstile device with time-dependent barriers was propose in (Hu and Das Sarma, 2004).

4. Coulomb scattering in a 2D electron system

Scanning probe techniques can be applied to a two-dimensiah (2D) electron system formed in a semiconductor
heterostructure in order to monitor and control the ow of el ectrons (Topinka et al., 2000, 2001). It has been proposed
to generate spin-entangled pairs of electrons using this thnique to control Coulomb scattering in a interacting 2D
electron system (Saragaet al., 2004). At a scattering angle of =2, it is expected that constructive two-particle
interference leads to a enhancement of the spin-singlet sttaring probability, while the triplet scattering is suppr essed.
The scattering amplitudes have been calculated within the Bethe-Salpeter equation for smallrs and allow an estimate
of the achievable current of spin-entangled electrons (Sagaet al., 2004).

5. Entangled Electrons in a Fermi Sea

A particularly appealing aspect of the electron spin as a catier of quantum information is that it is attached to a
charge, and thus it can|in principle|be transported in a con ductor. One can therefore envision solid-state structures
(e.g., on a microchip) where entanglement is produced in onkcation by one of the previously discussed methods, and
subsequently conveyed through a wire to the location whereanglement is \used up" in some quantum information
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protocol. While transporting qubits is quite unproblemati c in the case of photons as the quantum information carriers
(photons have been used in many experiments to carry quantuninformation, even over distances of kilometers), it is
less trivial for electrons. When an electron is injected inb a metallic wire, it is immersed into a sea of other electrons
that (i) are indistinguishable from the injected electron, and (ii) constantly interact with all other electrons (incl uding
the injected one) via the Coulomb interaction. In this Section, the stability of spin entanglement in the Fermi sea
will be discussed (Burkardet al., 2000b; DiVincenzo and Loss, 1999). It turns out that (i) the indistinguishability of
particles in the Fermi sea is actually not a problem for the transport of spin qubits and (ii) the Coulomb interaction
does have some e ect, which is however mitigated by the phemaenon ofscreening which is well-known in interacting
Fermi liquids (Mahan, 1993). More precisely, when an elecion in the orbital state g is added to a Fermi sea (lead),
the quasiparticle weight of that state will be renormalizedby 0 z; 1, i.e. some weight 1 z4 to nd the electron
in the original state g will be distributed among all the other electrons. Such a rearangement of the Fermi system
due to the Coulomb interaction happens very quickly, on a time scale given by the inverse plasma frequency.

In order to analyze this e ect quantitatively, the entangle d two-electron state injected into two distinct leads 1 and
2 can be written in second quantized notation,

t=s

. . 1 L
I ool = P (@ ane @y 8o )] ol (154)

where s and t stand for the singlet and triplet, j oi for the lled Fermi sea, and n = (q;l), where g denotes the
momentum and | the lead quantum number of an electron. As usual, the operatoa), creates an electron in staten
with spin . After their injection, the two electrons of interest are no longer distinguishable from the electrons of the
leads, and consequently the two electrons taken out of the kds will, in general, not be the same as the ones injected.

The time evolution of the triplet or singlet states, interacting with all other electrons in the Fermi sea, is described
by the 2-particle Green's function G*=5(12;34;t) = h tfzs | t;f i, which is related to the standard 2-particle Green's
function G(12; 34;t) by

X
G'™(12;34;t) = % [G(12:34;t)  G(12;34:1)]; (155)

wheren =(n; )and n =(n; ). Assuming that at time t = 0, a triplet (singlet) is prepared, then the delity of
transmission

P(t) = jG¥S(12;12;1)j2 (156)

is de ned as the probability for nding a triplet (singlet) a fter time t.

With Eq. (155), the problem reduces to that of evaluating the standard two—qglrticle Green's function G(12; 34;t) =
h Tay(t)ax(t)aja}i for a time- and spin-independent Hamiltonian, H = Hg + i Vi where Hg describes the free
motion of the N electrons, andV; is the bare Coulomb interaction between electrons and j, h:i denotes the zero-
temperature expectation value, andT is the time ordering operator. One can assume that the leadsra su ciently
separated, so that the mutual Coulomb interaction can be netgcted, and thus the problem of nding an explicit value
for G(12; 34;t) is simpli ed since the 2-particle vertex part vanishes (i.e. the Hartree-Fock approximation is exact),

