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Abstract

There are no compelling reasons why database-internal query representations
have to be designated by operators. This text describes a world in which
datatypes determine the comprehension of queries. In this world, a datatype
is characterized by its algebra of value constructors. These algebras are
principal. Query operators are secondary in the sense that they simply box
(recursive) programs that describe how to form a query result by application
of datatype constructors. Often, operators will be unboxed to inspect and
possibly rewrite these programs. Query optimization then means to deal
with the transformation of programs.

The predominant role of the constructor algebras suggests that this model
understands queries as mappings between such algebras. The key observation
that makes the whole approach viable is that (a) homomorphic mappings are
expressive enough to cover declarative user query languages like OQL or re-
cent SQL dialects, and, at the same time, (b) a single program form suffices
to express homomorphisms between constructor algebras. Reliance on a sin-
gle combining form, catamorphisms, renders the query programs susceptible
to Constructive Algorithmics, an effective and extensive algebraic theory of
program transformations.

The text then takes a step from catamorphisms towards a higher-level
query representation based on the categorical notion of monads. In a nut-
shell, monads are algebras exhibiting exactly the structure that is needed
to support the interpretation of a query calculus, the monad comprehension
calculus. Built on top of the abstract monad notion, the calculus maps a va-
riety of query constructs (e. g., bulk operations, aggregates, and quantifiers)
to few syntactic forms. The uniformity of the calculus facilitates the analysis
and transformation, especially the normalization, of its expressions. Few but
generic calculus rewriting rules suffice to implement query transformations
that would otherwise require extensive rule sets.

The text rediscovers well-known query optimization knowledge on some-
times unusual paths that are more practicable to follow for an optimizer,
though. Solutions previously proposed by others can be simplified and gen-
eralized mainly due to the clear account of the structure of queries that the
monad comprehension calculus—thanks to its density—provides. The cal-
culus effectively supports query optimization in the presence of grouping,
various forms of nesting, aggregates, and quantifiers. Although built on top
of abstract concepts like homomorphisms and monads, this query model is
specific enough to grasp implementation issues, such as the generation of
stream-based (pipelined) query execution plans, whose treatment has tradi-
tionally been delayed until query runtime.
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It is the main objective of this thesis to show that catamorphisms and
monad comprehensions enable a comprehension of queries that is effective
and easily exploitable inside a query optimizer.
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Zusammenfassung (Summary in German)

Obwohl es dafür keine zwingenden Gründe gibt, setzen Anfrageoptimierer
fast ausschließlich interne Anfragerepräsentationen ein, die durch Operatoren
charakterisiert sind. In diesem Text beschreiben wir dagegen eine Welt, in
der Datentypen das Verständnis von Anfragen bestimmen. Innerhalb dieser
Welt wird ein Datentyp durch die Algebra seiner Konstruktoren beschrieben.
Diese Konstruktoralgebren sind zentral. Operatoren hingegen sind zweitran-
gig: ein Operator ist lediglich eine Box in der ein (rekursives) Programm
eingekapselt ist, welches die Berechnung von Anfrageergebnissen durch die
Anwendung von Konstruktoren beschreibt. Immer wieder werden wir diese
Box aufbrechen, um das Verhalten des Operators genauer zu studieren oder
sein internes Programm zu transformieren. Anfrageoptimierung bedeutet
dann vor allem, sich mit Programmtransformationen auseinanderzusetzen.

In einer Welt, die durch Datentypen und ihre Konstruktoralgebren charak-
terisiert ist, sind Anfragen Abbildungen zwischen diesen Algebren. Zwei
grundlegende Beobachtungen machen diese Sicht auf Anfragen praktikabel:
(a) schon die Homomorphismen zwischen Konstruktoralgebren sind bereits
ausdrucksstark genug, um deklarative Anfragesprachen wie OQL oder neuere
SQL-Dialekte zu begreifen und (b) gleichzeitig ist eine Programmform aus-
reichend, um diese Homomorphismen zu implementieren. Der disziplinierte
Einsatz dieser Programmform, die Catamorphismen, macht die Programme
zugänglich für die Constructive Algorithmics, eine umfassende und zugleich
effektive algebraische Theorie der Programmtransformation.

Der nächste Schritt führt uns dann von Catamorphismen zu einer Anfra-
gedarstellung, die auf dem kategoriellen Begriff der Monade basiert. Mo-
naden besitzen exakt die algebraische Struktur, die für die Interpretation
eines generischen Anfragekalküls, dem Monad Comprehension Kalkül, not-
wendig ist. Der Monad Comprehension Kalkül erlaubt lediglich eine geringe
Anzahl syntaktischer Formen, die jedoch ein breites Spektrum von Anfrage-
konstrukten (mengenorientierte Operationen, Aggregation, Quantifikation)
uniform abbilden können. Die Analyse und Transformation, besonders die
Normalisierung, der Ausdrücke dieses Kalküls profitiert signifikant von die-
ser Uniformität. Wenige generische Transformationsregeln im Kalkül können
Anfragetransformationen beschreiben, die sonst durch umfassende Regelmen-
gen implementiert werden.

