Mikrobiell katalysierte Redoxreaktionen und Geochemie von Eisenverbindungen im Bodensee-Sediment

Dissertation

von

Simone Daniela Gerhardt
Titelbild: Beeinflussung der Redoxreaktionen im Litoralsediment durch die Lichtverhältnisse sowie Abtragung, Durchmischung und Auflagerung von Sediment.
Mikrobiell katalysierte Redoxreaktionen
und Geochemie von Eisenverbindungen
im Bodensee-Sediment

Dissertation

zur Erlangung des akademischen Grades
des Doktors der Naturwissenschaften
an der Universität Konstanz,
dem Fachbereich Biologie
vorgelegt von

Simone Daniela Gerhardt

Tag der mündlichen Prüfung: 15. Juni 2004
Referent: Prof. Dr. Bernhard Schink
Referent: Prof. Dr. Karl-Otto Rothhaupt
DANKSAGUNG

Sehr herzlich bedanke ich mich bei Herrn Prof. Dr. Bernhard Schink für die Aufnahme an seinen Lehrstuhl, die Ausbildung während meiner wissenschaftlichen Lehrjahre und die Ideen und Ratschläge, mit denen er meine Dissertation stets gefördert hat.

Herrn Prof. Dr. Karl-Otto Rothhaupt danke ich für die Übernahme des zweiten Gutachtens.

Mein Dank gilt auch allen früheren und jetzigen Mitarbeitern des Lehrstuhls für die angenehme Arbeitsatmosphäre und die mir entgegengebrachte Hilfsbereitschaft.

Meiner Familie danke ich sehr herzlich für die große Zuneigung und das unbegrenzte Vertrauen, mit dem sie mich immer unterstützt haben.
<table>
<thead>
<tr>
<th>Nummer</th>
<th>Kapitel Titel</th>
<th>Seitenzahl</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>ABKÜRZUNGSVERZEICHNIS</td>
<td>10</td>
</tr>
<tr>
<td>2</td>
<td>ZUSAMMENFASSUNG</td>
<td>11</td>
</tr>
<tr>
<td>3</td>
<td>EINFÜHRUNG</td>
<td>14</td>
</tr>
<tr>
<td>3.1</td>
<td>Die Flachwasserzone des Bodensees</td>
<td>14</td>
</tr>
<tr>
<td>3.1.1</td>
<td>Morphologie des Bodensees</td>
<td>14</td>
</tr>
<tr>
<td>3.1.2</td>
<td>Entstehung der Flachwasserzone</td>
<td>14</td>
</tr>
<tr>
<td>3.1.3</td>
<td>Sedimentbeschaffenheit</td>
<td>16</td>
</tr>
<tr>
<td>3.2</td>
<td>Die Lichtverhältnisse im Litoral</td>
<td>17</td>
</tr>
<tr>
<td>3.2.1</td>
<td>Lichtintensität und spektrale Zusammensetzung</td>
<td>17</td>
</tr>
<tr>
<td>3.2.2</td>
<td>Lichtqualität im Sediment</td>
<td>18</td>
</tr>
<tr>
<td>3.3</td>
<td>Die mechanischen Einflüsse auf das Litoral</td>
<td>19</td>
</tr>
<tr>
<td>3.3.1</td>
<td>Wasserstand und Wasserbewegung</td>
<td>19</td>
</tr>
<tr>
<td>3.3.2</td>
<td>Erosion von Litoralsediment</td>
<td>19</td>
</tr>
<tr>
<td>3.3.3</td>
<td>Resuspension und Sedimentation von Litoralsediment</td>
<td>20</td>
</tr>
<tr>
<td>3.3.4</td>
<td>Folgen mechanischer Störungen des Litoralsediments</td>
<td>21</td>
</tr>
<tr>
<td>3.4</td>
<td>Geochemie von Phosphatverbindungen in Sedimenten</td>
<td>22</td>
</tr>
<tr>
<td>3.4.1</td>
<td>Verbindungen und Reaktivität</td>
<td>22</td>
</tr>
<tr>
<td>3.4.2</td>
<td>Konzentration in Gewässern</td>
<td>22</td>
</tr>
<tr>
<td>3.4.3</td>
<td>Verfügbarkeit im Sediment</td>
<td>23</td>
</tr>
<tr>
<td>3.5</td>
<td>Geochemie von Eisenverbindungen in Sedimenten</td>
<td>25</td>
</tr>
<tr>
<td>3.5.1</td>
<td>Redoxaktivität und chemische Reaktionen</td>
<td>25</td>
</tr>
<tr>
<td>3.5.2</td>
<td>Löslichkeit und Redoxpotential im Sediment</td>
<td>26</td>
</tr>
<tr>
<td>3.6</td>
<td>Eisennutzende Mikroorganismen im Sediment</td>
<td>27</td>
</tr>
<tr>
<td>3.6.1</td>
<td>Sediment als Lebensraum</td>
<td>27</td>
</tr>
<tr>
<td>3.6.2</td>
<td>Nutzung von Eisen im assimilatorischen Stoffwechsel</td>
<td>28</td>
</tr>
<tr>
<td>3.6.3</td>
<td>Nutzung von Eisen im dissimilatorischen Stoffwechsel</td>
<td>29</td>
</tr>
<tr>
<td>3.7</td>
<td>Zielsetzung</td>
<td>30</td>
</tr>
</tbody>
</table>
4 MATERIAL UND METHODEN .. 32

4.1 Kultivierungsmethoden .. 32
 Nährmedien .. 32
 Substrate ... 33
 Anreicherung und Stammbaltung von Reinkulturen ... 33
 Verdünnungsreihen zur Isolierung von Bakterien .. 34
 Substrattests ... 34
 Reinheitskontrolle ... 34
 Agarbeschichtete Objektträger ... 35
 DAPI-Färbung ... 35
 MPN .. 35

4.2 Sedimentanalytik ... 37
 Probenahme ... 37
 Verarbeitung und Inkubation des Sediments .. 38
 Bestimmung von Dichte und Porosität ... 39
 Porenwassergewinnung .. 39
 Sedimentextraktion .. 40

4.3 Mikroelektroden-Messungen .. 42
 Messung von Sauerstoff, Sulfid, Nitrat und pH .. 42
 Sauerstoff-Respiration- und Netto-Photosynthesemessung ... 44
 Brutto-Photosynthesemessung ... 44

4.4 Analytik ... 46
 Eisenbestimmung ... 46
 Phosphatbestimmung .. 46
 Nitrat- und Nitritbestimmung ... 47
 Herkunft der Chemikalien und Gase .. 47

4.5 Experimenteller Aufbau .. 48
 Einfluss der Lichtverhältnisse ... 48
 Einfluss von Erosion, Resuspension und Sedimentation ... 49
 Freisetzung von Phosphat aus dem Sediment ... 50

4.6 Datenauswertung ... 52
5 Ergebnisse und Diskussion ... 53

5.1 Anreicherung und Isolierung Eisen-oxidierender Nitrat-reduzierender
Bakterien aus Bodensee–Sediment .. 53

Ergebnisse .. 53
Anreicherungskulturen ... 53
Isolierung von Reinkulturen ... 55

Diskussion ... 57
Vergleich mit bekannten Kulturen Nitrat-reduzierender Eisen-oxidierender
Bakterien ... 57
Erklärungsversuch für den Verlust der Eisen-oxidierenden Fähigkeit mancher
Anreicherungskulturen ... 57

5.2 Anreicherung und Isolierung phototropher Eisen-oxidierender Bakterien
aus Bodensee-Sediment ... 59

Ergebnisse .. 59
Anreicherungskulturen ... 59
Isolierung von Reinkulturen ... 60
Charakterisierung der Reinkulturen ... 62

Diskussion ... 66
Vergleich mit bekannten Kulturen phototropher Eisen-oxidierender Bakterien ... 66
Bedeutung phototropher Eisen-oxidierender Bakterien in Sedimenten 66

5.3 Zahl der Eisen-oxidierenden Bakterien im Profundalsediment 68

Ergebnisse .. 68
MPN-Zählung ... 68

Diskussion ... 69
Vergleich der Zahl Eisen-oxidierender Bakterien in Sedimenten 69
Bedeutung Eisen-oxidierender Bakterien für den Eisenkreislauf 70

5.4 Charakterisierung des Bodensee-Sediments .. 72

Ergebnisse .. 72
Temperatur und Lichtverhältnisse in der Wassersäule 72
Dichte und Porosität ... 73
Tiefenprofile des pH und Redoxpotentials .. 75
Tiefenprofile von Sauerstoff ... 76
Tiefenprofile von Nitrat und Schwefelwasserstoff 77
Tiefenprofile von Phosphat ... 79
Tiefenprofile von Eisenverbindungen ... 80
Vergleich von Litoral- und Profundalsediment .. 84
Jahreszeitliche Änderung des Redoxzustandes von Eisenverbindungen in Litoralsediment .. 86

5.5 Einfluss der Lichtverhältnisse auf das Litoralsediment 88

Ergebnisse ... 88
Veränderung des Redoxzustands von Eisenverbindungen im Sediment unter Lichteinfluss .. 88
Veränderung des Sauerstoffgehalts im Sediment unter Lichteinfluss 90

Diskussion .. 93
Diurnaler Redoxzyklus von Eisen und dynamische Änderungen der Sauerstoffkonzentration .. 93
Ökologische Folgen der durch Licht verursachten Veränderungen 94
Diskussion der Mikroelektrodenmessungen und Brutto-Photosynthesebestimmung ... 95

5.6 Einfluss von Erosion auf das Litoralsediment ... 96

Ergebnisse ... 96
Veränderung des Redoxzustands von Eisenverbindungen nach Abtragung von Sediment .. 96
Veränderung des Sauerstoffgehalts nach Abtragung von Sediment 100

Diskussion .. 101
Unmittelbare Änderung der Sauerstoffkonzentration und Redoxreaktion von Eisen .. 101
Ökologische Folgen von Erosionsereignissen .. 102

5.7 Einfluss von Resuspension und Sedimentation auf das Litoralsediment 104

Ergebnisse ... 104
Veränderung des Redoxzustands von Eisenverbindungen bei Durchmischung und Wiederauflagerung von Sediment 104
Veränderung des Sauerstoffgehalts bei Durchmischung und Wiederauflagerung von Sediment .. 108

Diskussion .. 109
Unmittelbare Änderungen der Sauerstoffkonzentration und Redoxreaktion von Eisen .. 109
Ökologische Folgen von Resuspensions- und Sedimentationsereignissen 110
Vergleich von Vorgängen bei einer Änderung der Lichtverhältnisse mit den Vorgängen bei Störungsereignissen .. 111
5.8 Freisetzung von Phosphat aus dem Litoralsediment.........................112

Ergebnisse...112
Anpassung der Methode für den Phosphatnachweis und Eichgerade.............112
Kontrollen ...113
Einfluss der Lichtverhältnisse...114
Einfluss von Erosion, Resuspension und Sedimentation.............................115

Diskussion ...117
Methode zur Phosphatbestimmung und Kontrollen.....................................117
Beeinflussung der Phosphatfreisetzung durch Licht oder Dunkelheit........117
Beeinflussung der Phosphatfreisetzung durch Erosion, Resuspension und Sedimentation..118
Verknüpfung des Phosphatkreislaufs mit dem von Schwefel und Eisen......119

6 LITERATURVERZEICHNIS ..1121
1 ABKÜRZUNGSVERZEICHNIS

<table>
<thead>
<tr>
<th>Abkürzung</th>
<th>Erklärung</th>
</tr>
</thead>
<tbody>
<tr>
<td>°C</td>
<td>Grad Celsius</td>
</tr>
<tr>
<td>DAPI</td>
<td>4´,6 Diamidino-2-phenylindol</td>
</tr>
<tr>
<td>E´0</td>
<td>Redoxpotential unter Standardbedingungen bei pH 7</td>
</tr>
<tr>
<td>E_h</td>
<td>Apparentes Redoxpotential</td>
</tr>
<tr>
<td>Fe(III), Eisen(III)</td>
<td>oxidierte Eisenverbindungen</td>
</tr>
<tr>
<td>Fe(II), Eisen(II)</td>
<td>reduzierte Eisenverbindungen</td>
</tr>
<tr>
<td>Fe(ges), Gesamt-Eisen</td>
<td>gesamtes extrahiertes Eisen</td>
</tr>
<tr>
<td>g</td>
<td>Gramm</td>
</tr>
<tr>
<td>h</td>
<td>Stunde</td>
</tr>
<tr>
<td>HPLC</td>
<td>Hochdruck-Flüssigkeitschromatographie</td>
</tr>
<tr>
<td>l</td>
<td>Liter</td>
</tr>
<tr>
<td>LIX</td>
<td>liquid ion exchanger</td>
</tr>
<tr>
<td>µ</td>
<td>Mikro-</td>
</tr>
<tr>
<td>m</td>
<td>milli- oder Meter</td>
</tr>
<tr>
<td>M</td>
<td>Molar</td>
</tr>
<tr>
<td>min</td>
<td>Minute</td>
</tr>
<tr>
<td>mol</td>
<td>Mol</td>
</tr>
<tr>
<td>MPN</td>
<td>most probable number</td>
</tr>
<tr>
<td>p.a.</td>
<td>pro analysis</td>
</tr>
<tr>
<td>rpm</td>
<td>rotations per minute</td>
</tr>
<tr>
<td>V</td>
<td>Volt</td>
</tr>
<tr>
<td>(v/v)</td>
<td>Volumenprozent</td>
</tr>
<tr>
<td>(w/v)</td>
<td>Gewichtsprozent</td>
</tr>
</tbody>
</table>
2 ZUSAMMENFASSUNG

In der vorliegenden Dissertation wurde die mikrobielle Nutzung sowie die Geochemie von Eisenverbindungen im Bodensee-Sediment untersucht.

Die Ergebnisse aller Projekte wurden ausführlich diskutiert und zueinander in Beziehung gesetzt, so dass ein erweitertes Verständnis für die Bedeutung der Eisenverbindungen im Sediment und deren Beeinflussung durch die im Sediment und im Freiwasser ablaufenden biologischen und geochemischen Prozesse gewonnen wurde.
3 EINFÜHRUNG

3.1 Die Flachwasserzone des Bodensees

Morphologie des Bodensees

Das Bodenseebecken wurde durch den Rheingletscher und tektonische Kräfte vor etwa 18000 Jahren geformt (Kiefer 1972). Der Bodensee hat eine Oberfläche von 539 km² und ein Volumen von 49 km³; er besteht aus zwei Seebecken, dem Obersee und dem Untersee (Abbildung 1). Die längste Entfernung zwischen Bregenz und Stein am Rhein beträgt 69 km, die größte Breite zwischen Kressbronn und Rorschach etwa 15 km; die größte Tiefe ist 252 m. Das Seebecken lässt sich in die Bereiche Flachwasserzone (Uferbank oder Wyss), Halde und Tiefenwasserbereich (Schweb) unterteilen. Die Flachwasserzone wird landseitig durch die mittlere Hochwasserlinie und seeseitig durch die 10-m-Tiefenlinie abgegrenzt, die etwa mit der Haldenkante übereinstimmt. Sie umfasst ständig überflutete sowie verschieden lang trockenfallende Uferbereiche unterschiedlicher Ausdehnung. An den Steilufern des Überlingersees hat die Uferbank eine Breite von 20–30 m, bei Friedrichshafen reicht sie bis etwa 1000 m in den See hinein, im Mündungsgebiet des Alpenrheins sogar bis 2000 m (Müller 1966). Die Bodenzone (Benthal) eines Sees ist vertikal untergliedert in die Uferzone (Litoral) und die Tiefezone (Profundal).