G(12;34;t) = G(13;1)G(24;t) G(14;1)G(23;1); (157)
with the interacting single-particle Green's functions
G(n;t)= ih ojTan(a}j of  Gi(a;t); (158)
for each leadl = 1;2. Substituting this back into Eq. (155), one obtains
G™(12;34;t) = G(L;t)G(2:t) 13 24 14 23]; (159)

where the upper (lower) sign refers to the spin triplet (sindet). For the initial state ( t = 0), or in the absence of
interactions, one nds G(n;t) = i, and thus G*° reduces to 13 24 14 23, and P = 1. The evaluation of the
(time-ordered) single-particle Green's functionsG;.» close to the Fermi surface yields the standard result (Mahan
1993) G1.2(q; t) izqg (¢ rF)e 't at which holds for 0 t. 1= 4, where 1= 4 is the quasiparticle lifetime,
q = ¢#=2m the quasiparticle energy (of the added electron), and ¢ the Fermi energy. For a two-dimensional electron
system (2DES), as e.g. in GaAs heterostructures, o/ (¢ r)2l0g(q ) (Giuliani and Quinn, 1982) within the

random phase approximation (RPA), which accounts for screaing and which is obtained by summing all polarization
diagrams (Mahan, 1993). The quantity of interest here is thequasiparticle weight, zr = (1 @@Re ret(kei!)) * | =0
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evaluated at the Fermi surface, where (e (q;!) is the retarded irreducible self-energy. For momentaq close to the
Fermi surface and for identical leads G; = G2) we nd jG¥5(12;34;1)j2= z8 ] 13 24 14 23j?, for times satisfying
0<t . 1= 4 The delity therefore turns out to be

P=2z (160)

The irreducible self-energy (¢ and from it the quasiparticle weight factor in two dimensions were evaluated
explicitly (Burkard et al., 2000b), with the nal result

1
1+rs(1=2+1=)’

ZF = (161)
in leading order of the interaction parameterrs = 1=k- ag, Whereag = o~?>=me? is the Bohr radius. In particular,
in a GaAs 2DES we haveag = 10:3 nm, and rs = 0:614, and thus we obtainze = 0:665. The expansion in powers
of rs for the exact RPA self-energy can be summed up and evaluatedumerically, with the (more accurate) result
zr =0:691155 for GaAs. The delity of transmission of the injected singlet in this case is aroundP  0:2. However,
for large electron density (smallrs), P is closer to unity. Note the delity of the (\postselected") singlet pairs which
can successfully be removed from the Fermi sea, is equal to provided that (as assumed here) the spin-scattering
e ects are negligible. That this is indeed the case in GaAs 2[EGs is supported by experiments where the electron
spin has been transported phase-coherently over distances up to 100 m (Awschalom and Kikkawa, 1999; Kikkawa
and Awschalom, 1998; Kikkawaet al., 1997).

B. Detection of spin entanglement

E orts are being made to produce spin entanglement in solidstate structures; therefore, it is only natural to ask
how one cantest for the presence of entanglement in such a setting. Here, a vigty of tests for spin entanglement are
described. This investigation touches on fundamental isses such as the non-locality of quantum mechanics, especigll
for massive particles, and genuine two-particle AharonovBohm e ects which are fascinating topics in their own right.
The main idea in all of the following detection schemes is to xploit the unique relation between the symmetry of the
orbital state and the two-electron spin state which makes it possible to detect an electron spin state via the orbital
(charge) degrees of freedom.