Der Text entdeckt bekannte Optimierungstechniken teilweise erneut und be-
wegt sich dabei auf ungewöhnlichen Pfaden, die von einem Optimierer je-
doch effektiv nachvollzogen werden können. Mehrmals können wir etablierte
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Strategien vereinfachen und generalisieren, was vor allem durch die effektiv
zu analysierende Struktur ermöglicht wird, die der Monad Comprehension
Kalkül Anfragen aufprägt. Der Kalkül unterstützt die Optimierung von An-
fragen, die Gruppierung, verschiedene Formen von Nestung, Aggregate und
Quantoren einsetzen. Obwohl abstrakte Konzepte wie Homomorphismen
und Monaden die Grundlage liefern, ist diese Anfragerepräsentation spezi-
fisch genug, um auch die eigentliche Anfrageimplementation zu unterstützen
(wie etwa die Generierung von Anfrageplänen, die die Erzeugung von Zwi-
schenresultaten vermeiden). Damit können Probleme statisch angegangen
werden, die traditionell dynamisch zur Anfrageausführungszeit betrachtet
wurden.

Catamorphismen und Monad Comprehension Kalkül ermöglichen eine An-
fragerepräsentation, die innerhalb eines Optimierers effektiv analysierbar und
manipulierbar ist. Dies zu zeigen, ist das eigentliche Ziel dieser Arbeit.
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Chapter 1

Prelude

 How would you go about and try to comprehend database queries?
Open the cover and start to dismantle a database system. Then unbox

the query engine and disassemble its parts. You end up with a set of query
operators that may be combined in various but well-defined ways, the engine’s
operator algebra. The algebra tells you how the operators fit together and
you start to play and combine operators to form queries. But as you reach
for a join operator you hear clatter. In fact, all operators clatter as you shake
them. Apparently you cannot develop a complete comprehension of the query
engine if you do not further unbox the inner workings of the operators.—
This text is an exploration of what you will discover as soon as you break an
operator’s case.

 In the course of this exploration we will soon realize that there is a single
principle action that is pervasive inside all operators: the construction of
values, which we will represent by the function symbol cons . Once we unfold
the operators and inspect their definitions, we will find these operators to
merely provide structure—a program—that controls application(s) of cons .

We will encounter construction in various instantiations, e. g., as insertion
of an element into a collection or incremental computation of an aggregate
value, but these instantiations share so many properties that we will often do
without telling them apart. Unlike other query models, we do not let collec-
tion types play an exceptional role. This sets the scene for a comprehension
of queries which acknowledges the presence of query constructs other than
bulk operations.

The predominance of cons motivates the starting point of our exploration.
From the start, we let the construction of values dominate our understanding
of queries and then work our way bottom-up. To effectively reason about
construction we will exploit algebras of value constructors. In fact, these
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are the primary algebras we will work with and it is the programs that build
terms over these algebras that cause the clatter you have heard. As operators
merely box such terms we can study the action of operators by actually ex-
amining how they construct values. The resulting operator algebra, however,
is secondary in this text.

 Unboxing the operators gives us a rather fine control over value construc-
tion and we will see how a query optimizer can benefit from this control.
At the same time, unboxing also implies that we have to deal with what
we find inside: programs. Query analysis and transformation in this model
amounts to analyze and transform programs. Throughout the entire text we
will make good use of techniques native to the program transformation do-
main and establish well-known as well as invent novel query transformations
this way.

To base a query optimizer on these techniques means that we have to be
restrictive about the program forms we may admit. Only then we can assure
that the optimizer can operate as a program transformation system free of
the need for external guidance or Eureka steps.

Here, the algebras of value constructors provide a point of reference. The
only program forms we will admit are those that mimic the structure (of the
recursive type) of the values they analyze and construct, i. e., those that per-
form structural recursion. This restrictive discipline will render programs as
homomorphic mappings between algebras of value constructors. It is worth-
while to dwell on this thought a little longer.