Entstehung der Flachwasserzone

Abbildung 1: Gesamtansicht des Bodensees (Kiefer 1972).
Das Litoralsediment im Bereich der Mainau-Bucht ist hauptsächlich aus Kiesen und Sanden mit unterschiedlich stark ausgeprägten siltigen und tonigen Anteilen zusammengesetzt (Müller 1966). Die Korngröße des Sediments liegt zwischen 0,315 mm und 0,63 mm, sie nimmt mit zunehmendem Abstand vom Ufer ab. In Abhängigkeit vom Wasserstand kommt es im Litoralsediment bis etwa 5 m Tiefe zu einer Veränderung der Korngrößenverteilung (Siessegger 1970). Bei Niedrigwasserstand werden die feinkörnigen Anteile ausgewaschen, dadurch nimmt der Porenwassergehalt ab. In den Sedimenten der Flachwasserzone finden sich Gesteinsfragmente, Feldspate, Quarz und Glimmer, sowie die Carbonatverbindungen Dolomit, Calcit und Aragonit. Calcit (Kalkspat, CaCO₃) wird von Algen und Makrophyten abgeschieden, Aragonit (Eisenblüte, CaCO₃, härter und dichter als Calcit) entstammt den zerriebenen Gehäusen abgestorbener Schnecken und Muscheln. Der Anteil dieser Carbonatverbindungen biogener Herkunft am Gesamtvolumen des Litoralsediments der Mainaubucht beträgt bis zu 15%, der Gesamtcarbonatgehalt liegt zwischen 31% und 40% und führt zur Bildung krümeliger, karbonatreicher Sedimente (im Untersee als Seekreide, Schnegglisande). Weitere Minerale biogener Bildung sind Opal (SiO₂ nH₂O) und Hydrotroilit (Eisenmonosulfid, FeS nH₂O); sie sind mengenmäßig im Sediment von geringerer Bedeutung. Opal entstammt den Skeletten abgestorbener Kieselalgen, Hydrotroilit wird chemisch unter anoxischen Bedingungen gebildet und führt zu einer Grau- bis Schwarzfärbung des Sediments (siehe Absatz 3.5). Knapp 10% des Sedimentvolumens stammen aus organischem Material (Detritus). Der Anteil der nicht-mineralischen, anthropogenen Materialien (Gläser, Kohle, Schlacken, Ziegelstein) im Sediment der Mainaubucht liegt bei 5%. Im 2–5 m tiefen Flachwasserbereich der Friedrichshafener Bucht sedimentieren bis 2 kg Trockensediment pro Quadratmeter und Tag (Siessegger 1970); die jährliche Sedimentationsrate beträgt etwa einen Millimeter.
3.2 Die Lichtverhältnisse im Litoral

Lichtintensität und spektrale Zusammensetzung

Die Lichtverhältnisse im Litoral ermöglichen photoautotrophen Pflanzen eine positive Photosynthesebilanz (Lampert and Sommer 1993) (Abbildung 2).

Abbildung 2: Luftaufnahme der Mainaubucht; die helle Flachwasserzone ist durch die Haldenkante deutlich vom Tiefenwasserbereich getrennt (Institut für Seenforschung der Landesanstalt für Umweltschutz Baden-Württemberg, Langenargen).

Durch das Einfallen des Lichts in Wasser ändert sich die Qualität des Lichts, sowohl in Bezug auf die Lichtintensität, als auch auf die spektrale Zusammensetzung (Wetzel 2001). Licht, das auf eine Gewässeroberfläche auftrifft, wird reflektiert, im Wasser absorbiert und gestreut. Die Stärke der Reflexion des Lichts von der Wasseroberfläche hängt vom Sonnenstand ab und ist daher tageszeitlich und jahreszeitlich verschieden. Als Mittelwerte gelten für Mitteleuropa im Sommer 3%, im Winter 14% Strahlungsverlust durch Reflexion. Die Beleuchtungsstärke [Lux] gibt an, welche Lichtstärke abhängig vom Raumwinkel auf eine bestimmte Fläche einfallt. Die Strahlungsintensität in einem Gewässer erfasst die gesamte in einer bestimmten Tiefe vorhandene Lichtenergie und wird als Quantenfluss $[\mu \text{mol} \cdot \text{m}^{-2} \cdot \text{s}^{-1}]$ gemessen. Bei vollem Sonnenlicht werden etwa 100 kLux oder 2000 $\mu \text{mol} \cdot \text{m}^{-2} \cdot \text{s}^{-1}$ gemessen, bei Mondlicht etwa 1 Lux oder 0,02 $\mu \text{mol} \cdot \text{m}^{-2} \cdot \text{s}^{-1}$. Die Strahlungsintensität des gesamten
Lichtspektrums vermindert sich in einem Meter Wassertiefe auf etwa 50%. Licht im infraroten Wellenlängenbereich wird stark von den Wassermolekülen selbst absorbiert und durch eine 2,5 m tiefe Wassersäule auf 1% seiner Intensität vermindert. Kurzwellige Strahlen werden am stärksten durch Streuung an den Wassermolekülen beeinflusst, daher erscheint ungefärbtes, reines Wasser in dickerer Schicht blau. Im sichtbaren Bereich des Lichtspektrums dringt Licht der Wellenlängen von 500 bis 600 nm (grün/gelb) in tiefere Wasserschichten vor als blaue oder rote Lichtanteile, die Intensität nimmt vor allem durch Streuung an im Wasser befindlichen Partikeln und Absorption durch im Wasser gelöste Stoffe ab. Licht der Wellenlänge zwischen 540 und 560 nm dringt am tiefsten in die Wassersäule ein.

Lichtqualität im Sediment

3.3 Die mechanischen Einflüsse auf das Litoral

Wasserstand und Wasserbewegung

Erosion von Litoralsediment

Strömungsschatten oder kaum durchströmten Buchten wird das abgetragene Material bevorzugt wieder aufgelagert.

Biologische Erosion wird durch Fische bei der Nahrungsaufnahme oder beim Ablaichen sowie durch Bioturbation (Bewegung von Kleinlebewesen im Sediment) verursacht. Physikalische Resuspension tritt auf, wenn die Strömungsgeschwindigkeit des Wassers über dem Sediment einen kritischen Wert übersteigt. Für frisch abgelagertes feines und lockereres Sediment liegt dieser kritische Wert bei 0,5 bis 1,7 cm·s⁻¹, für festes, zusammenhängendes Sediment bei > 5 cm·s⁻¹ (Weyhenmeyer 1998). Die Seetiefe, in der noch Sediment abgetragen wird, ist abhängig von der Windgeschwindigkeit, der Seenmorphometrie, der Schichtung des Sees und der Art des Sediments.

Resuspension und Sedimentation von Litoralsediment

Folgen mechanischer Störungen des Litoralsediments

3.4 Geochemie von Phosphatverbindungen in Sedimenten

Verbindungen und Reaktivität

Phosphor liegt in ionischer Form als freies Orthophosphat PO_4^{3-} oder gebunden als Phosphatrest $-\text{PO}_4^{3-}$ und Phosphorylgruppe $-\text{PO}_3^{2-}$ vor; zusammenfassend werden diese Verbindungen als Phosphate bezeichnet (Hollemann and Wiberg 1971b). Die Gesamtheit der Phosphate in einem Gewässer lässt sich in vier verschiedene Fraktionen unterteilen (Wetzel 2001). Gelöstes, reaktives Phosphat liegt bei neutralem pH als Hydrogenphosphat HPO_4^{2-} oder Dihydrogenphosphat H_2PO_4^- vor, das von Organismen direkt verwertet werden kann. Es wird mit hoher Affinität, auch in größeren Mengen als momentan benötigt, aufgenommen und als Polyphosphat gespeichert (luxury consumption) (Schwoerbel 1999). Gelöstes, nicht-reaktives Phosphat liegt gebunden in organischen Verbindungen vor, z.B. in Nucleinsäuren und Proteinen, oder als Polyphosphat in synthetischen Detergenzien (Waschmitteln). Diese nicht-reaktiven Phosphatverbindungen werden langsamer verstoffwechselt als Orthophosphat.

Partikuläres, reaktives Phosphat umfasst säurelösliche, anorganische Phosphatverbindungen, z.B. Fe(III)PO_4 und $\text{Ca}_3(\text{PO}_4)_2$. Partikuläres, nicht-reaktives Phosphat ist organisch in lebenden und toten Organismen (Detritus) gebunden. Hierzu zählen auch in Organellen (Volutin-Granula) von Bakterien gespeicherte Polyphosphate, die im Sediment bis zu 50% des partikulären, nicht-reaktiven Phosphats ausmachen können.

Konzentration in Gewässern

Die Konzentration im Gewässer hängt von der Geologie des Untergrundes (u.a. Gehalt an Hydroxylapatit $\text{Ca}_5(\text{PO}_4)_3\text{OH}$) ebenso ab wie von der Belastung der Zuflüsse (Nutzung als Vorfluter von Kläranlagen) und des gesamten Einzugsgebietes (z.B. Oberflächenabschwemmung überdüngter Böden); ein kleiner Teil des Eintrages stammt

Verfügbarkeit im Sediment

3.5 Geochemie von Eisenverbindungen in Sedimenten

Redoxaktivität und chemische Reaktionen

Eisen ist ein redoxaktives Metall, dessen zweiwertige, reduzierte und dreiwertige, oxidierte Form für die biochemischen Reaktionen im Sediment große Bedeutung besitzen. In chemischen und mikrobiell katalysierten Reaktionen wirken Eisen(II)salze als Reduktionsmittel, Eisen(III)salze als Oxidationsmittel.

In oxischen Sedimentschichten, d.h. unter oxidierenden Bedingungen, überwiegen Minerale, die dreiwertiges Eisen enthalten. Zu diesen zählen u.a. Eisen(III)-hydroxid (Fe(OH)₃), Fe(III)-Oxide wie Ferrihydrit (Mischung aus FeOOH und γ-Fe₂O₃), Goethit (α-FeOOH) und Hämatit (α-Fe₂O₃) sowie Eisen(III)-phosphat (Strengit, FePO₄·2H₂O).

In anoxischen Sedimentschichten, d.h. unter reduzierenden Bedingungen, dominieren reduzierte Eisenverbindungen. Dazu gehören u.a. Eisen(II)-hydroxid (Fe(OH)₂), Eisensulfide wie Eisen(II)sulfid (FeS) und Pyrit (FeS₂), Eisen(II)-carbonat (Siderit, FeCO₃) und Eisen(II)-phosphat (Vivianit, Fe₅(PO₄)₂·8H₂O). Magnetit (Fe₃O₄) ist ein Eisen(II)/(III)-Mischmineral.

Nitritkonzentrationen > 1 µM gemessen wurden, wird die chemische Oxidation von reduzierten Eisenverbindungen mit Nitrit hier als vernachlässigbar angesehen.

Löslichkeit und Redoxpotential im Sediment

Bei pH-Werten <3 befinden sich die freien Eisenionen Fe²⁺ und Fe³⁺ in Lösung. Das Standard-Redoxpotential für das Redoxpaar Fe²⁺/Fe³⁺ liegt bei E₀' = +772 mV. Bei höheren pH-Werten und damit steigender Konzentration an Hydroxid-Ionen fällt Eisen als Eisenhydroxid, in Anwesenheit anderer Anionen auch als verschiedene andere Verbindungen (s.o.) aus. Daher liegt Eisen im Sediment hauptsächlich in partikulärer Form vor, nach saurer Extraktion werden in der Festphase des Sediments um 50 mM gemessen. Die Eisenverbindungen sind bei neutralem pH und 25°C nur in geringsten Konzentrationen löslich. In gesättigter Lösung im Gleichgewicht mit der Festphase lösen sich 7 µM Eisen(II)hydroxid, 4 µM Eisencarbonat, 0,2 nM Eisen(III)hydroxid oder femtomolare Konzentrationen von Eisen(III)phosphat (Hollemann and Wiberg 1971b). Die Konzentration an gelöstem Eisen kann durch die Partikelgröße oder Komplexierung beeinflusst werden. Liegt Ferrihydrit in winzigen Partikeln (Durchmesser < 5 nm) vor und ist dadurch in der Lösung sehr fein, kolloidal, verteilt, so wird bei neutralem pH eine höhere Löslichkeit als die tatsächliche (10⁻⁷ M) vorgespiegelt. Durch die Bildung löslicher Komplexe von Eisen mit z.B. Citrat oder Huminsäuren wird zwar die Konzentration freier Metallionen vermindert, aber die Gesamt-Löslichkeit durch Nachlösen von Eisen aus dem Feststoff erhöht. Im Porenwasser des Litoralsediments sind daher Konzentrationen von etwa 300 µM gelöstem Eisen messbar. Da das Redoxpotential bestimmter Eisenverbindungen von der Art und Löslichkeit der Minerale, deren Assoziation an Oberflächen sowie vom pH des Mediums abhängt, ergibt sich für das Redoxpaar Fe(OH)₃/FeCO₃ im Sediment ein tatsächliches Redoxpotential von E' = 200 mV.
3.6 Eisennutzende Mikroorganismen im Sediment

Sediment als Lebensraum

Litoralsedimente sind hochkomplexe Lebensräume, die von vielen Organismen genutzt werden (Schwoerbel 1999), (Abbildung 3). Sie dienen Fischen als Laichbett oder Kinderstube, wurzelnden höheren Wasserpflanzen als Substrat und benthischen Invertebraten (Schnecken, Insektenlarven, Turbellarien, Milben, u.a.) als Nahrungsgrundlage.

![Abbildung 3: Mit Makrophyten bewachsenes Litoralsediment aus der Mainaubucht, Durchmesser des Sedimentkerns 8 cm.](image)

Eine zentrale Bedeutung (microbial loop) für den Stoffumsatz haben auf und im Sediment lebende Mikroorganismen. Darunter sind Primärproduzenten, wie Sauerstoff produzierende benthische Algen und oxygen phototrophe Bakterien, sowie anoxygen phototrophe Bakterien, die Schwefel oder oxidierte Eisenverbindungen produzieren.

Nutzung von Eisen im assimilatorischen Stoffwechsel

Eisen ist für prokaryontische und eukaryontische Organismen im Sediment ein essentliches Spurenelement. Es ist als Teil der funktionellen Gruppen von Proteinen wirksam, die am Elektronentransport (Ferredoxine, andere FeS-Proteine, Cytochrome), Sauerstofftransport (Haemoglobin, Myoglobin) und bei der Katalyse verschiedener Reaktionen mit Sauerstoff (Katalasen, Peroxidasen, Oxidasen, Oxygenasen) beteiligt sind (Voet and Voet 1992).

Da Eisen(III)oxide bei neutralem pH unlöslich sind, nehmen Pilze und Bakterien oxidierte Eisenverbindungen mittels spezifischer komplexierender organischer Verbindungen auf (Lengeler et al. 1999). Diese Siderophore besitzen eine hohe Affinität für dreiwertiges Eisen und solubilisieren dessen Oxide. Siderophore, die dreiwertiges Eisen chelatiert haben, werden über spezielle Transportsysteme in die Zelle aufgenommen. Dort wird das dreiwertige Eisen enzymatisch reduziert und das dabei gebildete zweiwertige Eisen freigesetzt, da die Affinität der Siderophore für zweiwertiges Eisen niedrig ist. Das einfachste Siderophor ist Citrat, das dreiwertiges Eisen über die drei Carboxylgruppen bindet.

Magnetotaktische Bakterien reduzieren dreiwertiges Eisen nach Aufnahme in die Zelle zu Magnetit (Fe₃O₄) oder Greigit (Fe₃S₄). Die Magnetitkristalle werden in

Nutzung von Eisen im dissimilatorischen Stoffwechsel

3.7 Zielsetzung

1. Wird die Oxidation von reduzierten Eisenverbindungen auch von im Bodensee-Sediment lebenden Bakterien im Energiestoffwechsel genutzt?

2. Welchen zahlenmäßigen Anteil stellen Bakterien mit der Stoffwechselfähigkeit zur Oxidation reduzierter Eisenverbindungen an der bakteriellen Lebensgemeinschaft im Sediment?

Um die Bedeutung der Oxidation reduzierter Eisenverbindungen im Bodensee-Sediment einschätzen zu können, sollte die Zahl der Eisen-oxidierenden Bakterien mittels MPN bestimmt werden.

3. Welche physiko-chemische Umwelt bietet sich den im Litoralsediment lebenden Bakterien?

Zur Charakterisierung des Litoralsediments sollten hochaufgelöste Tiefenprofile von Sauerstoff, Nitrat, reduzierter und oxidierter Eisenverbindungen, Phosphat und Sulfid aufgenommen, der pH und das Redoxpotential gemessen, sowie die Dichte und Porosität bestimmt werden.
4. Wie wirken sich die Lichtverhältnisse und mechanische Störungen auf die Verteilung von Sauerstoff sowie von reduzierten und oxidierten Eisenverbindungen im Sediment aus?

5. Wie wirken sich die Lichtverhältnisse und mechanische Störungen auf eine mögliche Freisetzung von Phosphat aus dem Sediment in die Wassersäule aus?

4 MATERIAL UND METHODEN

4.1 Kultivierungsmethoden

Nährmedien

Es wurden zwei verschiedene Mineralsalzlösungen (Typ A und Typ B, siehe Tabelle 1) verwendet, deren Zusammensetzung dem Süßwasser nachempfunden war (Straub and Buchholz-Cleven 1998; Widdel and Bak 1992).

Tabelle 1: Zusammensetzung der Mineralsalzlösungen, die als Grundlage für Süßwassermedium verwendet wurden.