1. Coupled quantum dots

The rst setup to be considered can be used to probe the entarigment of two electrons localized in a double-dot by
measuring a transport current and its uctuations, or curre nt noise (Loss and Sukhorukov, 2000). It is assumed that
the double-dot is weakly coupled to in- and outgoing leads (achemical potentials ;.2) with tunneling amplitude
T, where the dots are shunted in parallel. The regime of interst is (i) the Coulomb blockade regime (Kouwenhoven
et al., 1997c) where the charge on the dots is quantized and (ii) theotunneling regime (Averin and Nazarov, 1992;
Kenig et al., 1997), where single-electron tunneling is forbidden by eergy conservation. The latter regime is de ned
by U>j 2j>J >k gT;2 T2 whereU is the single-dot charging energy, the lead density of states, andJ
the exchange coupling between the dots. The current in the doinneling regime is generated by a coherent virtual
process where one electron tunnels from a dot to, say, lead 2hd then a second electron tunnels from lead 1 to this
dot. If the bias voltage is larger than the exchange couplingj 1 2] > J, elastic as well as inelastic cotunneling
will occur. It will be assumed that T is small enough for the double-dot to return to its equilibrium state after each
tunneling event. An electron can either pass through the upgr or lower dot, therefore a closed loop is formed by
these two paths. A magnetic ux then gives rise to an AharonovBohm phase = ABe=~ (A being the loop area)
between the upper and the lower paths leading to quantum inteference e ects. This transport setting is sensitive
to the spin symmetry of the two-electron state on the double abt; if the two electrons on the double-dot are in the
singlet state then the tunneling current acquires an additional phase of leading to a sign reversal of the coherent
contribution compared to that for triplets. In cotunneling current, this additional phase manifests itself in the sign
of an interference term (Loss and Sukhorukov, 2000)

l=e 2741 22 cos); (162)
1 2

where the upper sign refers to the triplet states in the doubk-dot and the lower sign to the singlet state. The shot
noise is Poissonian with powerS(0) = €]l j, hence it has the same dependence on the state on the doubletdo
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The shot noise has also been calculated for nite frequencgin (Loss and Sukhorukov, 2000), and it was found
that again S(! )/ (2 cos ), and that the odd part of S(! ) leads to slowly decaying oscillations of the noise in real
time, S(t) / sin(t)=t, =( 1+ 2)=2, which can be ascribed to a charge imbalance on the double tdduring an
uncertainty time

Note that while the scheme described above is able to distingish the statesSi and jToi on the dots, the three
triplets jToi, jT+i, and jT i, can be further distinguished by an orientationally inhomogeneous magnetic eld which
results in a spin-Berry phase (Loss and Goldbart, 1992; Losand Sukhorukov, 2000) that leads to left, right or no
phase-shift in the Aharonov-Bohm oscillations of the curreat (noise).

2. Coupled dots with SC leads

A related scenario of double-dots (DD) has been considereai(Choi et al., 2000), where two quantum dots are again
shunted in parallel between the leads, but without any dired coupling between them. The two dots are assumed to be
coupled via tunneling (with amplitude T) to two superconducting leads. It turns out that the s-wave SC energetically
favors an entangled singlet-state on the dots. In addition b this, the coupling to the SC provides a mechanism for
detecting the spin state via the Josephson current through he double dot system. In leading order/ T #, the spin
coupling is described by a Heisenberg Hamiltonian (Choet al., 2000)

He J(@+cos') S; Sp % ; (163)

whereJ 2T?2=, isthe energy dierence from the dot state to the Fermi level,and" is the average phase di erence
across the SC-DD-SC junction. The exchange coupling betweethe spins can be controlled by tuning the external
parameters T and ', thus providing another implementation of a two-qubit quantum gate (Sec. 1.A.4) or entangler
(Sec. V.A). The spin state (singlet or triplet) on the dot can be probed if the SC leads are joined with one additional
(ordinary) Josephson junction with coupling J° and phase di erence into a SQUID. The SC current Is owing in
this ring is given by (Choi et al., 2000)

sin(  2f )+ (J%J)sin ; singlet,

164
(3% sin ; triplets ; (164)

|S:|J =

wherel; =2eJ=. The spin state of the DD is now probed by measuring the spin- ad ux-dependent critical current

I = max fjlsjg by biasing the system with a dc current| until a nite voltage V appears forjlj > 1. (the SC goes
into the normal state). Another interesting e ect is long-d istance coupling between spins residing in dots separated
by r which is induced by the presence of the SC. The resulting ex@nge coupling is

sinke 1) *_ o=

In=20

(165)

3. Beam splitter shot noise

Pairwise spin entanglement between electrons in two mesospic wires can be detected from a charge current
measurement after transmission through an electronic beansplitter (Burkard et al., 2000b). In this scheme, the
singlet EPR pair Eqg. (149) gives rise to an enhancement of theshot noise power (\bunching" behavior), whereas
the triplet EPR pair jToi leads to a suppression of noise (\antibunching"). This beh&ior can be anticipated from
a textbook example: the scattering theory of two identical particles in vacuum (Ballentine, 1990; Feynmanet al.,
1965). There, the di erential scattering cross-section in the center-of-mass frame can be expressed in terms of the
scattering amplitude f ( ) and scattering angle as