Let F denote a function that, given a type A as argument, encodes the
structure of terms (expressions) that construct values of type A. A con-
structor algebra α then is nothing but a mapping from FA to A, in symbols
α:FA → A. Consider a second algebra of identical structure β:FB → B. If h
denotes a query, in our model, it is a mapping between values, say h:A → B.
The above restriction, however, says that the program for h may not be ar-
bitrary but has to respect the term structure F. Such a structure-preserving
computation will be denoted Fh in this text. To get a bearing on this process,
the overall picture of the involved mappings is

FA
α ��

Fh

��

A

h

��

FB
β

�� B

Intuitively, h meets the restrictions, if both paths from FA to B denote the
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same function. We will trade this intuition for precise statements about query
programs using the language of category theory. Basic categorical vocabulary
suffices, however. We perceive category theory as the vehicle not the cargo
of this text.

 The restrictions we impose on query programs may seem rather rigid at
first sight but actually they are not. The expressive power of these programs
is sufficient to cover orthogonal query languages for complex value databases,
like OQL or newer dialects of SQL. Everything can be reduced to a single
recursive program form, the catamorphism, which provides all the control
structure we need. At the same time, this restriction can lead to new in-
sights into compositions of programs—and thus complex queries—due to the
properties catamorphisms exhibit.

To narrow the gap between user level query syntax and catamorphisms,
we will exploit a calculus, the monad comprehension calculus, as a mediator
between the two worlds. For now, think of monads as algebras that offer just
the right measure of structure to interpret the constructs of a query calculus.
Monad comprehensions will be our query representation of choice throughout
major portions of this text as they are accessible to the human eye as well as
an effective way to manipulate queries inside an optimizer. Once we remove
the calculus’ syntactic sugar, however, we realize that we are still operating
with catamorphisms.

 This work draws ideas and methods on a variety of sources, some of which
are somewhat alien to the query optimization domain. The text continuously
walks the fine line—if there is any—between query optimization, category
theory, program transformation, type theory, and functional programming.

(a) We let category theory play the role that set theory has in the world of
relational databases. The categorical view provides a measure of abstraction
that enables important generalizations and elegant reasoning at the same
time. While set-theoretic accounts of query optimization dominate the field
of research by far, others have paved the way for a categorical model of
queries [20, 114, 124].

(b) There exists an extensive theory, the Constructive Algorithmics [7,
8, 9, 42, 57, 67, 84], on the transformation of programs that were built
from a small set of combining forms. This theory understands programs as
objects that are subject to calculation just like numbers in arithmetic. We
will establish core query transformations through calculation with programs.

(c) Type theory, especially parametric polymorphism and the laws it jus-
tifies for free [116, 122], constitutes another field we will benefit from.
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(d) Last but not least, we perceive query transformation and optimization
as a functional programming activity. Superficially, this concerns a number
of notational conventions we adopted. More deeply, note that we generate
query results solely through the side-effect free construction of values from
simpler constituents. In fact, we find an approach to query optimization
that does otherwise hard to imagine: referential transparency is the key to
painless transformational programming and equational reasoning. Functional
composition will be the predominant way of forming complex queries from
simpler ones. Finally, when it comes to the generation of query execution
plans, we will establish connections to implementation techniques for lazily
evaluated functional programming languages [18, 51, 92].

 The following exploits this toolbox to develop a comprehension of queries
that is geared to be effective and easily exploitable inside a database query
optimizer.

At places, we will rediscover well-known query optimization knowledge
using unusual paths that are more practicable to follow for an optimizer,
however (Chapter 4). At places, we can generalize and at the same time
simplify solutions that have been proposed by others (Chapter 5). The
query model is abstract enough to stress the common ground of a diver-
sity of query constructs from bulk operations to quantifiers. This makes the
model an ideal target for the translation of declarative OQL-like user query
languages, including recent feature additions to these languages. The monad
comprehension calculus effectively supports optimization in presence of, e. g.,
grouping, nesting, quantifiers, and aggregates in queries (Chapter 3). The
query model is specific enough to provide the necessary hints and handles to
serve as an effectively manipulable representation of query execution plans—
this provides a static account (i. e., at query optimization time) of query
runtime issues that have been traditionally tackled on the implementation
level only. Finally, the model has already shown its suitability as a platform
on which the rapid prototypical development of a query engine for complex
value databases is viable (Chapter 6).

To get us going, Chapter 2 lays the categorical foundation upon every-
thing else will rest.1 You feel better if you know where that clatter actually
comes from.

1To quote Philip Wadler, “No knowledge of category theory is assumed.” [117]
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Chapter 2

Categorical Datatypes and Monads

2.1 A Datatype-based Query Representation

 Datatypes lie at the very heart of the query representation used through-
out this text. The language we are going to develop in this and the upcoming
chapter is designed around types, not operations. All datatypes which we
will encounter in the sequel themselves induce a minimal set of functions
which allow for the construction of arbitrary values of that type. Exactly
these constructors (and their functional composition) will form the initial
query language we will propose here. Once we have thus marked the start
of our path, we will then pave our way towards a query representation that
will be more suitable for particular stages of the query compilation process
as well as the human mind and eye. We will often see, however, that query
optimization can benefit from working with this rather fine granulated view
of datatypes.