<table>
<thead>
<tr>
<th>Substanz in g/l für</th>
<th>Typ A</th>
<th>Typ B</th>
</tr>
</thead>
<tbody>
<tr>
<td>NaCl</td>
<td>1,0</td>
<td>–</td>
</tr>
<tr>
<td>MgCl₂ 6H₂O</td>
<td>0,4</td>
<td>0,4</td>
</tr>
<tr>
<td>KH₂PO₄</td>
<td>0,2</td>
<td>0,6</td>
</tr>
<tr>
<td>NH₄Cl</td>
<td>0,25</td>
<td>0,3</td>
</tr>
<tr>
<td>KCl</td>
<td>0,5</td>
<td>–</td>
</tr>
<tr>
<td>CaCl₂ 2H₂O</td>
<td>0,15</td>
<td>0,1</td>
</tr>
<tr>
<td>Na₂SO₄</td>
<td>0,14</td>
<td>–</td>
</tr>
<tr>
<td>MgSO₄ 7H₂O</td>
<td>–</td>
<td>0,05</td>
</tr>
</tbody>
</table>

Zur Herstellung von Gradientenkulturen wurde ein 2,5-fach konzentriertes Medium von Typ A verwendet, zur Herstellung von Minimalmedium wurde die Konzentration an Ammonium und Sulfat in Medium Typ A auf je 0,1 mM verringert (0,005 g/l NH₄Cl bzw. 0,014 g/l Na₂SO₄). Alle phototrophen Kulturen wurden in Medium Typ B kultiviert. Die Mineralsalzlösung wurde in einem Mediumkolben autoklaviert und unter N₂/CO₂ (v/v 80/20) abgekühlt. Zur Herstellung der Pufferlösung wurde 2,5 g NaHCO₃ in 30 ml CO₂-gesättigtem destilliertem Wasser gelöst, in einer fest verschlossenen

Substrate

Anreicherung und Stammhaltung von Reinkulturen

Bakterien eines bestimmten Stoffwechseltyps wurden unter selektiven Bedingungen in anoxischem, sterilen Mineralmedium angereichert. Zur Stammhaltung wurde alle sechs bis acht Wochen frisches Medium mit den jeweiligen Substraten versetzt und mit jeweils 10%, 1% oder 0,1% der Vorgängerkultur angeimpft. Das Medium zur Anreicherung Nitrat-reduzierender, Eisen-oxidierender Bakterien enthielt 2 mM bzw. 3 mM Nitrat als Elektronenakzeptor und 10 mM bzw. 15 mM Eisen(II)sulfat als Elektronendonator. Teilweise wurde 0,5 mM bzw. 0,1 mM Acetat, 0,1 mM Thiosulfat und 0,1 mM Formiat ergänzt. 42 ml des jeweiligen Mediums wurde in 50 ml-Serumflaschen mit Profundal- oder Litoralsediment aus 0–5 mm, 5–10 mm, 10–15 mm und 15–20 mm Tiefe beimpft. Die Kulturen wurden bei 4°C, 16°C, 20°C oder 28°C in Dunkelheit inkubiert.

Das Medium zur Anreicherung bzw. Stammhaltung fototropher Eisen-oxidierender Bakterien enthielt 5 mM Eisen(II)sulfat und 5 mM Eisen(II)chlorid als Elektronendonator. Teilweise wurde 2 mM Acetat, 0,5 mM Thiosulfat, Wasserstoff
(H$_2$/CO$_2$–Gemisch v/v 80/20 oder 90/10) oder 2 mM Eisensulfid ergänzt. 52 ml des jeweiligen Mediens wurde in 100 ml-Meplatzflaschen mit Oberflächensediment aus dem Litoral beimpft. Die Kulturen wurden liegend bei 20°C oder 28°C im Licht (200 - 600 Lux, 6–12 µE m$^{-2}$ s$^{-1}$) inkubiert.

Verdünnungsreihen zur Isolierung von Bakterien

Substrattests

Tests zur Substratverwertung durch Reinkulturen phototropher Eisen-oxidierender Bakterien wurden in Medium mit verschiedenen Substraten durchgeführt. Das Wachstum der Bakterien wurde auf folgenden Substraten getestet: 2 mM Glucose, 5 mM Acetat, 2 mM Pyruvat, 4 mM Malat, 4 mM Succinat, 4 mM Lactat, 4 mM Formiat, 4 mM Thiosulfat und 2 mM Sulfid. Die Kulturen wurden bei 28°C im Licht oder in Dunkelheit inkubiert.

Reinheitskontrolle

Die Reinheit der Kulturen wurden mehrmals mikroskopisch bei 40- oder 100-facher Vergrößerung während vierwöchiger Inkubation in Medium mit 0,05% Hefeextrakt und Casaminosäuren, 5 mM Acetat, 2 mM Pyruvat oder 2 mM Glucose kontrolliert.
Agarbeschichtete Objektträger

Diese Methode wurde benutzt, um die Bakterien morphologisch zu beschreiben und zu fotografieren. Zur Herstellung agarbeschichteter Objektträger (Pfennig and Wagener 1986) wurde 2,5 g gewaschener Agar auf 100 ml aufgefüllt, autoklaviert und in Portionen zu je 2 ml auf entfettete Objektträger verteilt, so daß diese davon vollständig bedeckt waren. Sobald sich der Agar verfestigt hatte, wurden die Objektträger staubgeschützt bei Raumtemperatur getrocknet und anschließend bis zum weiteren Gebrauch in einem Präparatekasten aufbewahrt. Zum Mikroskopieren wurde ein Tropfen Bakteriensuspension auf die eingetrocknete Agarschicht gegeben und mit einem Deckglas bedeckt. Sobald der Agar anfing zu quellen, drückte er die Bakterien von unten gegen das Deckglas, wodurch diese unbeweglich wurden. Zur Mikroskopie und Photographie eignete sich nur die Schärfeebene, in der die Bakterien dunkel und kontrastreich erschienen, aber nicht mehr beweglich waren. Das war der Augenblick, in dem sie zwar schon festgelegt, aber noch nicht gequetscht waren.

DAPI-Färbung

0,5 ml der zu färbenden Bakteriensuspension wurde in 9,5 ml 0,2 µm-filtriertem Wasser verdünnt, 100 µl DAPI-Lösung (1 mg Diamidinophenylindol in 100 ml aq. dest., partikelfrei) zugegeben und durchmischt. Nach einer Färbezeit von zehn Minuten wurde die Probe auf einen mit Sudanschwarz gefärbten Filter (Nucleopore, 0,2 µm) abfiltriert und auf einen Tropfen fluoreszenzfreies Immersionsöl auf einem Objektträger aufgelegt. Darauf wurde erneut ein Tropfen des fluoreszenzfreien Immersionsöls gegeben und mit einem Deckglas bedeckt. Danach konnten die Bakterien mit UV-Licht im Phasenkontrast betrachtet werden.

MPN

Zur Abschätzung der Zahl Nitrat-reduzierender sowie mixotropher und lithotropher Nitrat-reduzierender Eisen-oxidierender Bakterien in Profundalsediment wurde deren Wachstum in parallelen Verdünnungsreihen verglichen. Um die Verdünnungsreihen zu beimpfen, wurde je 10 ml Sediment aus 0–0,5 mm, 1,5–2,5 mm, 6,5–7,5 mm oder 11,5–12,5 mm Tiefe des Sedimentkerns entnommen, sofort zehnfach in anoxischem Medium mit 1 mM Sulfat als Schwefelquelle verdünnt und unter N₂/CO₂ Atmosphäre nach Zugabe steriler Glaskugelchen auf dem Vortex-Mixer homogenisiert. Die nachfolgenden Zehnfach–Verdünnungsschritte wurden ebenfalls unter sterilen,
anoxischen Bedingungen mit Glaspipetten durchgeführt. Die Röhrchen wurden während 6–10 Wochen Inkubation in Dunkelheit bei 28°C regelmäßig auf Wachstum kontrolliert. Zur Zählung mixotropher und lithotropher Nitrat-reduzierender Eisen-oxidierender Bakterien wurden dem Medium 2,5 mM Nitrat als Elektronakzeptor und 10 mM Eisen(II)sulfat sowie teilweise 0,5 mM Acetat als Elektronendonatoren zugesetzt. Die Wachstum anzeigende Trübung in den jeweiligen Röhrchen wurde photometrisch bei 578 nm bestimmt und als positiv bewertet, wenn Nitrat verbraucht und Eisen(III) gebildet wurde. Aus dem Muster der je Verdünnungsstufe bewachsenen Röhrchen wurde die höchstwahrscheinliche Zahl (MPN) an Bakterien in der Sedimentprobe berechnet (Cochran 1950). Da die Standardabweichung für den \(\log_{10} \) der MPN Werte, die aus Reihen mit zehnfach Verdünnungsschritten erhalten wurden, 0,33 ist, muss eine statistisch signifikante Differenz (\(P = 0.95 \)) zwischen den \(\log_{10} \) zweier MPN-Werte größer als 0.93 sein (Alef 1991).
4.2 Sedimentanalytik

Probenahme

Abbildung 4: Sediment-Subkern, Fotografie (links) und Schemazeichnung (rechts).
Verarbeitung und Inkubation des Sediments

Aus einem Teil der Sedimentkerne wurden drei oder vier Subkerne (Länge 15 cm, Durchmesser 2,6 cm) gestochen (Abbildung 4), von unten verschlossen und vorsichtig mit Seewasser bedeckt. Vereinzelt vorhandene Schnecken und Muscheln wurden entfernt. Diese Subkerne wurden in Becken mit belüftetem Seewasser 15 cm unterhalb der Wasseroberfläche bei einer Raumtemperatur von 15 °C inkubiert (Abbildung 5). Das Sediment wurde in zwölfstündigem Rhythmus beleuchtet und abgedunkelt. Zur Beleuchtung wurden die Leuchtstoffröhren Biolux (L30W/72) und Fluora (L30W/77) sowie eine 200 W Halogenlampe (HALOLINE R7s) der Firma Osram verwendet und 85 cm über der Wasseroberfläche der Becken installiert. Die Lichtintensität direkt über der Wasseroberfläche betrug 1,5 kLux bzw. 25 µE m⁻² s⁻¹; Licht dieser Intensität wird im Folgenden als Normallicht bezeichnet. Die Subkerne wurden vor Beginn der Experimente 60 Stunden lang unter den geschilderten Bedingungen inkubiert. Während einiger Experimente wurden Subkerne im Licht einer Kaltlichtquelle (Schott, KL 1500-Z) von 15 kLux bzw. 250 µE m⁻² s⁻¹ Intensität inkubiert; Licht dieser Intensität wird im Folgenden als Starklicht bezeichnet. Die Messung der Lichtintensität erfolgte mit einem LI-COR Quantum/Radiometer/Photometer (Model LI-185B) und einem Quantum Sensor (LI-190SB Q6052) bzw. einem Photometrischen Sensor (LI-210SB PH3685).

Bestimmung von Dichte und Porosität

Porenwassergewinnung

Zur Porenwassergewinnung wurden in der anoxischen Kammer (Abbildung 6) aus 1-20 cm Tiefe etwa 3 ml Sediment in 2-cm-Schritten aus dem Sedimentkern entnommen, in gasdicht verschließbare Edelstahl-Zentrifugenröhrchen gefüllt und bei 10.000 rpm für 30 min zentrifugiert. Der Überstand wurde unter anoxischen Bedingungen abgenommen und weiterverarbeitet. Um die genaue Menge des jeweils in der Probe enthaltenen Porenwassers zu erhalten, wurde die Sedimentmasse über die jeweilige Porosität und Dichte in ein Porenwasservolumen umgerechnet.
Abbildung 6: Anoxische Kammer mit geöffneter Schleuse (rechts) und Halterung für Sedimentkern (Mitte unten).

Sedimentextraktion

Abbildung 7: Halterung für Sediment-Subkerne zur Abnahme von Sedimentschnitten mit 1 mm Höhe; Fotografie (links) und Schemazeichnung (rechts).

Proben aus Anreicherungskulturen und Sediment-Porenwasser wurden sofort nach der Entnahme 1:5 in 1 M Salzsäure verdünnt und für eine Stunde bei Raumtemperatur extrahiert. Der Extrakt wurde gut gemischt und für 15 min bei 14000 rpm zentrifugiert. Der Überstand wurde für die Eisenbestimmung genutzt, das Pellet verworfen. Der Gehalt an wasserlöslichem bzw. säurelöslichem anorganischem Phosphat (SRP) und Gesamt-Phosphat im Sediment wurde nach 10 Minuten wässriger Extraktion bzw. 16 Stunden saurer Extraktion von jeweils zwei 1-mm Sedimentschnitten, die bis 8 cm Tiefe des Sediments in jeweils 2 cm Abstand entnommen wurden, dreifach bestimmt (Psenner et al. 1984).
4.3 Mikroelektroden-Messungen

Messung von Sauerstoff, Sulfid, Nitrat und pH

Sauerstoff wurde mit Clark-Typ Sauerstoff-Mikrosensoren (Revsbech 1989) mit Spitzendurchmessern von 10–15 µm und einer 90%-Reaktionszeit von weniger als 1 s gemessen (Brune et al. 1995). Aus den ursprünglichen Daten (mV) wurde die Sauerstoffkonzentration durch Division durch den response (mV kPa⁻¹) der jeweiligen Mikroelektrode und Multiplikation mit dem Bunsenschen Absorptionskoeffizient (0.01473 mol l⁻¹ atm⁻¹ at 15°C) berechnet.

Die Schwefelwasserstoffkonzentration im Sediment wurde mit einer Schwefelwasserstoff-Elektrode (Kühl et al. 1998) gemessen. Der Meßaufbau war prinzipiell der gleiche wie bei den Sauerstoff-Mikroelektroden. Zur Eichung der Schwefelwasserstoff-Elektrode wurde die Schwefelwasserstoffkonzentration über sauren 0,5 mM, 1 mM und 1,5 mM Sulfidlösungen gemessen. Die ursprünglichen Daten (mV) wurden über die Geradengleichung der Eichungs-Trendlinie in Schwefelwasserstoffkonzentrationen umgerechnet. Der Gesamt-Sulfidgehalt in der jeweiligen Sedimenttiefe wurde über den dort gemessenen pH ermittelt.

die Geradengleichung der Eichungs-Trendlinie in Konzentrationen umgerechnet. Nitrat-LIX-Elektroden reagieren auf höhere Konzentrationen von CO₃²⁻ und Cl⁻.

Abbildung 8: pH-Mikroelektrode (rechts) mit Referenz-Elektrode (links) über einem Gefäß mit pH-Puffer zur Eichung.
Sauerstoff-Respiration- und Netto-Photosynthesemessung

Im Dunkeln entspricht der Sauerstofffluss in das Sediment hinein (als negativer Wert verrechnet) der gesamten Sauerstoffrespiration des untersuchten Sediments, während im Licht der Sauerstofffluss aus dem Sediment heraus (als positiver Wert verrechnet) ein Maß für die Netto-Sauerstoffproduktion (Netto-Photosynthese) darstellt. Aus dem Gradient des Sauerstofftiefenprofils in der diffusiven Grenzschicht zwischen Wasser und Sediment (Diffusionskoeffizient $1,8343 \times 10^{-5} \text{ cm}^2 \text{ s}^{-1}$) wurde nach dem Ersten Fickschen Gesetz die Flussrate von Sauerstoff (nmol cm$^{-2}$ h$^{-1}$) in oder aus dem Sediment berechnet. Aus der Sauerstoffflussrate wurde die entsprechende Elektronenflussrate durch Multiplikation mit der Anzahl der bei vollständiger Reduktion aufgenommenen Elektronen ($n = 4$) berechnet.

Brutto-Photosynthesemessung

Für die Messung der Brutto-Photosynthetiserate (Revsbech et al. 1981; Revsbech and Jørgensen 1983) wurde das Sediment unter gleichbleibenden Bedingungen im Licht inkubiert, bis sich die Sauerstoffkonzentration im Sediment nicht mehr änderte. Im sogenannten steady-state gleichen die photosynthetische Sauerstoffproduktion und die Diffusion in jede Sedimentschicht hinein die Verluste an Sauerstoff durch Respiration und Diffusion von der Schicht weg aus. Wird die Beleuchtung plötzlich beendet, so stoppt gleichzeitig die Sauerstoffproduktion durch Photosynthese; Diffusion und Respiration bleiben dagegen unverändert. Während weniger Sekunden nach Abschalten der Beleuchtung entspricht daher die Abnahme der Sauerstoffkonzentration der Rate der Sauerstoffbildung im Licht, d.h. der Brutto-Photosynthese.