O)=if() fC HP=ifQPF+ifC  )* 2Ref ()I( ) (166)

the rst two terms on the right being the contributions which would be obtained if the particles were distinguishable,
and the third (exchange) term the contribution due to the particles' indistinguishability. This last term gives rise to
genuine two-particle interference e ects. Here, the plus fninus) sign applies to spin-1/2 particles in the singlet (triplet)
state, described by a (anti)symmetric orbital wave function. The very same two-particle interference mechanism which
is responsible for the enhancement (reduction) of the scaé#ring cross section ( ) near = =2 also leadsto anincrease
(decrease) of the correlations of the particle number in theoutput arms of a beam splitter (Loudon, 1998).
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FIG. 31 Setup for measuring the noise of entangled states. Uncorrelated electrons are fed into the entangler (see text) through
the Fermi leads 1°% 2° and are transformed into pairs of electrons in the entangled singlet (triplet) state ji , which are injected

into leads 1, 2 (one electron of undetermined spin state into each lead). The entanglement of the, say, spin singlet can then be
detected in an interference experiment using a beam splitter (with no backscattering): Since the orbital wave function of the
singlet is symmetric, the electrons leave the scattering region preferably in the same lead (3 or 4). This correlation (\ bunching")
is revealed by an enhancement of the noise by a factor of 2 in the outgoing leads.

For the detection of spin entanglement of electrons carriecdby two mesoscopic wires, we propose a non-equilibrium
transport measurement based on the set-up shown in Fig. 31. ie beam splitter ensures that the electrons leaving the
entangler (see Sec. V.A) have an amplitude to be interchanged (without mutual interaction) such that 0 < jtj2 < 1.
In the absence of spin scattering the noise measured in the tgoing leads 3 and 4 exhibits bunching behavior for pairs
of electrons with a symmetric orbital wave function (Hanbury Brown and Twiss, 1956), i.e., for spin singlets, while
spin triplets induce antibunching behavior, due to their antisymmetric orbital wave function. The latter situation
has been considered for electrons in the normal state both itheory (Buattiker, 1990, 1992; Martin and Landauer,
1992) and in recent experiments (Hennyet al., 1999; Liu et al., 1998; Oliver et al., 1999; Tores and Martin, 1999).
The experiments have been performed in semiconductor nanbtsictures with geometries that are closely related to
the set-up proposed in Fig. 31 but without entangler. It shoud be stressed here that if bunching (enhancement of
shot noise) is detected, it can be interpreted as a unique sitature for entanglement of the injected electrons, since
the maximally entangled singlet is the only state leading tothis e ect. The e ect of interactions in the leads have
already been assessed in Sec. V.A.5. In order to determine g¢hshot noise of spin-entangled electrons, the standard
scattering matrix approach (Buattiker, 1990, 1992), extended to a situation with entanglement, is applied.

We start by writing down the entangled incident state ji |j tfzsi, where we setn = ("p;n), now using the
electron energies'y, instead of the momentum as the orbital quantum number in Eq. (154) and where the operator
a¥ (") creates an incoming electron in lead with spin  and energy". The theory for the current correlations in
a multiterminal conductor (Buattiker, 1990, 1992) can easily be generalized to the case of entangled scattering states
with the important consequence that Wick's theorem does notapply. The operator for the current carried by electrons
in lead of a multiterminal conductor can be written as

X
L ()= hi @ (Ma (") B (b (") expli(" "Yt=-; (167)

)

where thg-operatorsb (") for the outgoing electrons are related to the operatorsa (") for the incident electrons via
b ()= s a ("), wheres denotes the scattering matrix. The scattering matrix is assaumed to be spin- and
energy-independent. Note that for a discrete energy spectim in the leads, one can normalize the operatora (")
such that fa (");a’ o("9g = 0 = o=, where the Kronecker symbol ~o equals 1 if" = "%and 0 otherwise.
Here, stands for the density of states in the leads. Each lead is asmed to consist of only a single quantum channel;
the generalization to leads with several channels is stralgtfforward but not required here. The current Eq. (167) can
be expressed in terms of the scattering matrix as

e X X fom w0y
LM = & (MA a ("90 = (168)
0
A = s s (169)
The correlation function between the currents| (t) and | (t) intwo leads ; =1;::;4 of the BS
h z
S (I)= Iilrln — dte" ReTr[I (1)1 (0) ]; (170)
: 0
where | =1 hli,H i=Tr(l ), isthe density of states in the leads, and is the density matrix of the

injected electron pair. Here, only the zero-frequency comlator S S (0) will be of interest (the dependence on
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was omitted). Further evaluation with = jihj yields

ezhx0 i
“h

S A A 1o ApAgtAnAL (171)

where Po denotes the sum over = 1;2 and all 6 , and where again the upper (lower) sign refers to triplets
(singlets). Note that the autocorrelator S s the shot noise in lead .