Für die erste Messung wurde die Mikroelektrode an der Oberfläche des beleuchteten Sediments (0 mm Tiefe) positioniert und die Sauerstoffkonzentration an dieser Stelle gemessen. Sobald keine Konzentrationsänderung mehr stattfand, wurde die Beleuchtung ausgeschaltet und die folgende Abnahme der Sauerstoffkonzentration mit einem x-t-Schreiber aufgezeichnet. Anschließend wurde das Sediment für weitere 30 Minuten wieder beleuchtet und der Anstieg der Sauerstoffkonzentration bis zum erneuten Erreichen eines Gleichgewichtszustandes verfolgt. Für alle folgenden Messungen wurde der Mikrosensor jeweils 0,25 mm tiefer im Sediment positioniert und der beschriebene Beleuchtungszyklus wiederholt. Aus den Aufzeichnungen wurde die Änderung der Sauerstoffkonzentration über die Zeit in den Tiefen 0 mm bis 3,75 mm abgelesen und als Konzentrationskurven über die Zeit sowie als Konzentrationsprofile
über die Tiefe aufgetragen. Aus der Steigung der Kurve gemittelt über die ersten 30 s nach Abschalten der Beleuchtung wurde die jeweilige Brutto-Photosyntheserate der Tiefenstufe berechnet. Multipliziert mit dem spezifischen Volumen der jeweiligen Schicht wurde daraus die entsprechende Sauerstoffflussrate ermittelt.
4.4 Analytik

Eisenbestimmung

Nach der Extraktion wurden die Proben bei Bedarf mit 1 M Salzsäure soweit verdünnt bis die Eisenkonzentration zwischen 0,1 mM und 0,4 mM lag. Zur Bestimmung der Konzentration an gelösten reduzierten Eisenverbindungen wurde 50 µl der Probe mit 450 µl 1 M HCl verdünnt und 500 µl Ferrozinlösung (50% (w/v) Ammoniumacetat und 0,1% (w/v) Na2-3-(2-pyridyl)-5,6-bis(4-phenylsulfonsäure)-1,2,3-Triazin in aq.dest.) zugegeben. Zur Bestimmung des Gehalts an gelöstem Gesamt-Eisen wurde 50 µl der Probe zu 450 µl Reduktionslösung (10% (w/v) Hydroxylaminhydrochlorid in 1 M Salzsäure) gegeben, gemischt, eine Stunde bei Raumtemperatur inkubiert und 500 µl Ferrozinlösung hinzugefügt. In beiden Fällen führte die Reaktion der gelösten reduzierten Eisenverbindungen mit Ferrozin zur Lilafärbung der Testlösung, deren Extinktion photometrisch bei 562 nm bestimmt wurde (Stookey 1970). Die Eichung erfolgte durch Bestimmung von gelöstem Gesamt-Eisen in 0 mM bis 0,4 mM Ammoniumeisen(III)-citratlösung.

Phosphatbestimmung

Die Konzentration von Orthophosphat und Gesamt-Phosphat in Wasserproben wurde mit der Molybdänblaureaktion (Vogler 1965) nachgewiesen. Die ursprüngliche Methode (5 ml Reagenz auf 40 ml Probe) wurde verändert: kleinen Volumina (0,5 ml Reagenz auf 4 ml Probe), Minivolumina (100 µl Reagenz auf 800 µl Probe). Mit der ursprünglichen und den angepassten Methoden wurde jeweils der Phosphatgehalt derselben Stammlösungen bestimmt und Eichgeraden zwischen 0 und 250 µg PO4-P/l erstellt. Zur Herstellung der Stammlösung wurde KH2PO4 (p.a.) 24 Stunden bei 100°C getrocknet; 0,4393 g in aqua dest. gelöst und auf 1 l aufgefüllt. 1 ml dieser Stammlösung enthielt 100 µg PO4-P. Zur Bestimmung des Orthophosphatgehalts wurde die Extinktion der Probe 10 min nach Zugabe des Reagenztes in einer 1-cm-Küvette im Spektralphotometer bei 885 nm gemessen. Zur Bestimmung des Gesamt-Phosphates wurde die Probe nach Zugabe von 0,2 g K-Persulfat 40 min autoklaviert, verdünnt und nach Zugabe von Reagenz die Extinktion bestimmt. Für Verdünnungen und den photometrischen Nullabgleich wurde aqua dest. verwendet.
Nitrat- und Nitritbestimmung

Zum Nachweis und zur Quantifizierung von Nitrat und Nitrit wurden diese mittels HPLC-Anlage (Beckman) auf einer Anionenaustauschersäule (Sil Anion 125 x 4,6 mm; Grom, Fellbach) getrennt. Als Eluent wurde ein Gemisch aus 70% Methanol und 30% KCl (30 mM) bei einer Flußrate von 1,7 ml/min verwendet. Die Detektion erfolgte durch UV-Detektion bei 220 nm. Zur Auswertung und Integration wurde die System-Gold-Software von Beckman benutzt. Die Proben wurden vor der Injektion gereinigt. Dazu wurden Eisenverbindungen mit Kaliumphosphatpuffer gefällt und die Probe zentrifugiert (10 Minuten, 14000 rpm), so daß Zellen und Präzipitate entfernt wurden. Der Überstand wurde anschließend mit destilliertem Wasser 10fach verdünnt. Das Einspritzvolumen der Probe betrug 50 µl. Die Werte für die Eichkurve wurden im Bereich zwischen 500 µM und 10 µM gewählt. Bei einem Fluß von 1,7 ml pro Minute hatte Nitrit eine Retentionszeit von 6,1 min und Nitrat von 7,6 min.

In Wachstumsexperimenten wurde Nitrit teilweise semi-quantitativ mit Teststäbchen (Merck, Darmstadt, Deutschland) bestimmt.

Herkunft der Chemikalien und Gase

Die verwendeten Chemikalien der Reinheit p.a. wurden von den Firmen Fluka (Neu-Ulm), Sigma (Deisendorf), Boehringer (Mannheim), Aldrich (Steinheim) und Merck (Darmstadt) bezogen. Die verwendeten Gase wurden bei der Firma Messer Griesheim (Ludwigshafen) gekauft.
4.5 Experimenteller Aufbau

Einfluss der Lichtverhältnisse

Der Einfluss von Licht unterschiedlicher Intensität oder von Dunkelheit auf die Dynamik der Redoxprozesse im Litoralsediment wurde in Sediment-Subkernen untersucht, die in Seewasserbecken unter konstanten Bedingungen inkubiert wurden (siehe Abschnitt 4.2 und Abbildung 9). Nach 12 Stunden Inkubation in Licht unterschiedlicher Intensität oder in Dunkelheit wurden mit Mikroelektroden Sauerstoff-Tiefenprofile gemessen und daraus die Netto-Photosynthese bzw. die Respiration des Sediments berechnet; unmittelbar nach Beleuchtungssänderung wurde die Brutto-Photosyntheserate bestimmt (siehe Abschnitt 4.3). Der Gehalt an reduzierten Eisenverbindungen und an Gesamt-Eisen wurde nach Extraktion von 1-mm-Sedimentschichten in den obersten 20 Millimetern jedes Subkerns nach 12 Stunden Inkubation in Licht unterschiedlicher Intensität oder in Dunkelheit bestimmt.

Abbildung 9: Messaufbau im Klimaraum für Beleuchtungs- und Störungsexperimente.
Einfluss von Erosion, Resuspension und Sedimentation

Abbildung 10: Kleine und große Kammern mit 5 ml bzw. 50 ml Volumen, in denen die Sedimentoberfläche mit Seewasser unterschiedlicher Fließgeschwindigkeit überströmt werden kann.
Abbildung 11: Messaufbau im Klimaraum für Phosphat-Freisetzungsexperimente.
4.6 Datenauswertung

Statistische Vergleiche des Gehalts and reduzierten Eisenverbindungen zwischen unterschiedlich inkubiertem oder behandelterem Sediment wurden für die Tiefenstufen 1–3 mm, 4–9 mm und 10–20 mm sowie 1–5 mm, 6–15 mm und 16–20 mm durchgeführt. Das Volumen einer Sedimentscheibe von einem Millimeter Dicke betrug 0,53 ml. Das Volumen der gesamten betrachteten Tiefenstufe ergab sich durch Multiplikation mit deren tatsächlicher Dicke. Die gesamte Oberfläche der betrachteten Tiefenstufe wurde nach der Formel \(O_G = 2 \pi r (r + h) \) berechnet, die entsprechende Querschnittsfläche nach der Formel \(O_Q = \pi r^2 \). Oxidations- oder Reduktionsraten (nmol cm\(^{-3}\) h\(^{-1}\)) von Eisenverbindungen wurden aus der Änderung der Konzentration von reduzierten Eisenverbindungen in einer bestimmten Tiefe im Sediment über 24 h oder 48 h bestimmt; nach Multiplikation dieser Rate mit dem spezifischen Volumen \((V O_G/Q)^{-1}\) ergab sich die Elektronenflussrate (nmol cm\(^{-2}\) h\(^{-1}\)) über die gesamte Oberfläche der untersuchten Tiefenstufe, die für die Tabellenwerte verwendet wurde bzw. über die Querschnittsfläche, die für den prozentualen Vergleich mit der aus dem Sauerstofffluss resultierenden Elektronenflussrate verwendet wurde. Erfolgte eine Oxidation reduzierter Eisenverbindungen, so wurde sie sowie der resultierende Elektronenfluss aus der Schicht heraus negativ gerechnet, lag eine Reduktion oxidierter Eisenverbindungen vor, so wurde diese sowie der Elektronenfluss in die Schicht hinein positiv verrechnet.
5 ERGEBNISSE UND Diskussion

5.1 Anreicherung und Isolierung Eisen-oxidierender Nitrat-reduzierender Bakterien aus Bodensee-Sediment

Ergebnisse

Anreicherungskulturen

Mit Litoralsediment als Inokulum wurden Anreicherungskulturen beimpft, die außer reduzierten Eisenverbindungen teilweise 0,5 mM Acetat als Co-Substrat enthielten, sowie in unterschiedlichem Nährmedium und bei unterschiedlicher Temperatur in Dunkelheit inkubiert wurden. Bakterien in Anreicherungen, die bei 16°C inkubiert wurden, oxidierten innerhalb von 40 Tagen die gesamten zugesetzten reduzierten Eisenverbindungen. Anreicherungen die bei 4°C bzw. 30°C inkubiert wurden, hatten nach 60 Tagen 60% bzw. 80% der zugesetzten reduzierten Eisenverbindungen oxidiert (Abbildung 12).

Abbildung 12: Oxidation reduzlierter Eisenverbindungen in je zwei parallelen Anreicherungen Eisen-oxidierender Nitrat-reduzierender Bakterien aus Bodensee-Litoralsediment mit bzw. ohne Acetat als Co-Substrat bei 4°C, 16°C und 28°C.
Diese Unterschiede waren in den Folgekulturen nicht mehr zu beobachten; nach etwa 30 Tagen Kultivierung hatten alle Anreicherungen etwa 50% der zugesetzten reduzierten Eisenverbindungen oxidiert. Die Zugabe von Acetat hatte keinen Einfluss auf den Verlauf der Eisenoxidation.

Eine Anreicherungskultur Eisen-oxidierender Nitrat-reduzierender Bakterien aus Bodensee-Litoralsediment, die drei Jahre bei 4°C in Dunkelheit überdauert hatte, zeigte
bei anschließender lithoautotropher Kultivierung bei 20°C in Dunkelheit in bis jetzt acht Folgekulturen eine gleichbleibend starke Fähigkeit, reduzierte Eisenverbindungen zu oxidieren. Diese Kultur oxidierte die reduzierten Eisenverbindungen innerhalb von zwei Wochen. Im Präzipitat bildete sich dabei eine Schichtung aus, d.h. die Oxidation der reduzierten Eisenverbindungen erfolgte von der Grenzfläche zwischen Medium und Präzipitat aus und setzte sich nach unten hin fort (Abbildung 14).

Isolierung von Reinkulturen

In vielen Folgekulturen von Anreicherungsreihen Eisen-oxidierender Nitrat-reduzierender Bakterien aus Bodensee-Litoralsediment nahm die Fähigkeit,
Eisenverbindungen zu oxidieren erst zu, nach etwa vier bis fünf Übertragungen stark ab (Abbildung 13). In der siebten Folgekultur wurde weniger als 10% der zugesetzten reduzierten Eisenverbindungen oxidiert (Abbildung 15). Dieser Verlust der Fähigkeit, reduzierte Eisenverbindungen zu oxidieren, ließ sich auch nicht durch Zusatz geringer Konzentrationen (0,1 oder 0,5 mM) verschiedener organischer (Acetat, Formiat, Succinat, Fumarat) und anorganischer Substrate (Thiosulfat, FeS), einzeln oder in Kombination, durch Variation des Nährmediums, dessen pH, des eingesetzten Impfmaterials (Tiefe im Sediment) oder des Impfvolumens verhindern. Bei Kultivierung der Anreicherungskulturen in Agarose-Shakes trat entweder kein Wachstum auf oder die gebildeten Kolonien zeigten in Shake- oder Flüssig-Folgekulturen keine Eisenoxidation.

Abbildung 15: Anteil der oxidierten Eisenverbindungen in sieben Folgekulturen von vier Anreicherungsreihen Eisen-oxidierender Nitrat-reduzierender Bakterien aus Bodensee-Litoralsediment nach jeweils 60 Tagen Kultivierung bei 28°C.
Diskussion

Vergleich mit bekannten Kulturen Nitrat-reduzierender Eisen-oxidierender Bakterien

Nitrat-reduzierende Eisen-oxidierende Bakterien wurden in unterschiedlichen marinen und Süßwassersedimenten nachgewiesen, angereichert oder als Reinkulturen isoliert oder ihre Zellzahl bestimmt (Benz et al. 1998a; Hauck et al. 2001; Straub et al. 1996; Straub and Buchholz-Cleven 1998). Die meisten Anreicherungen sind nach der vierten Folgekultur auf ein zusätzliches Cosubstrat, 0,5 oder 1 mM Acetat oder Succinat, zur Oxidation reduzierter Eisenverbindungen angewiesen. Die Reinkultur BrG2, isoliert aus Süßwasser-Sediment, oxidierte 10 mM FeSO₄ unter lithotrophen Bedingungen innerhalb von drei Wochen nahezu vollständig, diese Zeit verkürzte sich durch Zugabe von 0,5 mM Fumarat auf eine Woche. Eine Anreicherungskultur aus Süßwasser-Sediment oxidierte unter lithotrophen Bedingungen 80% der zugesetzten reduzierten Eisenverbindungen innerhalb von zwei Wochen; aus dieser Anreicherungskultur konnte bis jetzt keine Reinkultur isoliert werden (K. L. Straub, persönliche Mitteilung).

Erklärungsversuch für den Verlust der Eisen-oxidierenden Fähigkeit mancher Anreicherungskulturen

5.2 Anreicherung und Isolierung phototropher Eisenoxidierender Bakterien aus Bodensee-Sediment

Ergebnisse

Anreicherungskulturen

Isolierung von Reinkulturen

Abbildung 17: Kolonien phototropher Eisen-oxidierender Bakterien in Agarose-Shakes. Durchmesser des Röhrchens 1,5 cm.

Abbildung 19: Oxidation reduzierter Eisenverbindungen durch zwei Reinkulturen (A 14 und B 13) phototropher Eisen-oxidierender Bakterien im Licht (schwarze Symbole); in beimpften Kulturen in Dunkelheit (weiße Symbole) und in unbeimpften Kontrollen (Linie). Mittelwerte und 95%-Vertrauensintervall aus drei Einzelmessungen.
Charakterisierung der Reinkulturen

Die Reinkulturen oxidierten innerhalb von 20 Tagen 60% bis 100% der zugesetzten reduzierten Eisenverbindungen nach einer lag-Phase von 8 bis 12 Tagen. Zwei Beispiele sind in Abbildung 19 gezeigt. In Dunkelheit inkubierte beimpfte Kulturen und unbeimpfte Kontrollen zeigten im Kultivierungszeitraum keine Eisenoxidation.

Abbildung 21: Oxidation reduzierter Eisenverbindungen durch phototrophe Eisen-oxidierende Bakterien im Licht. Ausbildung von Flocken in der Kultur nach 2 Tagen (links) und kolonieartige Bereiche verstärkter Eisenoxidation an der lichtzugewandten Glaswand nach 20 Tagen Kultivierung (Mitte), Detail (rechts, Markierung entspricht 3 mm).

<table>
<thead>
<tr>
<th>Verbindungen</th>
<th>AXVIIA</th>
<th>AXIXB</th>
<th>AXVIIIC</th>
<th>AXIXD</th>
<th>AXIXE</th>
<th>BXXIA</th>
<th>BXXIB</th>
<th>BXXIC</th>
<th>BXXID</th>
<th>BXXIE</th>
</tr>
</thead>
<tbody>
<tr>
<td>anorganisch (im Licht)</td>
<td></td>
</tr>
<tr>
<td>Sulfid</td>
<td>–</td>
<td>–</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Thiosulfat</td>
<td>+</td>
</tr>
<tr>
<td>Eisen</td>
<td>+</td>
</tr>
<tr>
<td>organisch (im Licht)</td>
<td></td>
</tr>
<tr>
<td>Formiat</td>
<td>–</td>
</tr>
<tr>
<td>Acetat</td>
<td>+</td>
</tr>
<tr>
<td>Pyruvat</td>
<td>–</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Laktat</td>
<td>+</td>
<td>–</td>
<td>+</td>
<td>+</td>
<td>–</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Succinat</td>
<td>+</td>
</tr>
<tr>
<td>Malat</td>
<td>+</td>
</tr>
<tr>
<td>Glucose</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Hefeextrakt</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Kasaminosäuren</td>
<td></td>
</tr>
<tr>
<td>organisch (in Dunkelheit)</td>
<td></td>
</tr>
<tr>
<td>Acetat</td>
<td>–</td>
</tr>
<tr>
<td>Pyruvat</td>
<td>–</td>
</tr>
<tr>
<td>Glucose</td>
<td>–</td>
</tr>
<tr>
<td>Hefeextrakt</td>
<td>–</td>
</tr>
<tr>
<td>Kasaminosäuren</td>
<td></td>
</tr>
</tbody>
</table>
Diskussion

Vergleich mit bekannten Kulturen phototropher Eisen-oxidierender Bakterien

Reinkulturen anaerob phototropher Eisen-oxidierender Bakterien wurden aus verschiedenen marinen und Süßwasser-Sedimenten isoliert (Ehrenreich and Widdel 1994; Heising and Schink 1998; Straub et al. 1999; Widdel et al. 1993). Die marinen Isolate *Rhodovulum iodosum* sp. nov. und *Rhodovulum robiginosum* sp. nov. benötigen 0,5 mM Thiosulfat als reduzierte Schwefelquelle, um 60% bis 80% der reduzierten Eisenverbindungen innerhalb von 15 Tagen nach einer lag-Phase von 8 Tagen zu oxidieren. Diese lag-Phase ist bei den in der vorliegenden Arbeit beschriebenen Reinkulturen phototropher Eisen-oxidierender Bakterien ebenfalls vorhanden, allerdings dauerte es etwa 20 Tage, bis 60 bis 100% der zugesetzten reduzierten Eisenverbindungen oxidiert wurden. Die Süßwasserisolate SW2 und L7 oxidieren reduzierte Eisenverbindungen ebenfalls zu beinahe 100%. Das Süßwasserisolat *Rhodomicrobium vannielii* Stamm BS-1 oxidierte innerhalb von acht Wochen unter lithotrophen Bedingungen 55% der zugesetzten reduzierten Eisenverbindungen; dieser Anteil erhöhte sich durch Zusatz von 0,5% Hefeextrakt auf 75%. Die marinen Isolate *Rhodovulum iodosum* sp. nov. und *Rhodovulum robiginosum* sp. nov. konnten Wasserstoff, Schwefel, Sulfid und Thiosulfat sowie eine Reihe organischer Substrate für photoautotrophes Wachstum nutzen. Die Süßwasserisolate SW2 und L7 können auch FeS als Elektronendonor nutzen. Morphologisch ähnelte ein Teil der in dieser Arbeit beschriebenen phototrophen Eisen-oxidierenden Bakterien sehr dem Süßwasserisolat *Rhodomicrobium vannielii* Stamm BS-1. Allerdings konnte ein Teil der beschriebenen Anreicherungen im Gegensatz zu *Rhodomicrobium vannielii* Stamm BS-1 auf Glucose wachsen. Auch waren die Zellen der beschriebenen Reinkulturen in Flüssigmedium nicht von Eisenoxiden umhüllt, oxidierten einen größeren Anteil der zugesetzten reduzierten Eisenverbindungen in einem Viertel der Kultivierungszeit und ließen sich unter lithotrophen Bedingungen problemlos kultivieren, sehr gut übertragen und reinigen.

Bedeutung phototropher Eisen-oxidierender Bakterien in Sedimenten

Da im Licht die oxische Sedimentschicht bis 5 mm Tiefe, die euphotische Zone allerdings nur bis in etwa 3 mm Tiefe reicht (vgl. Kapitel 5.5) scheint das Sediment trotz Vorhandensein reduzierter Eisenverbindungen kein geeignetes Habitat für
5.3 Zahl der Eisen-oxidierenden Bakterien im Profundalsediment

Ergebnisse

MPN-Zählung

Die Anzahl denitrifizierender Bakterien war in den oberen Sedimentschichten von 0 bis 2,5 cm Tiefe signifikant höher (1,5 \(\times 10^8 \) Zellen (ml Sediment)\(^{-1} \)) als in dem darunter liegenden Sediment (6,5 \(\times 10^6 \) Zellen (ml Sediment)\(^{-1} \)). In keiner Verdünnungsreihe wurde Ammonium als Endprodukt der Nitrat-Reduktion nachgewiesen. Die MPN-Zahl der mixotrophen und lithotrophen Eisen-oxidierenden Bakterien unterschied sich nicht signifikant und änderte sich nicht über die Tiefe im Sediment, sie lag bei 5,3 \(\times 10^4 \) Zellen (ml Sediment)\(^{-1} \) (Abbildung 23 und Tabelle 3).

Abbildung 23: Tiefenverteilung denitrifizierender Acetat-oxidierender (■), mixotropher Eisen-oxidierender (○) und lithotropher Eisen-oxidierender (●) Bakterien (MPN-Zählung).

<table>
<thead>
<tr>
<th>Tiefe (cm)</th>
<th>Denitrifizierende Bakterien (10^5 Zellen ml$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mit Acetat</td>
</tr>
<tr>
<td>0 – 0,5</td>
<td>2100*</td>
</tr>
<tr>
<td>1,5 – 2,5</td>
<td>900*</td>
</tr>
<tr>
<td>6,5 – 7,5</td>
<td>40§</td>
</tr>
<tr>
<td>11,5 – 12,5</td>
<td>90§</td>
</tr>
</tbody>
</table>

Diskussion

Vergleich der Zahl Eisen-oxidierender Bakterien in Sedimenten

Bedeutung Eisen-oxidierender Bakterien für den Eisenkreislauf

5.4 Charakterisierung des Bodensee-Sediments

Ergebnisse

Temperatur und Lichtverhältnisse in der Wassersäule

In der Wassersäule über dem Litoralsediment in der Mainaubucht im Überlinger See wurden im Sommer 2001 Tiefenprofile der Temperatur und der Lichtstärke gemessen (Abbildung 24). Bis direkt über dem Sediment in 2 m Wassertiefe wurden in diesem Sommer hohe Temperaturen von 22°C und hohe Lichtintensitäten von bis zu 1,5 kLux gemessen. Abhängig von der Stärke der Sonneneinstrahlung lag die Lichtstärke an der Wasseroberfläche zwischen 0,1 kLux und 3 kLux und änderte sich entsprechend über die Tiefe der Wassersäule (Abbildung 25).

Abbildung 24: Tiefenprofile der Temperatur und der Lichtstärke in der 2 m tiefen Wassersäule der Mainaubucht bei Sonnenschein.
Farbe und Sedimentbeschaffenheit
Die Oberfläche des während des Sommers und Frühherbstes dem See entnommenen Litoralsediments war hellbraun, leicht uneben und wies keinen makroskopisch sichtbaren Bewuchs auf. Die oberste beigefarbene Schicht reichte bis in 0,5 bis 1 cm Tiefe; darunter hatte das Sediment in 2 bis 5 cm Tiefe eine schwarzbraune Farbe, die sich mit zunehmender Tiefe zu dunkelgrau, dann zu hellgrau veränderte. Im Winter und Frühjahr gestochenes Sediment war unterhalb der hellen Oberfläche von gleichmäßig hellgrauer Färbung. In einigen Kernen zeigten sich verstärkt Gaseinschlüsse. Das Litoralsediment der Mainaubucht ist sehr sandig und fest; nur ein dünner Belag auf der Oberfläche ist aus weichem, organischem Material. Das Profundalsediment ist weicher und bis in 5 bis 10 cm Tiefe aus lockerem, organischem Material. Diese Schicht ist eher bräunlich gefärbt; darunter liegendes Sediment ist dunkelgrau, ab etwa 20 cm Tiefe hellgrau gefärbt.

Dichte und Porosität
Von Litoralsediment (Abbildung 26) und Profundalsediment (Abbildung 27) wurde die Dichte und Porosität bestimmt. In beiden Sedimenten (in Litoralsediment unterhalb 2 mm Tiefe) nimmt die Dichte mit der Tiefe zu und die Porosität ab. Das
Litoralsediment ist mit etwa 1,4 g/ml dichter und seine Porosität ist mit etwa 40% geringer als die Dichte (1,02 g/ml) und Porosität (70%) der entsprechenden Tiefe im Profundalsediment.

Abbildung 26: Tiefenprofile der Dichte (g/ml) und Porosität (%) der obersten 20 mm des Litoralsediments (n = 3).

Abbildung 27: Tiefenprofile der Dichte (g/ml) und Porosität (%) der obersten 20 cm des Profundalsediments.
Tiefenprofile des pH und Redoxpotentials

Der pH des Porenwassers im Litoralsediment änderte sich abhängig von den Lichtverhältnissen (Abbildung 28). In 0 bis 1 mm Tiefe des Sediments verschob sich der pH im Licht zu alkalischeren Werten bis 8,5. Ab etwa 5 mm Tiefe hatte der pH des Porenwassers sowohl im Licht als auch in Dunkelheit einen Wert von etwa 7,8. Der pH des Profundalsediments (Abbildung 29) änderte sich über die Tiefe nicht so stark. Auch hier war die Oberflächenzone bis 7 cm Tiefe mit einem pH bis 8,0 etwas alkalischer als das darunter liegende Sediment mit einem pH um 7,7. Das im Porenwasser des Profundalsediments zu messende Redoxpotential wurde mit zunehmender Tiefe im Sediment negativer; es verschob sich von etwa 50 mV zu -250 mV.

Abbildung 28: Tiefenprofile (n=2) des pH im Porenwasser von Litoralsediment, das im Licht oder in Dunkelheit inkubiert wurde.
Abbildung 29: Tiefenprofile des pH und apparenten Redoxpotential im Porenwasser des Profundalsediments.

Tiefenprofile von Sauerstoff

In Profundalsediment oder in Litoralsediment, das im Licht oder in Dunkelheit inkubiert worden war, wurden Sauerstoff-Tiefenprofile gemessen (Abbildung 30). Nach zwölfstündiger Inkubation in Dunkelheit (n = 17) lag die Eindringtiefe von Sauerstoff in 2.9 ± 0.4 mm Tiefe, nach zwölfstündiger Inkubation im Licht (n = 21) in 4.6 ± 0.4 mm Tiefe. In Dunkelheit wurde ein diffusiver Netto-Sauerstofffluss von 108 ± 20 nmol cm$^{-2}$ h$^{-1}$ in das Sediment hinein gemessen; im Licht hingegen diffundierte Sauerstoff mit einer Flussrate von 152 ± 35 nmol cm$^{-2}$ h$^{-1}$ aus dem Sediment in das überstehende Wasser. Sauerstoff dringt zwar mit 3,2 mm in Profundalsediment nicht tiefer ein als in Litoralsediment, allerdings wird er mit einer viel geringeren Rate (0,03 nmol cm$^{-2}$ h$^{-1}$) ins Sediment aufgenommen.
Abbildung 30: Sauerstoff-Tiefenprofile (µM) in Litoralsediment nach zwölfstündiger Inkubation in Dunkelheit (●) bzw. im Licht (○), Mittelwerte (n = 6) und 95%-Vertrauensintervall und Sauerstoff-Tiefenprofil (µM) in Profundalsediment. Die Sedimentoberfläche ist durch eine gestrichelte Linie angedeutet.

Tiefenprofile von Nitrat und Schwefelwasserstoff

In im Licht oder in Dunkelheit inkubierten Kernen aus Litoralsediment wurden Nitrat- und Schwefelwasserstoff-Tiefenprofile gemessen (Abbildung 31). In beiden Fällen zeigt sich im Licht gegenüber Dunkelheit eine Verschiebung des Profils in die Tiefe des Sediments hinein. In Dunkelheit wird Nitrat bis in 2 mm Tiefe vollständig verbraucht, bei Beleuchtung erst bis in 4 mm Tiefe. In Dunkelheit akkumuliert Sulfid ab 5 mm Tiefe zu Konzentrationen um 80 µM, im Licht erst unterhalb 6 mm Tiefe zu Konzentrationen um 40 µM. Im Porenwasser von Profundalsediment (Abbildung 32) wurden bis in 20 cm Tiefe Nitratkonzentrationen bis 20 µM und Schwefelwasserstoffkonzentrationen bis über 2 mM gemessen.
Abbildung 31: Tiefenprofile der Nitratkonzentration (μM) und der Schwefelwasserstoffkonzentration (μM) in Litoralsediment nach Inkubation in Dunkelheit (●) bzw. im Licht (○).

Abbildung 32: Tiefenprofile der Nitratkonzentration (μM) und der Schwefelwasserstoffkonzentration (μM) im Porenwasser von Profundalsediment.
Tiefenprofile von Phosphat

Die Daten wurden von Katja Boos, LS Schink, im Rahmen ihrer Staatsexamensarbeit unter meiner Betreuung erhoben und werden hier der Vollständigkeit wegen mit aufgeführt. Die Konzentration von Phosphat im Seewasser liegt um 3 µg/l im Sommer und etwas höher im Winter. Durch wässrige Extraktion von Sediment bis 8 cm Tiefe wird im Mittel 14 mg l⁻¹ Orthophosphat und 79 mg l⁻¹ Gesamtphosphat aus dem Sediment gelöst, durch saure Extraktion dagegen 398 mg l⁻¹ und 4042 mg l⁻¹ (Abbildung 33).

Porenwasser des Profundalsediments bis in 8 cm Tiefe enthielt im Mittel 28 µg/l Phosphat (Abbildung 34).

Abbildung 33: Tiefenprofile der Orthophosphatkonzentration (mg l⁻¹) (▲) und der Gesamtphosphatkonzentration (mg l⁻¹) (▼) nach wässriger bzw. saurer Extraktion von Litoralsediment. Mittelwerte und Standardabweichung aus drei Einzelmessungen.
Abbildung 34: Tiefenprofil der Orthophosphatkonzentration (µg l⁻¹) im Porenwasser von Profundalsediment.

Tiefenprofile von Eisenverbindungen

Die Konzentration von oxidierten Eisenverbindungen, reduzierten Eisenverbindungen und Gesamt-Eisen wurde in Kernen aus Litoralsediment (Abbildung 35) bestimmt. Im Porenwasser des Litoralsediments wurden in den obersten 20 cm im Mittel (n = 11) 0,05 ± 0,02 mM oxidierte Eisenverbindungen, 0,20 ± 0,07 mM reduzierte Eisenverbindungen und 0,25 ± 0,08 mM Gesamt-Eisen gemessen. Der Anteil von 22% oxidierten Eisenverbindungen am Gesamt-Eisen im Porenwasser änderte sich nur geringfügig über die Tiefe des Sediments. Der nach saurer Extraktion der obersten 20 mm dicken Litoralsedimentschicht nachweisbare durchschnittliche Gehalt (n = 11) lag bei 3,8 ± 1,1 mM oxidierten Eisenverbindungen, 10,2 ± 0,7 mM reduzierten Eisenverbindungen und 14,1 ± 1,4 mM Gesamt-Eisen. Der Anteil von reduzierten Eisenverbindungen am Gesamt-Eisen nach saurer Extraktion stieg mit zunehmender Sedimenttiefe von im Mittel 52% an der Sedimentoberfläche auf 84% in 20 mm Tiefe an.
Abb. 35: Tiefenprofile der Konzentration (mM) von oxidierten Eisenverbindungen (■), reduzierten Eisenverbindungen (□) und Gesamt-Eisen (▬), Mittelwerte (n = 11) und 95%-Vertrauensintervall im Porenwasser bzw. nach saurer Extraktion des Litoralsediments.