The result Eq. (171) can now be applied to the set-up shown in k. 31 involving four leads, described by the
single-particle scattering matrix elements, s3; = S42 = r, and s41 = S32 = t, wherer and t denote the re ection
and transmission amplitudes at the beam splitter. In the absence of backscattering,s;2 = s34 = s =0, the noise
correlations for the incident stateji are

e?

S33 = Spu= Szp=2 h—T (1 T)(l "1"2) X (172)
whereT = jtj? denotes the transmittivity of the beam splitter. For the rem aining two triplet states j™i and j##i one
also obtains Eq. (172) with the upper sign. The mean currenti lead is, both for singlets and triplets, jhl ij = e=h .
The noise-to-current ratio, or Fano factor, F = S =jhl ij is thus found to be

F=2eT@1 T)@Q «,-,); (173)

and correspondingly for the cross correlations. Eq. (173)mplies that if electrons in the singlet state ji with equal
energies,"; = "5, are injected pairwise into the leads 1 and 2, then the zero fquency noise issnhancedby a factor
of two, F = 4eT(1 T), compared to the shot noise of uncorrelated particles (Bdtiker, 1990, 1992; Khlus, 1987;
Landauer, 1989; Lesovik, 1989; Martin and Landauer, 1992)F = 2eT(1 T). This noise enhancement is due to
bunchingof electrons in the outgoing leads, caused by the symmetricrbital wavefunction of the spin singletji . The
triplet states j+i, j™i , and j##i exhibit antibunching, i.e. a complete suppression of the nois&s = 0. As already
mentioned above, the noise enhancement for the singlgti is a unique signature for entanglement (no unentangled
state exists which can lead to this phenomenon), thereforerganglement can be observed by measuring the noise power
of a mesoscopic conductor as shown in Fig. 31. The various prlet states j+i, j"™i , and j##i cannot be distinguished
by the noise measurement alone; this distinction requires aneasurement of the spins of the outgoing electrons, e.g.
by inserting spin-selective tunneling devices (Prinz, 198) into leads 3 and 4. The same signature of entanglement as
for the shot noise can also be seen in the full counting stattics of the charge transport (Taddei and Fazio, 2002).

4. Lower bounds for entanglement

Here, the result of the previous Section is extended by proding a quantitative lower bound for the amount E
of spin entanglement carried by individual pairs of electras, related to the zero-frequency current correlators when
measured in a beam splitter setup (Fig. 32). This result (Bukard and Loss, 2003) therefore relates experimentally
accessible quantities with a measure for entanglement, thentanglement of formationE (Bennett et al., 1996b). Having
information about E is important since it quanti es the usefulness of a bipartite state for quanturp communication.

Starting form a general state, expressed in the singlet-tplet basis as = Fjihj + Goj+ih+j+ ._.., Gjjii ihiij+
, where are o -diagonal terms, one can decompose the current corrators Eq. (170) as
S S =FS '+ Ggs "'+ G S"'; (174)
i="#
wheres' ' s ™1 Theo -diagonal terms in do not enter S  because the operatorsl (t) conserve total

spin. The coe cients F, Go, G+, and Gg depend on the state preparation and therefore on the entangr. The
more information about these coe cients can be gained, the ketter the chance to measure the entanglement of .
In Sec. V.B.3 it was shown that the singlet stateji gives rise to enhanced shot noise (and cross-correlators} a

zero temperature, 8’3'3 = S}, =2elT(1 T)f, with the reduced correlator f =2, as compared to the \classical"

""" = s -9 (; =3;4). Therefore, both the
auto- and cross-correlations are only due to the singlet comonent of the incident two-particle state,

S;z= Sau=FS '=2elT@ T)f f =2F: (175)

The entanglement of a bipartite pure statej i2H o H g can be measured by the von Neumann entropgn(j i) =
Trg g log g (log in base 2) of the reduced density matrix g = Tr oj ih j, where 0 Sy 1, SnG i) =
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FIG. 32 Entanglement of formation E of the electron
] spins versus singlet delity F and the reduced correlator
E : f = Sgz=2elT(1 T). The curve illustrates the exact
. relation for Werner states. For general states, the curve
is a lower bound for E; allowed values for E and f (or
F) are in the shaded region.