Die jahreszeitliche Änderung der Konzentration von reduzierten und oxidierten Eisenverbindungen in Litoralsediment wurde in 14 Subkernen untersucht, die im Dezember 2001, Mai 2002 und August/September 2002 dem See entnommen worden waren. Die Festphase des Sediments enthielt im Mittel (n = 14) 9.9 ± 1.1 mM reduzierte Eisenverbindungen, 3.8 ± 1.2 mM oxidierte Eisenverbindungen und 13.7 ± 1.4 mM Gesamt-Eisen. Der relative Anteil von reduzierten Eisenverbindungen am Gesamt-Eisen erhöhte sich in allen Subkernen über die Tiefe im Sediment (Abb. 36), und veränderte sich über den Untersuchungszeitraum mit im Mittel 93% im Dezember, 63% im Mai und 84% im August/September. Diese jahreszeitlichen Unterschiede waren mit 87, 48 und 72% in den obersten 3 mm des Sediments noch stärker ausgeprägt. Der Gehalt von reduzierten Eisenverbindungen war im Dezember in Sediment von 11 bis 20 mm Tiefe 3% höher als in 1 bis 10 mm Tiefe, im Mai 19% und im September 12%.

Die räumlichen Unterschiede in der Konzentration von reduzierten und oxidierten Eisenverbindungen wurden in Litoralsediment, das zur selben Zeit, aber an unterschiedlichen Stellen innerhalb von 20 m Umkreis dem See entnommen worden war, untersucht. Der Anteil von reduzierten Eisenverbindungen am Gesamt-Eisen in diesen Sedimentkernen war nicht signifikant unterschiedlich.
Die durch die Inkubation bedingten Veränderungen in der Konzentration von reduzierten und oxidierten Eisenverbindungen wurden in Litoralsedimentkernen, die unterschiedlich lange im Labor inkubierte worden waren, untersucht. In Sedimentsubkernen wurde der Eisengehalt unmittelbar nach der Entnahme des Sediments aus dem See untersucht, in parallelen Subkernen aus denselben Sedimentkernen nach 7 Tagen (erstes Kontrollexperiment, n = 2), 14 Tagen (zweites Kontrollexperiment, n = 8) bzw. 27 Tagen (drittes Kontrollexperiment, n = 4) Inkubation. Der Gehalt von reduzierten Eisenverbindungen am Gesamt-Eisen war in Sediment, das 0 und 7, 14 bzw. 27 Tage inkubierte worden war, nicht signifikant unterschiedlich. Allerdings erhöhte sich das 95%-Vertrauensintervall von ±5% und ±4% im ersten bzw. zweiten Kontrollexperiment auf ±14% im dritten Kontrollexperiment. Im zweiten Kontrollexperiment wurde die Konzentration von reduzierten und oxidierten Eisenverbindungen zusätzlich in weiteren Sedimentsubkernen aus einem anderen Sedimentkern nach 0 und 14 Tagen Inkubation untersucht.

Der Gehalt von reduzierten Eisenverbindungen am Gesamt-Eisen in Sediment aus unterschiedlichen Sedimentkernen war weder vor noch nach der Inkubation im Labor signifikant unterschiedlich.

Die Konzentration von oxidierten Eisenverbindungen, reduzierten Eisenverbindungen und Gesamt-Eisen wurde in Kernen aus Profundalsediment (Abbildung 37) bestimmt. Im Porenwasser des Profundalsediments wurden in den obersten 20 cm im Mittel \((n = 2)\) 0,38 ± 0,03 mM oxidierte Eisenverbindungen, 0,18 ± 0,01 mM reduzierte Eisenverbindungen und 0,56 ± 0,03 mM Gesamt-Eisen gemessen. Der Anteil von 34% reduzierten Eisenverbindungen am Gesamt-Eisen im Porenwasser änderte sich nur geringfügig über die Tiefe des Sediments. Nach saurer Extraktion wurden in den obersten 20 mm des Profundalsediments im Mittel \((n = 6)\) 23,0 ± 0,7 mM oxidierte Eisenverbindungen, 13,7 ± 0,4 mM reduzierte Eisenverbindungen und 36,7 ± 0,6 mM Gesamt-Eisen nachgewiesen. Der Anteil von reduzierten Eisenverbindungen am Gesamt-Eisen nach saurer Extraktion stieg mit zunehmender Sedimenttiefe von im Mittel 7% an der Sedimentoberfläche auf 49% in 20 mm Tiefe an.

Abbildung 37: Tiefenprofile der Konzentration (mM) von oxidierten Eisenverbindungen (■), reduzierten Eisenverbindungen (□) und Gesamt-Eisen (—), Mittelwerte und 95%-Vertrauensintervall im Porenwasser \((n = 2)\) bzw. nach saurer Extraktion \((n = 6)\) des Profundalsediments.
Diskussion

Vergleich von Litoral- und Profundalsediment

Jahreszeitliche Änderung des Redoxzustandes von Eisenverbindungen in Litoralsediment

5.5 Einfluss der Lichtverhältnisse auf das Litoralsediment

Ergebnisse

Veränderung des Redoxzustands von Eisenverbindungen im Sediment unter Lichteinfluss

In Litoralsediment, das zwölf Stunden lang in Dunkelheit bzw. unter Licht geringer oder hoher Intensität inkubiert worden war, wurden im Mittel 1,3 ± 0,2 mM oxidierte Eisenverbindungen, 9,2 ± 0,3 mM reduzierte Eisenverbindungen und 10,5 ± 0,2 mM gesamtes extrahierbares Eisen bestimmt (Abbildung 38).

Abbildung 38: Tiefenprofile der Konzentration (mM) von oxidierten Eisenverbindungen (●), reduzierten Eisenverbindungen (□) und Gesamt-Eisen (—) in Litoralsediment. Die Mittelwerte und die 95%-Vertrauensintervalle wurden aus zwei Experimenten mit jeweils drei Einzelmessungen berechnet. Die Messung erfolgte nach zwölf Stunden Inkubation in Dunkelheit (A) bzw. zwölf Stunden Beleuchtung mit Licht von 1,5 kLux bzw. 25 µE m⁻² s⁻¹ (B) oder 15 kLux bzw. 250 µE m⁻² s⁻¹ (C) Intensität.

Mit zunehmender Lichtintensität nahm der Anteil von reduzierten Eisenverbindungen in der Sedimentoberfläche von 1 mm bis 8 mm Tiefe ab (Abbildung 39). Nach zwölfstündiger Inkubation von Litoralsediment in Dunkelheit lag der Anteil an reduzierten Eisenverbindungen bei 85,3%, nach entsprechender Inkubation in Licht
geringer Intensität bei 81,8%. Die Verminderung um 3,5% bzw. 0,366 mM entspricht einer Eisenoxidations- bzw. Elektronenfreisetzungsrate von 244 nmol·cm⁻³·h⁻¹ und einer Elektronenflussrate von 61 nmol·cm⁻²·h⁻¹. Nach zwölfstündiger Inkubation in Licht hoher Intensität war der Gehalt an reduzierten Eisenverbindungen um 10,4% bzw. 1,098 mM auf 74,9% vermindert; diese Änderung entspricht einer Eisenoxidations-bzw. Elektronenfreisetzungsrate von 732 nmol·cm⁻³·h⁻¹ und einer Elektronenflussrate von 181 nmol·cm⁻²·h⁻¹. Der Anteil von reduzierten Eisenverbindungen in Sediment, das in Licht hoher Intensität inkubierte war, war gegenüber Eisen in Sediment, das unter Licht geringer Intensität inkubierte worden war, um 7,0% bzw. 0,732 mM verringert; diese Änderung entspricht einer Eisenoxidations- bzw. Elektronenfreisetzungsrate von 488 nmol·cm⁻³·h⁻¹ und einer Elektronenflussrate von 121 nmol·cm⁻²·h⁻¹.

Abbildung 39: Tiefenprofile des prozentualen Anteils von reduziertem Eisen am Gesamt-Eisen in Litoralsediment, berechnet aus Konzentrationsmessungen nach zwölf Stunden Inkubation in Dunkelheit (●) bzw. zwölf Stunden Beleuchtung mit Licht geringer (●) oder starker (○) Intensität.
Mit höherer Lichtintensität ist die Abnahme des Anteils an reduzierten Eisenverbindungen bis in größere Tiefe hinein statistisch signifikant; bei einer Änderung der Lichtverhältnisse von Dunkelheit zu Licht geringer Intensität bis vier Millimeter Tiefe, von Licht geringer Intensität zu Licht hoher Intensität bis sechs Millimeter Tiefe und von Dunkelheit zu Licht hoher Intensität bis acht Millimeter Tiefe. Nach Inkubation in Dunkelheit ist in der Sedimentoberfläche von ein bis acht Millimeter Tiefe siebenmal mehr biologisch verfügbares reduzierte als oxidierte Eisenverbindungen vorhanden, nach Inkubation in Licht geringer Intensität ist es fünfmal, nach Inkubation in Licht hoher Intensität noch dreimal mehr.

In Sediment von 1–8 mm Tiefe wurde bei Beleuchtung mit Licht geringer Intensität 55% der gesamten Eisenverbindungen in der oxischen Sedimentschicht bis 4 mm Tiefe oxidiert, bei Beleuchtung mit Licht hoher Intensität 82% bis in 6 mm Tiefe. Die entsprechenden Elektronenfreisetzungsarten durch Eisenoxidation mit Sauerstoff betrugen 54 nmol cm⁻² h⁻¹ bzw. 358 nmol cm⁻² h⁻¹ und lieferten 10% bzw. 68% der ungefähr 500 nmol cm⁻² h⁻¹ Elektronen, die bei vollständiger Reduktion des im Sediment bei Beleuchtung mit Licht geringer Intensität verbleibenden Sauerstoffs aufgenommen wurden. 45% bzw. 18% der jeweils gesamten Eisenverbindungen wurde im anoxischen Sediment unterhalb von 4 mm bzw. 6 mm Tiefe oxidiert.

Veränderung des Sauerstoffgehalts im Sediment unter Lichteinfluss

Mit höherer Intensität der Beleuchtung nahmen die Konzentration von Sauerstoff und die Eindringtiefe von Sauerstoff ins Sediment zu (Abbildung 40A). Die Durchschnittswerte mit 95%-Vertrauensintervall stammen von Messungen in zu verschiedenen Jahreszeiten gesammeltem Sediment.

Nach zwölfstündiger Inkubation in Dunkelheit befand sich die oxisch-anoxische Grenzfläche in 3,4 ± 0,2 mm Tiefe (n = 5), bei Beleuchtung mit Licht geringer Intensität in 4,0 ± 0,2 mm Tiefe (n = 7), bei Beleuchtung mit Licht starker Intensität in 5,9 ± 1,6 mm Tiefe (n = 2). In Dunkelheit wurde 47 ± 30 nmol cm⁻² h⁻¹ Sauerstoff ins Sediment aufgenommen; bei Beleuchtung mit Licht geringer Intensität diffundierte 30 ± 26 nmol cm⁻² h⁻¹, bei Beleuchtung mit Licht starker Intensität 157 ± 69 nmol cm⁻² h⁻¹ Sauerstoff aus dem Sediment heraus. Die höchste Sauerstoffkonzentration in mit Licht geringer Intensität beleuchtetem Sediment war 317 µM in 0,25 mm Tiefe, in mit Licht starker Intensität beleuchtetem Sediment 530 µM in 0,75 mm Tiefe.
Abbildung 40: (A) Tiefenprofile der Sauerstoffkonzentration (µM) in Litoralsediment im Fließgleichgewicht nach zwölf Stunden Inkubation in Dunkelheit (X, n = 5), bei Licht geringer Intensität (+, n = 3) oder bei Licht hoher Intensität (*, n = 2); Durchschnittswerte und 95%-Vertrauensintervall. (B) Brutto-Photosyntheseraten (µmol·cm^{-3}·h^{-1}, Balken). Die Sedimentoberfläche ist als gestrichelte Linie angedeutet.

Die zeitliche Änderung der Sauerstoffkonzentration in bestimmten Tiefen im Sediment wurde bei Wechsel von Licht geringer Intensität zu Dunkelheit bzw. von Dunkelheit zu Licht geringer Intensität gemessen und über die Zeit (Abbildung 41) bzw. über die Tiefe (Abbildung 42) aufgetragen. Die Sauerstoffkonzentration änderte sich an der Sedimentoberfläche nur geringfügig, sie schwankte zwischen 305 µM und 265 µM. Bis in 1,25 Millimeter Tiefe nahm die Änderung der Sauerstoffkonzentration beim Wechsel zwischen Licht und Dunkelheit bis auf 260 µM zu, darunter wieder ab. In 0,25 bis 2 mm Tiefe kam es im Licht zu Sauerstoffübersättigung, in einem Millimeter Tiefe wurde mit 455 µM die höchste Sauerstoffkonzentration erreicht. Die Änderung der Sauerstoffkonzentration war in den ersten fünf Minuten nach Beleuchtungsänderung am stärksten, danach verlangsamte sie sich. Bis in 3,25 Millimeter Tiefe war nach Abdunkelung ein sofortiger Abfall der Sauerstoffkonzentration messbar und eine Brutto-Photosyntheserate zu berechnen (Abbildung 40B). Die Brutto-Photosynthese war in 1,25 mm Tiefe mit 3 µmol·cm^{-3}·h^{-1} am höchsten, im Mittel bis 3,25 mm Tiefe betrug sie 0,9 µmol·cm^{-3}·h^{-1}. Die aus der Brutto-Photosyntheserate und dem spezifischen Volumen berechnete Sauerstoffflussrate aus dem Sediment heraus betrug
161 nmol·cm$^{-2}$·h$^{-1}$. 21 Minuten nach dem Wechsel von Beleuchtung zu Dunkelheit änderte sich die Sauerstoffkonzentration an der Oberfläche des Sediments nicht mehr, im umgekehrten Fall dauerte es 26 Minuten, bis ein neuer Gleichgewichtszustand erreicht war. Mit zunehmender Tiefe dauerte es in beiden Fällen des Beleuchtungswechsels länger, bis die Sauerstoffkonzentration konstant blieb.

Abbildung 41: Veränderung der Sauerstoffkonzentration (µM) in bestimmten Tiefen im Litoralsediment über die Zeit nach Abdunkelung (1 bis 30 Minuten) und anschließender Beleuchtung (31 bis 60 Minuten). Die Zahlen an den Kurven geben die Messtiefe im Sediment an (0 mm bis 3,75 mm).
Abbildung 42: Tiefenprofile der Sauerstoffkonzentration (µM) –○– im Litoralsediment; gemessen unmittelbar bzw. 1, 2, 3, 4, 5, 10, 15, 20, 25 und 30 min nach Beleuchtungswechsel von Licht zu Dunkelheit (A, von rechts nach links) bzw. von Dunkelheit zu Licht (B, von links nach rechts) bis zum jeweiligen Fließgleichgewicht nach zwölf Stunden in Dunkelheit –✗– bzw. im Licht –¶–.

Diskussion

Diurnaler Redoxzyklus von Eisen und dynamische Änderungen der Sauerstoffkonzentration

Ökologische Folgen der durch Licht verursachten Veränderungen

Dabei müssten die anoxygen phototrophen Bakterien mit aeroben Eisen-oxidierenden Bakterien um reduzierte Eisenverbindungen konkurrieren. Über den erfolgreicher Konkurrenten lässt sich keine Aussage machen, allerdings würde ein Unterliegen der phototrophen Eisen-oxidierenden Bakterien erklären, warum von diesen nur sehr geringe Zellzahlen (<10 pro ml) im Sediment gefunden werden (S. Heising, persönliche Mitteilung).