0
0 0.5 1
F
Sn(j i)=1,and Sy(j i)=0,j i=7ji, j ig. Physically, if Sy(j i) " N=M then M N copies of

j i are sucient to perform, e.g., quantum teleportation of N qubits for N; M 1 (similarly for other quantum
communication protocols). Generglly, for a bipartite mixed state  the erganglement of formation (Bennett et al,
1996b)isE( ) =min ¢ ;ipygee( ) i PiSN(G i), whereE( )= f(j ii;p)] ;pij iih ij= g i.e., theleastexpected
entanglement of any ensemble of pure states realizing. A state with E > 0 (E = 1) is (maximally) entangled, and
neither local operations nor classical communication (LOC) between A and B can increaseE.
For an arbitrary mixed state of two qubits , E( ) is not a function of only the singlet delity F = hj ji
However,E( ) = E(F) for the Werner states (Werner, 1989)
I

X !

jrihtj+ jgih g (176)

F=Fjihj o+

the unique rotationally invariant states with singlet del ity F, wherej i =(j™i j##i )=p 2. The entanglement of
formation of the Werner states is known (Bennettet al., 1996b) asE(F) E( )= Hx(1=2+ F(1 F))ifl=2<
F 1l1andE(F) E(()=0if0 F < 1=2, with the dyadic Shannon entropyH,(x) = xlogx (1 x)log(1 x).
With Eq. (175), one can now expressE ( g ) in terms of the reduced correlatorf (Fig. 32).

This result can be generalized to arbitrary mixed states of two spins (qubits) using the following trick. Any state

can be transformed into ¢ with F = h | j i by arandom bipartite rotation (\twirl") (Bennett et al., 1996a,b),
i.e. by applying U U with a random U 2 SU(2). Entanglement can only decrease (or remain constant) uder the
twirl operation because it involves only LOCC,

E(F) E(): (77)

Thus, the entanglement of formation E(F) of the corresponding Werner state represents dower bound on E( )
(Fig. 32). A noise power exceeding = 2F > 1 in the BS setup Fig. 31 can therefore be interpreted as a sigof
entanglement, E (F) > 0, between the electron spins injected into leads 1 and 2.

The lower bounds that have been discussed so far are only uséif one is assessing a source that aims at producing
spin spinglet entanglement. However, it is possible in prigiple to extend this result to arbitrary entangled states if a
means of rotating the spin of the carriers in one of the ingoig arms of the BS is available; such spin rotators could,
e.g., be implemented by making use of the Rashba spin orbit eect (Egueset al., 2002).

The relation between the shot noisef and the entanglementE has also been explored in a number of non-ideal
situations, in the presence of decoherence, backscattedgnand thermally mixed input states (Burkard and Loss, 2003)

5. Proposed tests of Bell's inequalities

There have been a number of proposals to test Bell's inequales (Bell, 1966; Mermin, 1993) with spin-entangled
electrons directly with a spin-sensitive detection scheméKawabata, 2001; Lesoviket al., 2001; Mdtre et al., 2000) in
contrast to the detection scheme in Secs. V.B.3 and V.B.4 wlth only involves the measurement of a charge current.
Combinations of the Andreev entangler setup with a Bell testwere studied in (Chtchelkatchevet al., 2002; Samuelsson
et al., 2004a).

Bell tests for orbital entanglement with electron charge qubits in ballistic condictors have also been proposed
(lonicioiu et al., 2001). A scheme to generate two-particle orbital entanglment in a mesoscopic normal-superconductor
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system and to detect it via a violation of a Bell inequality was analyzed in (Samuelssort al., 2003). A violation of a
Bell inequality due to orbital entanglement in a Hanbury Bro wn{Twiss setting was also proposed (Samuelssoet al.,
2004b).

C. Production of entangled photons

The use of entangled photons from parametric down-conversi in non-linear crystals (Kwiat et al., 1995, 1999)
has become a routine process (Boscheét al., 1998; Bouwmeesteret al., 1997; Mattle et al., 1996). However, two
disadvantages of these sources are (i) that they are quite mcient (between 106 and 10° pump photons per yield
photon) and (ii) that they are stochastic, i.e., although th e rate (mean number of entangled pairs per second) is
known, the precise instant of the emission cannot be contrééd. It would be desirable to have a source of entangled
photons that is both deterministic and e cient . The use of electron-hole recombination in a single QD was gigested
in (Benson et al.,, 2000; Moreauet al., 2001). Non-resonant excitation of a QD is expected to prodoe pairs of
entangled photons with an e ciency (production rate/pump r ate) that is about four orders of magnitude bigger than
for parametric down-conversion (Moreauet al., 2001). Ultraviolet entangled photons have recently been gnerated in
the semiconductor CuCl in a process called resonant hypergrametric scattering (RHPS) which involves the creation
of a virtual biexciton state in the crystal (Edamatsu et al., 2004). Although this is still a stochastic source, RHPS is
a very e cient process.

The production of polarization-entangled photons using the biexcitonic ground state has been investigated irtwo
tunnel-coupled QDs (Gywat et al., 2002). Biexcitons are bound states of two excitons in a seradbnductor, where each
exciton is the bound state of a negatively charged conductio-band electron and a positively charged valence-band
hole. Excitonic absorption in single QDs has been studied thoretically (Efros and Efros, 1982), and biexcitonic
states in single QDs have been investigated (Banyagt al., 1988; Bryant, 1990; Hawrylak, 1999; Huet al., 1990; Kiraz
et al., 2002; Nair and Takagahara, 1996; Santoret al., 2002; Takagahara, 1989). Single excitons in coupled QDs
have been observed in experiment (Bayeet al., 2001; Schedelbeclet al., 1997) and spin spectroscopy of excitons in
QDs was performed using polarization-resolved magnetopholuminenscence (Johnston-Halperinet al., 2001). When
discussing con ned excitons, one needs to distinguish twoegimes (Efros and Efros, 1982): (i) Theweak con nement
limit ax ae; an, Where ax is the radius of the free exciton andag; a, the electron and hole e ective Bohr radii in
the QD. In this regime, an exciton can be considered (as in thédulk material) as a boson in an external con nement
potential. (ii) The strong con nement limit ax ae; an, Where electrons and holes are separately con ned in the
QD. In this regime, electron-hole pairs cannot be considerd as bosons anymore. In bulk GaAsax ~ 10 nm, one is
often in an intermediate regimeayx  ae; an for typical QD radii.

Starting from a strong con nement ansatz and using the Heitler-London (HL) approximation, the low-energy (spin-
resolved) biexciton spectrum (in which the electrons and hées each form either a spin singlet or triplet) and the
oscillator strengths Fig. 33, being a measure for the optichtransition rates, have been calculated (Gywat et al.,
2002). The HL ansatz is similar to the one used for electronsni Sec. 111.B.1 with the Hamiltonian

X X
H = hi + Hc + Hz + Hg; (178)

=ehi=1

whereh; =(p;i +q A(r; )=9%=2m +V (r; )is the single-particle Hamiltonian ferthei-thelectron( = e, g = €

or hole ( h, g, = + €). The Coulomb interaction is included by Hc = (1=2) (iye(j190= jri rj j, with
a dielectric constant  (for bulk GaAs, = 13:18). A magnetic eld B in z direction leads tg orbital e ects via the
vector potential (in the symmetric gauge) A = B( y;x; 0)=2 and to the Zeeman termHz =, g gBS, , where

g is the e ective g-factor of the electron (hole) and g is the Bohr magneton.