Diskussion der Mikroelektrodenmessungen und Brutto-Photosynthesebestimmung

Der Zeitraum, in dem die Abnahmerate der Sauerstoffkonzentration konstant ist, sich also weder die Diffusionsgradienten noch die Respiration ändert, ist je nach Sedimenttyp und Messposition unterschiedlich. Schnelle Änderungen der Diffusion sind bei Messungen im Bereich sehr steiler Sauerstoffgradienten zu erwarten, zum Beispiel in der Nähe von Übergangs zonen des Sediments zu Freiwasser oder zu Gasblasen. Die Änderung der Sauerstoffkonzentration in einer bestimmten Tiefenzone im Sediment wird auch durch Diffusion von Sauerstoff aus den darüber bzw. darunter liegenden Schichten beeinflusst. Die Geschwindigkeit der Diffusion ist abhängig vom sedimentspezifischen Diffusionskoeffizienten: Je kleiner dieser ist, desto langsamer diffundiert Sauerstoff pro Zeiteinheit über eine bestimmte Strecke, desto länger kann das Zeitintervall direkt nach Abdunkelung gewählt werden, über das die Abnahmerate bestimmt wird, und desto kleiner kann das Tiefenintervall gewählt werden, in dem die Brutto-Photosynthese rate bestimmt wird (Revsbech and Jørgensen 1983). Da die Steigung der Sauerstoffabnahmerate nach Abdunkelung gemittelt über eine Minute aus der Schreiberaufzeichnung abgelesen wurde, konnten geringfügige Abweichungen von der Linearität innerhalb der ersten Sekunden nach Abdunkelung nicht erkannt werden. Es ist daher möglich, dass eindiffundierender Sauerstoff aus den darüber bzw. darunter liegenden Schichten das Ergebnis beeinflusst hat und aufgrund der bestimmten Werte die tatsächliche Brutto-Photosynthese unterschätzt wird. Der maximale Brutto-Photosynthesewert für eine dicht mit photosynthetisch aktiven Organismen besiedelte Matte beträgt 46,8 µmol cm⁻³ h⁻¹ (Epping et al. 1999).
5.6 Einfluss von Erosion auf das Litoralsediment

Ergebnisse

Veränderung des Redoxzustands von Eisenverbindungen nach Abtragung von Sediment

Durch Abtragung der Sedimentoberfläche bis zu 5, 15 bzw. 50 mm Tiefe wurde anoxisches Sediment freigelegt und dem oxischen Seewasser ausgesetzt. Ausgehend von der neuen Oberfläche wurden reduzierte Eisenverbindungen im freigelegten Sediment oxidiert (Abbildung 43).

Abbildung 43: Tiefenprofile des prozentualen Anteils von reduzierten Eisenverbindungen am Gesamt-Eisen im Litoralsediment, berechnet aus Konzentrationsmessungen, die vor (schwarze Symbole) bzw. 24 Stunden (graue Symbole) und 48 Stunden (weiße Symbole) nach Abtragung der Sedimentoberfläche bis 5 mm (A), 15 mm (B) oder 50 mm (C) Tiefe gemessen wurden.

Die entsprechenden Änderungen der Konzentration von reduzierten Eisenverbindungen, die Eisenumsetzungsraten und der dadurch ausgelöste Elektronenfluss über die Oberfläche der jeweiligen Sedimentschicht sind in Tabelle 4 aufgeführt. Im Allgemeinen wurden mehr reduzierte Eisenverbindungen in der oxischen als in der anoxischen Sedimentschicht oxidiert und die entsprechenden Oxidationsraten waren während des ersten Tages der Inkubation höher als während des zweiten Tages. Die zeitliche und räumliche Änderung des prozentualen Anteils von reduzierten Eisenverbindungen am Gesamt-Eisen in
Sedimentkernen, deren Oberfläche bis 5, 15 bzw. 50 mm Tiefe abgetragen wurde, ist in Abbildung 44 dargestellt. Abhängig von der Erosionstiefe war das Ausmaß der Oxidation umso schwächer, je tiefer das neu freigelegte Sediment lag. Sedimentkerne, deren Oberfläche bis 5 oder 15 mm Tiefe abgetragen wurde, zeigten während des ersten und zweiten Tages nach der Freilegung des Sediments signifikante Eisenoxidationsraten bis in 20 mm Tiefe. In Sediment, das bis 50 mm Tiefe abgetragen wurde, war eine signifikante Eisenoxidation nur am ersten Tag in der Oberfläche bis 5 mm Tiefe nachzuweisen; in größerer Sedimenttiefe kam es während des zweiten Tages sogar zur Reduktion oxidierter Eisenverbindungen.

Abbildung 44: Änderung des Anteils von reduzierten Eisenverbindungen am Gesamt-Eisen (%) pro 1-mm Sedimentschicht in unterschiedlichen Tiefenstufen während des ersten Tages (links) und des zweiten Tages (rechts) nach Erosion von Litoralsediment bis zu einer Tiefe von 5 mm (weiße Balken), 15 mm (gestreifte Balken) oder 50 mm (schwarze Balken). Positive Werte entsprechen einer Zunahme, negative Werte einer Abnahme an reduzierten Eisenverbindungen. Signifikante Änderungen werden durch Sternchen angedeutet.
In den obersten ein bis fünf Millimetern des nach Abtragung bis 5, 15 bzw. 50 mm Tiefe freigelegten Sediments wurden innerhalb des ersten Tages 11,0, 8,5 bzw. 4,0 mM reduzierte Eisenverbindungen oxidiert, das entspricht Eisenoxidationsraten von 460, 350 bzw. 160 nmol cm\(^{-3}\) h\(^{-1}\) und Elektronenflussraten von 83, 63 bzw. 28 nmol cm\(^{-2}\) h\(^{-1}\). Während des zweiten Tages nach der Abtragung wurden in Sediment von ein bis fünf Millimeter Tiefe noch 3,0, 3,5 bzw. 4,5 mM reduzierte Eisenverbindungen oxidiert, das entspricht Eisenoxidationsraten von 130, 140 bzw. 180 nmol cm\(^{-3}\) h\(^{-1}\) und Elektronenflussraten von 24, 25 bzw. 33 nmol cm\(^{-2}\) h\(^{-1}\). Die entsprechenden Elektronenflussraten über die Querschnittsfläche des Sediments bis 5 mm Tiefe betrugen am ersten Tag 230, 180 bzw. 80 nmol cm\(^{-2}\) h\(^{-1}\) und 70, 70 bzw. 90 nmol cm\(^{-2}\) h\(^{-1}\) am zweiten Tag. Damit lieferte die vollständige Oxidation von reduzierten Eisenverbindungen mit Sauerstoff in der oxischen Zone des Sediments nach Erosion 17% bis 55% der ungefähr 420 nmol cm\(^{-2}\) h\(^{-1}\) Elektronen, die bei vollständiger Reduktion des bei Dunkelheit in das Sediment diffundierenden Sauerstoffs aufgenommen wurden und 14% bis 46% der ungefähr 500 nmol cm\(^{-2}\) h\(^{-1}\) Elektronen, die bei vollständiger Reduktion des im Sediment bei Beleuchtung mit Licht geringer Intensität verbleibenden Sauerstoffs aufgenommen wurden.
Tabelle 4: Änderungen der Konzentration von reduzierten Eisenverbindungen (mM), Eisen-Umsetzungsraten (nmol cm$^{-3}$ h$^{-1}$) und Elektronen-Flussraten (nmol cm$^{-2}$ h$^{-1}$) pro 1-mm Sedimentschicht in verschiedenen Tiefenstufen am ersten Tag und am zweiten Tag nach Abtragung von 5, 15 bzw. 50 mm Litoralsediment. Positive Werte geben eine Zunahme an reduzierten Eisenverbindungen, Eisenreduktion und einen Elektronenfluss in die jeweilige Sedimentschicht hinein an; negative Werte geben eine Abnahme an reduzierten Eisenverbindungen, Eisenoxidation und einen Elektronenfluss aus der jeweiligen Sedimentschicht heraus an.

<table>
<thead>
<tr>
<th>Tiefenintervall (mm)</th>
<th>Änderung Eisen(II)-Konzentration (mM)</th>
<th>Eisen-Umsetzungsrate (nmol cm$^{-3}$ h$^{-1}$)</th>
<th>Elektronen-Flussrate (nmol cm$^{-2}$ h$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1. Tag</td>
<td>2. Tag</td>
<td>1. Tag</td>
</tr>
<tr>
<td>Erosion von Sediment bis 5 mm Tiefe</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 – 3</td>
<td>-2,5</td>
<td>-0,8</td>
<td>-103,8</td>
</tr>
<tr>
<td>1 – 5</td>
<td>-2,2</td>
<td>-0,6</td>
<td>-91,7</td>
</tr>
<tr>
<td>4 – 9</td>
<td>-1,3</td>
<td>-0,4</td>
<td>-52,8</td>
</tr>
<tr>
<td>6 – 15</td>
<td>-0,6</td>
<td>-0,3</td>
<td>-25,7</td>
</tr>
<tr>
<td>10 – 20</td>
<td>-0,3</td>
<td>-0,2</td>
<td>-11,4</td>
</tr>
<tr>
<td>16 – 20</td>
<td>-0,2</td>
<td>-0,3</td>
<td>-7,7</td>
</tr>
<tr>
<td>Erosion von Sediment bis 15 mm Tiefe</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 – 3</td>
<td>-2,7</td>
<td>-1,4</td>
<td>-110,6</td>
</tr>
<tr>
<td>1 – 5</td>
<td>-1,7</td>
<td>-0,7</td>
<td>-70,4</td>
</tr>
<tr>
<td>4 – 9</td>
<td>-0,6</td>
<td>0,1</td>
<td>-25,4</td>
</tr>
<tr>
<td>6 – 15</td>
<td>-0,9</td>
<td>-0,2</td>
<td>-39,4</td>
</tr>
<tr>
<td>10 – 20</td>
<td>-1,1</td>
<td>-0,2</td>
<td>-44,3</td>
</tr>
<tr>
<td>16 – 20</td>
<td>-1,1</td>
<td>0,0</td>
<td>-45,2</td>
</tr>
<tr>
<td>Erosion von Sediment bis 50 mm Tiefe</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 – 3</td>
<td>-1,0</td>
<td>-1,5</td>
<td>-43,7</td>
</tr>
<tr>
<td>1 – 5</td>
<td>-0,8</td>
<td>-0,9</td>
<td>-31,5</td>
</tr>
<tr>
<td>4 – 9</td>
<td>-0,1</td>
<td>0,2</td>
<td>-5,4</td>
</tr>
<tr>
<td>6 – 15</td>
<td>-0,0</td>
<td>0,1</td>
<td>-0,9</td>
</tr>
<tr>
<td>10 – 20</td>
<td>-0,1</td>
<td>0,1</td>
<td>-5,0</td>
</tr>
<tr>
<td>16 – 20</td>
<td>-0,2</td>
<td>0,2</td>
<td>-10,4</td>
</tr>
</tbody>
</table>

99
Veränderung des Sauerstoffgehalts nach Abtragung von Sediment

Durch Abtragung der Sedimentoberfläche bis zu 5, 15 bzw. 50 mm Tiefe wurde anoxisches Sediment freigelegt und dem oxischen Seewasser ausgesetzt. Die Eindringtiefe von Sauerstoff in die neue Sedimentoberfläche vertiefte sich während der folgenden Inkubation. Nach 30 min lag die oxisch-anoxische Grenzschicht bei 2.1 ± 0.4 mm Tiefe bei Inkubation in Dunkelheit bzw. 2.4 ± 0.8 mm Tiefe bei Inkubation im Licht und dehnte sich während der folgenden 12 Stunden auf 3.1 ± 0.8 mm bzw. 4.2 ± 0.8 mm Tiefe aus.

Vor Abtragung des Sediments wurde bei Dunkelheit ein Sauerstofffluss in das Sediment hinein und bei Licht aus dem Sediment heraus gemessen. 30 Minuten nach Abtragung von Sediment bis 5, 15 bzw. 50 mm Tiefe diffundierte Sauerstoff mit Raten von 236, 181, und 163 nmol cm⁻² h⁻¹ in Dunkelheit und von 110, 165, und 120 nmol cm⁻² h⁻¹ bei Licht in das Sediment hinein (Abbildung 45).

Abbildung 45: Zeitliche Veränderung des Sauerstoffflusses (nmol cm⁻² h⁻¹) über die diffusive Grenzfläche zwischen Wasser und Litoralsediment in Dunkelheit (schwarze Symbole) und im Licht (weiße Symbole) nach Abtragung, einstündiger Resuspension und Wiederauflagerung der Sedimentoberfläche bis 5 mm (A), 15 mm (B) und 50 mm (C) Tiefe. Positive Werte geben einen Sauerstofffluss über die Wasser-Sediment-Grenze in das Sediment hinein wieder, negative Werte einen Sauerstofffluss aus dem Sediment heraus.
Während der folgenden Inkubation verringerten sich diese Raten exponentiell mit der Zeit. Nach 12 Stunden Inkubation in Dunkelheit betrugen die Raten in das Sediment hinein 85, 130, und 96 nmol cm⁻² h⁻¹ und waren damit geringer als vor der Abtragung des Sediments. Während der Inkubation im Licht wurde ein Teil des Sauerstoffverbrauchs im Sediment durch photosynthetische Sauerstoffproduktion ausgeglichen, ein Netto-Export von Sauerstoff in die Wassersäule trat jedoch erst nach 2 bis 4 Stunden auf. Die Sauerstoffproduktion war umso höher, je weniger Oberflächensediment entfernt worden war. 12 Stunden nach der Abtragung wurde ein Sauerstofffluss von –85, –47, und –30 nmol cm⁻² h⁻¹ aus dem Sediment heraus gemessen, die Raten vor der Abtragung wurden dadurch jedoch nicht erreicht.

Diskussion

Unmittelbare Änderung der Sauerstoffkonzentration und Redoxreaktion von Eisen

Vergleich der Elektronenflussraten aus der Eisenoxidation mit den Elektronenflussraten aus der Sauerstoffreduktion bei Beleuchtung, nach Erosion bzw. nach Sedimentation in der Diskussion zu Kapitel 5.7.

Ökologische Folgen von Erosionereignissen

5.7 Einfluss von Resuspension und Sedimentation auf das Litoralsediment

Ergebnisse

Veränderung des Redoxzustands von Eisenverbindungen bei Durchmischung und Wiederauflagerung von Sediment

Abbildung 46: Tiefenprofile des prozentualen Anteils von reduzierten Eisenverbindungen am Gesamt-Eisen im Litoralsediment, berechnet aus Konzentrationsmessungen, die vor (schwarze Symbole) bzw. 24 Stunden (graue Symbole) und 48 Stunden (weiße Symbole) nach Abtragung, einstündiger Resuspension und Wiederauflagerung der Sedimentoberfläche bis 5 mm (A), 15 mm (B) oder 50 mm (C) Tiefe gemessen wurden. Die Resuspensionstiefe wird durch eine gestrichelte Linie angedeutet.
Innerhalb des ersten Tages nach Wiederauflagerung des durchmischten Sediments wurden oxidierte Eisenverbindungen reduziert, während des zweiten Tages zu einem geringen Teil wieder oxidiert.

Abbildung 47: Änderung des Anteils von reduzierten Eisenverbindungen am Gesamt-Eisen (%) pro 1-mm Sedimentschicht in unterschiedlichen Tiefenstufen während des ersten Tages (links) und des zweiten Tages (rechts) nach Resuspension und Sedimentation von Litoralsediment bis zu einer Tiefe von 5 mm (weiße Balken), 15 mm (gestreifte Balken) oder 50 mm (schwarze Balken). Positive Werte entsprechen einer Zunahme, negative Werte einer Abnahme an reduzierten Eisenverbindungen. Signifikante Änderungen werden durch Sternchen angedeutet.

Abhängig von der Resuspensionstiefe war das Ausmaß der Reduktion umso stärker und das der anschließenden Oxidation der Eisenverbindungen umso schwächer, je tiefer das
Sediment durchmischt worden war. Während des ersten Tages nach der Wiederauflagerung veränderte sich der Redoxzustand der Eisenverbindungen in bis zu 5 mm Tiefe durchmischtem Sediment nicht signifikant. Dagegen war die Reduktion von oxidierten Eisenverbindungen in bis zu 15 bzw. 50 mm Tiefe durchmischtem Sediment signifikant. Während des zweiten Tages wurden reduzierte Eisenverbindungen in Sediment, das bis zu 5 bzw. 15 mm Tiefe durchmischt worden war, oxidiert, jedoch weiter reduziert in Sediment, das bis 50 mm Tiefe resuspendiert worden war.