Two-particle wave functions for electrons and for holes segrately are constructed according to the HL method, i.e.
a symmetric (jsi  j | =0i , spin singlet) and an antisymmetric (jti j | =1i , spin triplet) linear combination of
two-particle states jDDY% = jDi j DY

jli =N, (12 +( 1)'j21 ); (179)
whereN,| = 1:p 21+ ( 1)jS j3)and S = hij2i denotes the overlap between the two orbital wave functions
jli and j2i . From the electron and hole singlet and triplet, the four biexciton states jlJi = jli® j Ji" can be

formed, wherel = 0 (1) for the electron singlet (triplet) and J = 0 (1) for the hole singlet (triplet). The biexciton
energies

Ey =hJjHjDi=E°+EZ+EY +ES; (180)
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FIG. 33 (a) and (b): Oscillator strengths fxx.x for transitions between the biexciton states jXX i = jlJ i and a single remaining
exciton on one QD in units of fo as a function of (a) the magnetic eld B (in Tesla) at E = 0 and (b) the electric eld E (in
mV= m) at B = 0. The plotted HL energies E,; are Ess (solid line), Es (short-dashed), Eis (dot-dashed), and Ey (dotted),
neglecting the Zeeman energy. The parameters were chosen foGaAs with = ! .=, = 1=2. (c) Entanglement of formation
E as a function of the emission angles ; and ; of the two photons. Only if both photons are emitted perpendi cular to the
plane ( 1 = 2 =0), the entanglement is maximal ( E = 1). If at least one of them is emitted in-plane ( i = =2), then the two
photons are not entangled (E = 0).

with Efy h 1JjHAjlJ i, can be calculated analytically within HL (Gywat et al., 2002).

The exciton and biexciton recombination rates are determired by the oscillator strength f which is a measure for
the coupling between the dipole moment of the exciton statesand the electromagnetic eld. For a transition between
the N +1 and N exciton statesjN +1i and jNi, the oscillator strength is de ned as

i i2
fnsan = M; (181)
Mo~! N+1:N

where mg is the bare electron mass,~! N+1:n = En+1 En, and pyk = PN +1jex  pjNi, where g¢ is the
unit polarization vector for a photon with momentum k and helicity = 1, and p is the electron momentum
operator. The inter-band momentum matrix element for a cubic crystal symmetry is givenbyM ()= ex pe( )=
Pev(cos( ) )=2 pom (), where isthe angle betweerk and the normal to the plane of the 2D electron system
(assuming that the latter coincides with one of the main axesof the cubic crystal), and E, = 2p2,=mo (= 25:7 eV for
GaAs).

The orbital momentum matrix element for the recombination of an exciton to the vacuum and for transitions from
a biexciton state jXX i to a single exciton statejX i are given in (Gywat et al., 2002); we give here our result for a
transition between the HL biexciton states jXX i = jlJ i with one exciton on each QD and a single exciton in the
nal state jXi,

jhiJjec pjXij =2M ()IO Nig Cen ( D™ SeSh + Sen ( D'Se+( D'Sy (182)

The corresponding oscillator strengthf is plotted in Figs. 33a and 33b, in the approximation ~! xx-x Eg. The
e ect of an electric eld is to spatially separate the electrons from the holes, which leads to a reduction of the oscilladr
strengths. Hence, the optical transition rate can be e ciently switched o and on, thus allowing the deterministic
emission of one photon pair.

The HL biexciton state jlJ i can be written as a superposition of dark §; = 2) and bright (S; = 1) exciton
states. Upon recombination of the biexciton, the emitted ptoton states are (up to normalization)

jogilj o+l 4 Lo+ (DML i+ o0 (183)

wherej; i = N()m. ()] +i+m. 1()j 1i)is the state of a photon emitted from the recombination of an
electron with spin S, = =2 = 1=2 and a heavy hole with spinS, = 3 =2 in a direction which encloses the angle

with the normal to the plane of the 2D electron and hole motion The states of right and left circular polarization
are denotedj i. The entanglement between the two photon polarizations in he state Eq. (183) can be quanti ed
by the von Neumann entropy E. For jssi or jtti and emission of the two photons enclosing an azimuthal angle = 0
or , we obtain

X1X2 10g,(X1X2) |

E =log,(L+ xaxg) 22

(184)
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where x; = cos?( ;). We plot E( 1; ») in Fig. 33c. Only the emission of both photons perpendicula to the plane

( 1= 2=0) results in maximal entanglement (E = 1). The two photons are not entangled (E = 0) if at least one
of them is emitted in-plane (; = =2). In order to observe the proposed e ect, the relaxation rde to the biexciton
ground state needs to be larger the biexciton recombinatiorrate. The existence of such a regime is suggested by
experiments with low excitation densities, see e.g. (Dekeét al., 2000; Ohnesorgest al., 1996). An upper limit for the
pair production rate is then given by ( x + xx ) !, where x is the exciton and xx the biexciton lifetime.
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