In den obersten ein bis drei Millimetern des nach Abtragung und Durchmischung bis 5, 15 bzw. 50 mm Tiefe wieder aufgelagerten Sediments wurden innerhalb des ersten Tages 0,9 und 7,5 oxidierte Eisenverbindungen reduziert bzw. 1,2 mM reduzierte Eisenverbindungen oxidiert, das entspricht Eisenreduktionsraten von 30 und 320 bzw. einer Eisenoxidationsrate 50 nmol cm$^{-3}$ h$^{-1}$ und Elektronenflussraten von 4, 39 bzw. 6 nmol cm$^{-2}$ h$^{-1}$. Während des zweiten Tages nach der Abtragung wurden in Sediment von ein bis drei Millimeter Tiefe 2,1 und 2,4 mM reduzierte Eisenverbindungen oxidiert bzw. 3 mM oxidierte Eisenverbindungen reduziert, das entspricht Eisenoxidationsraten von 90 und 100 nmol cm$^{-3}$ h$^{-1}$ bzw. einer Eisenreduktionsrate von 120 nmol cm$^{-3}$ h$^{-1}$ und Elektronenflussraten von 11, 12 bzw. 15 nmol cm$^{-2}$ h$^{-1}$. Die entsprechenden Elektronenflussraten über die Querschnittsfläche des Sediments bis drei Millimeter Tiefe betrugen am ersten Tag nach Abtragung und Wiederauflagerung bis 50 mm Tiefe 26 nmol cm$^{-2}$·h$^{-1}$ und am zweiten Tag nach Abtragung und Wiederauflagerung bis 5 bzw. 15 mm Tiefe 28 bzw. 30 nmol cm$^{-2}$·h$^{-1}$. Damit lieferte die vollständige Oxidation von reduzierten Eisenverbindungen mit Sauerstoff in der oxischen Zone des Sediments nach Erosion, Durchmischung und Sedimentation 5% bis 6% der im Mittel 500 nmol cm$^{-2}$·h$^{-1}$ Elektronen, die bei vollständiger Reduktion des in das Sediment diffundierenden Sauerstoffs aufgenommen wurden.
Tabelle 5: Änderungen der Konzentration von reduzierten Eisenverbindungen (mM), Eisen-Umsetzungsraten (nmol cm$^{-3}$ h$^{-1}$) und Elektronen-Flussraten (nmol cm$^{-2}$ h$^{-1}$) pro 1-mm Sedimentschicht in verschiedenen Tiefenstufen am ersten Tag und am zweiten Tag nach Abtragung, einstündiger Resuspension und Wiederauflagerung von 5, 15 bzw. 50 mm Litoralsediment. Positive Werte geben eine Zunahme an reduzierten Eisenverbindungen, Eisenreduktion und einen Elektronenfluss in die jeweilige Sedimentschicht hinein an; negative Werte geben eine Abnahme an reduzierten Eisenverbindungen, Eisenoxidation und einen Elektronenfluss aus der jeweiligen Sedimentschicht heraus an.

<table>
<thead>
<tr>
<th>Tiefenintervall (mm)</th>
<th>Änderung Eisen(II)-Konzentration (mM)</th>
<th>Eisen-Umsetzungsrate (nmol cm$^{-3}$ h$^{-1}$)</th>
<th>Elektronen-Flussrate (nmol cm$^{-2}$ h$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resuspension und Sedimentation von Sediment bis 5 mm Tiefe</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 – 3</td>
<td>0,3</td>
<td>-0,7</td>
<td>11,4</td>
</tr>
<tr>
<td>1 – 5</td>
<td>0,0</td>
<td>-0,4</td>
<td>0,6</td>
</tr>
<tr>
<td>4 – 9</td>
<td>0,0</td>
<td>-0,2</td>
<td>-1,1</td>
</tr>
<tr>
<td>6 – 15</td>
<td>-0,1</td>
<td>-0,3</td>
<td>-6,0</td>
</tr>
<tr>
<td>10 – 20</td>
<td>-0,2</td>
<td>0,1</td>
<td>-7,2</td>
</tr>
<tr>
<td>16 – 20</td>
<td>0,0</td>
<td>0,1</td>
<td>0,8</td>
</tr>
<tr>
<td>Resuspension und Sedimentation von Sediment bis 15 mm Tiefe</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 – 3</td>
<td>2,5</td>
<td>-0,8</td>
<td>105,5</td>
</tr>
<tr>
<td>1 – 5</td>
<td>2,3</td>
<td>-0,9</td>
<td>96,2</td>
</tr>
<tr>
<td>4 – 9</td>
<td>1,7</td>
<td>-1,1</td>
<td>70,6</td>
</tr>
<tr>
<td>6 – 15</td>
<td>0,9</td>
<td>-0,7</td>
<td>38,7</td>
</tr>
<tr>
<td>10 – 20</td>
<td>0,8</td>
<td>-0,6</td>
<td>32,7</td>
</tr>
<tr>
<td>16 – 20</td>
<td>1,1</td>
<td>-0,8</td>
<td>46,6</td>
</tr>
<tr>
<td>Resuspension und Sedimentation von Sediment bis 50 mm Tiefe</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 – 3</td>
<td>-0,4</td>
<td>1,0</td>
<td>-17,4</td>
</tr>
<tr>
<td>1 – 5</td>
<td>0,6</td>
<td>0,1</td>
<td>24,6</td>
</tr>
<tr>
<td>4 – 9</td>
<td>1,8</td>
<td>-0,8</td>
<td>73,5</td>
</tr>
<tr>
<td>6 – 15</td>
<td>0,8</td>
<td>0,0</td>
<td>31,9</td>
</tr>
<tr>
<td>10 – 20</td>
<td>0,1</td>
<td>0,3</td>
<td>5,8</td>
</tr>
<tr>
<td>16 – 20</td>
<td>0,1</td>
<td>0,3</td>
<td>2,2</td>
</tr>
</tbody>
</table>
Veränderung des Sauerstoffgehalts bei Durchmischung und Wiederauflagerung von Sediment

Bei Resuspension von Sediment bis 5, 15 bzw. 50 mm Tiefe wurde anoxisches Sediment mit oxischem Seewasser durchmischt und durch Sedimentation wieder auf geringfügig mit Sauerstoff versorgtem Sediment aufgelagert. Innerhalb von 30 Minuten nach der Wiederauflagerung stieg die oxisch-anoxische Grenzschicht bis auf 1.9 ± 0.4 mm Tiefe in Dunkelheit und bis 2.1 ± 0.5 mm Tiefe im Licht. Während der folgenden 12 Stunden Inkubation verschob sich die Eindringtiefe von Sauerstoff auf 2.3 ± 0.2 mm Tiefe in Dunkelheit und auf 2.3 ± 0.1 mm Tiefe im Licht, erreichte jedoch die Eindringtiefen vor Durchmischung und Wiederauflagerung des Sediments nicht.

Abbildung 48: Zeitliche Veränderung des Sauerstoffflusses (nmol cm⁻² h⁻¹) über die diffusive Grenzfläche zwischen Wasser und Litoralsediment in Dunkelheit (schwarze Symbole) und im Licht (weiße Symbole) nach Abtragung, einstündiger Resuspension und Wiederauflagerung der Sedimentoberfläche bis 5 mm (A), 15 mm (B) und 50 mm (C) Tiefe. Positive Werte geben einen Sauerstofffluss über die Wasser-Sediment-Grenze in das Sediment hinein wieder, negative Werte einen Sauerstofffluss aus dem Sediment heraus.

Vor Durchmischung und Wiederauflagerung des Sediments wurde bei Dunkelheit ein Sauerstofffluss in das Sediment hinein und bei Licht aus dem Sediment heraus gemessen. 30 Minuten nach Resuspension und Wiederauflagerung von Sediment bis 5, 15 bzw. 50 mm Tiefe diffundierte Sauerstoff mit Raten von 102, 130, und
147 nmol cm$^{-2}$ h$^{-1}$ in Dunkelheit und von 143, 96, and 140 nmol cm$^{-2}$ h$^{-1}$ bei Licht in das Sediment hinein (Abbildung 48).

Diese Raten blieben während der folgenden Inkubation etwa konstant; nach 12 Stunden in Dunkelheit betrugen sie 123, 112, und 152 nmol cm$^{-2}$ h$^{-1}$ und waren damit geringfügig höher als vor Durchmischung des Sediments. Bei Inkubation im Licht wurde weder im Sediment noch an der Sedimentoberfläche Sauerstoff produziert, nach 12 Stunden Inkubation betrugen die Flussraten von Sauerstoff in das Sediment hinein immer noch 140, 114, und 123 nmol cm$^{-2}$ h$^{-1}$. Die Sauerstoffaufnahmeraten des Sediments waren sowohl bei Inkubation in Dunkelheit als auch im Licht unabhängig von der Tiefe, bis zu der das Sediment durchmischt worden war.

Diskussion

Unmittelbare Änderungen der Sauerstoffkonzentration und Redoxreaktion von Eisen

Ökologische Folgen von Resuspensions- und Sedimentationsereignissen

Vergleich von Vorgängen bei einer Änderung der Lichtverhältnisse mit den Vorgängen bei Störungsereignissen

5.8 Freisetzung von Phosphat aus dem Litoralsediment

Ergebnisse

Anpassung der Methode für den Phosphatnachweis und Eichgerade

Abbildung 50: Messung von Phosphat-Standardlösungen nach 30 (■), 60 (●), 120 (▲), 240 (□) und 360 (○) Minuten.

Kontrollen

Einfluss der Lichtverhältnisse

Die Freisetzung von Phosphat aus ungestörtem Sediment bei Dunkelheit oder bei Licht wurde in unabhängigen Experimenten über zwölf Stunden verfolgt. Bei Dunkelheit wurde im Mittel 13,2±13,0 µg PO₄³⁻P/l (n = 6) und 34,5±12,4 µg Gesamt-P/l (n = 4) im Seewasser über dem Sediment gemessen, im Licht 13,3±12,7 µg PO₄³⁻P/l (n = 5) und 25,2±12,7 µg Gesamt-P/l (n = 4) (Abbildung 51). Sowohl die Orthophosphat- als auch die Gesamtphosphat-Freisetzung veränderte sich über die Zeit, aber es ist kein eindeutiger Trend auszumachen. Im Licht wurde gleichviel Orthophosphat und weniger Gesamtphosphat freigesetzt als bei Dunkelheit. Von den gemessenen Orthophosphat-Konzentrationen im Seewasser wurde der ursprüngliche Gehalt des Seewassers abgezogen und die Werte umgerechnet auf die pro Quadratmeter und Stunde freigesetzte Stoffmenge an Orthophosphat. Diese waren für die Messungen in Dunkelheit 2,2 mg P/m² d und für die Messungen im Licht 2,2 mg P/m² d.

Abbildung 51: Freisetzung von Orthophosphat (□) und Gesamt-Phosphat (■) aus Litoralsediment über zwölf Stunden bei Dunkelheit oder im Licht.
Einfluss von Erosion, Resuspension und Sedimentation

Die Freisetzung von Phosphat aus belichtetem oder abgedunkeltem Sediment, dessen Oberfläche bis zu unterschiedlichen Tiefen abgetragen worden war, wurde in unabhängigen Experimenten über zwölf Stunden verfolgt. Im Mittel wurde nach Abtragung von Sediment bis 5 mm bzw. 50 mm Tiefe 8,2±10,2 µg PO$_4^{3-}$ P/l (n = 2) bzw. 8,6±6,9 µg PO$_4^{3-}$ P/l (n = 3) und 32,5 µg Gesamt-P/l (Einzelmessung) bzw. 17,0±12,7 µg Gesamt-P/l (n = 3) im Seewasser über dem Sediment gemessen (Abbildung 52). Nach Abtragung von Sediment bis 5 mm Tiefe ist die Freisetzung von Gesamtphosphat in das Seewasser höher als nach Abtragung von Sediment bis 50 mm Tiefe. Die Inkubation in Licht oder Dunkelheit hatte keinen Einfluss auf das Ergebnis. Die Freisetzungsrate nach Erosion bis 5 mm Tiefe betrugen 1,1 mg P/m2 d, nach Erosion bis 50 mm Tiefe 1,2 mg P/m2 d.

Abbildung 52: Freisetzung von Orthophosphat (□) und Gesamt-Phosphat (■) aus Litoralsediment über zwölf Stunden nach Abtragung von Sediment bis 5 oder 50 mm Tiefe.

Die Freisetzung von Phosphat aus belichtetem oder abgedunkeltem Sediment, dessen Oberfläche bis 50 mm Tiefe abgetragen, resuspendiert und wieder aufgelagert worden war, wurde in unabhängigen Experimenten über zwölf Stunden verfolgt. Während der Resuspension wurde Phosphat aus dem Sediment ausgewaschen. In beiden Ansätzen
wurde 0,6 mg PO$_4^{3-}$ P/l freigesetzt sowie im Licht 5,5 mg Gesamt-P/l und in Dunkelheit 8,4 mg Gesamt-P/l. Unmittelbar nach der Wiederauflagerung des Sediments waren die Orthophosphat- und Gesamtphosphatkonzentration im Wasser über dem Sediment stark erhöht (Abbildung 53). Sie betrugen im Licht und in Dunkelheit 38,7 und 49,1 µg PO$_4^{3-}$ P/l bzw. 125,3 und 51,0 µg Gesamt-P/l. Die Orthophosphatkonzentration über dem Sediment verringerte sich innerhalb von 10 Stunden in Dunkelheit bzw. 6 Stunden im Licht auf etwa 20 µg PO$_4^{3-}$ P/l. Die Gesamtphosphatkonzentration verringerte sich nur wenig, sie blieb auch über 12 Stunden Inkubation hinaus erhöht, im Mittel wurde 55,3 µg Gesamt-P/l im Seewasser über dem Sediment gemessen. Die Freisetzungsarten nach Resuspension bis 50 mm Tiefe betrugen zu Beginn 9,2 mg P/m2 d, nach 6 bzw. 10 Stunden 3,8 mg P/m2 d.

Abbildung 53: Freisetzung von Orthophosphat (□) und Gesamt-Phosphat (■) aus Litoralsediment über zwanzig Stunden in Dunkelheit bzw. im Licht nach Abtragung, Resuspension und Wiederauflagerung von Sediment bis 50 mm Tiefe.
Diskussion

Methode zur Phosphatbestimmung und Kontrollen

Aus der Messung derselben Standardproben mit der ursprünglichen und den zwei angepassten Methoden wurden drei Ausgleichsgeraden berechnet, deren Gleichungen

\[y = 0,0006x + 0,0759 \text{ (große Volumina)}, \]
\[y = 0,0007x + 0,0851 \text{ (kleine Volumina)} \] bzw.
\[y = 0,0007x + 0,0818 \text{ (Minivolumina)} \]

sehr gut übereinstimmen. Daher wurde für die Bestimmungen von Phosphat in den Experimenten die angepasste Methode mit Minivolumina verwendet. Mit zunehmender Zeit nach Start der Reaktion nahm die Extinktion der Proben zu und dies umso mehr, je höher die Standardkonzentration war. Daher wurde für die folgenden Experimente festgelegt, dass die Extinktion der Proben innerhalb von 60 min nach Zugabe des farbgebenden Reagens zur Probe gemessen wird und Proben mit einer Extinktion über 0,3 verdünnt werden. Aus den Mittelwerten der Bestimmungen nach 30 und 60 Minuten Inkubation wurde die im Folgenden verwendete Geradengleichung

\[y = 0,0007x + 0,0036 \]

berechnet. Das mit Hilfe der Dreifachbestimmung berechnete 95%-Vertrauensintervall betrug für die Extinktion \(\pm 0,027 \) und für die Phosphatkonzentration \(\pm 37,4 \, \mu g \, PO_4^{3-} / l \). Die Nachweisgrenze der Methode lag bei \(6 \mu g \, PO_4^{3-} / l \). In allen durchgeführten Experimenten wurde mehr Gesamtphosphat als Orthophosphat nachgewiesen.

Die erhaltene Extinktion für Kontrolle 1 beruhte auf den eingesetzten Reagenzien bzw. einer Verschmutzung der Glaswaren mit Phosphat und wurde von der Extinktion der Standardproben abgezogen. Die erhaltene Extinktion für Kontrolle 2 beruhte auf der Eigenfärbung des Probenwassers oder auf suspendierten Partikeln. Der Phosphatgehalt in filtriertem Seewasser (3,11 und 3,62 \(\mu g \, PO_4^{3-} / l \)) lag unter der Nachweisgrenze der Methode.

Beeinflussung der Phosphatfreisetzung durch Licht oder Dunkelheit

Die Freisetzung von Gesamt-Phosphat aus dem Litoralsediment des Bodensees ist im Licht geringer als bei Dunkelheit. Licht stimuliert die Photosynthese, durch den freigesetzten Sauerstoff vertieft sich die oxidierte Grenzschicht der Sedimentoberfläche und führt zur Oxidation von reduzierten Eisenverbindungen. Im Porenwasser gelöstes Phosphat wird als Eisen(III)verbindung festgelegt und die Diffusion aus dem Sediment in das überstehende Wasser geringer (Mortimer 1941; Mortimer 1942). In Dunkelheit verschmälernt sich die oxische Grenzschicht wieder, in Eisen(III)verbindungen

Beeinflussung der Phosphatfreisetzung durch Erosion, Resuspension und Sedimentation

Verknüpfung des Phosphatkreislaufs mit dem von Schwefel und Eisen

6 LITERATURVERZEICHNIS

122

Luther III, G. W., J. E. Kostka, T. M. Church, B. Sulzberger, und W. Stumm (1992) Seasonal iron cycling in the salt-marsh sedimentary environment: the importance of ligand complexes with Fe(II) and Fe(III) in the dissolution of Fe(III) minerals and pyrite, respectively. Mar. Chem. 40:81-103.