This does not mean that an actual implementation of our representation
is forced to always operate at this fine level of granularity. It rather provides
us with handles to manipulate small granules during query translation and
optimization. Before a query is shipped to the underlying query engine for
execution it is then our responsibility to identify those parts of the query
expression which may be executed in a bulk-oriented fashion.

Note that there are no mutators defined for the different types. Query
evaluation in this framework will be solely concerned with the construction
of instances of a type from simpler constituents. The language will thus be
referentially transparent or, put another way, purely functional. This feature,
in turn, will smooth the way for query optimization based on equational
reasoning (“replace equals by equals.”)

As query representation (not implementation) is the focus of this chapter
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we view datatypes as being abstract. We will devise an interface—which
will consist of the list of constructors and, in some cases, certain equations
that have to be obeyed—for the types and leave their implementation for
later. Any datatype providing a compatible interface may be incorporated
into language without significant effort.

 The instances of a type and its constructors will be modeled as an algebra
for that type. There may be more than one algebra for a particular type. Our
presentation of the material will rely on the tools of category theory. Category
theory provides a succinct notation for the concepts involved and seems to
supply just the right measure of abstraction that we strive for in this chapter.
Moreover, the query language’s core operators will turn out to be familiar
categorical concepts. At a first sight the formal machinery might seem awk-
ward, but important questions like the guaranteed existence or uniqueness
of the operators so defined are answered for free by the underlying theory.
Categorical insights will prove useful in all query translation phases, notably
during the generation of query execution plans (see Chapter 6). Following
ideas of Fokkinga [42, 43], we will not only express the structural aspects of
the constructor algebras using category theory but also the equations which
certain types are expected to fulfill. This will save us from introducing the
otherwise necessary machinery of signatures for algebras, syntax for terms,
as well as variables and their (scoped) bindings.

The discussion in this chapter proceeds as follows. Right after we have
provided the categorical view of algebras we will examine catamorphisms,
functions whose recursion pattern mimics that of its source type. Despite
their simplicity, catamorphisms provide the core concept upon which almost
all of the query language will be built. One can prove, given few prerequisites,
that compositions of catamorphisms collapse into a single catamorphism,
which will later justify efficient optimizations. We will then generalize our
observations to cover polymorphic type constructors (like bagα, α denoting
an arbitrary type) as these are basic building blocks of type systems for
query languages for complex collection types. Being so far, the notion of
equation is formalized which will make level for the categorical representation
of datatypes with commutative and/or idempotent constructor functions like
bag and set. We already include a step towards a more high-level calculus-
like query representation, monad comprehensions, which is shown to be quite
easily definable on top of the algebraic datatypes presented so far.

The material presented here is not original but the arranging is unique
in the sense that it is geared towards the problem of the formalization of
datatypes with equations for database query languages. This is especially
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true for the derivation of multi-monad comprehensions. We refer to [10, 42,
43, 84, 117] for an extensive categorical treatment of the ideas developed in
the following paragraphs.

 To let the reader gain familiarity with the involved notation and style of
reasoning, we will provide more detailed lines of arguments in this chapter
than in the rest of the thesis. Equational proofs (also called calculations
or rewrites in the sequel) use the style adopted by the Squiggol [7, 11] and
Constructive Algorithmics [7, 42, 57, 67, 84] communities because it allows for
the convenient annotation of a sequence of replacements of equals by equals
or similar connected chains of reasoning. In [3], Backhouse convincingly
discusses the merits and benefits of this notation.

An equation display like (let f , g, h denote functions)

(f · g) = h

≡ { f · g = h }
h = h

≡ { reflexivity of = }
true ,

represents the derivation of the last term from the first by step-wise replace-
ment of equals by equals. The intermediate results are given. Justifications
for the replacements are shown explicitly in curly braces {·}. You may have
noted that the above calculation is carried out at the function level and that
no function is ever applied to a particular argument. Such calculations are
called point-free (in contrast to point-wise). We shall mainly use point-free
reasoning throughout this text as the introduction of a dummy function argu-
ment (x say) is not needed due to the principle of extensionality and merely
clutters the display of the calculation.

2.2 Basic Category Theory

 Category theory. A few basic concepts of category theory are suf-
ficient to master the theory of datatypes we will use as the basis to build
our query language on. These are: category (and the inherently related ob-
ject, morphism, target, source), initiality, isomorphism, functor, product, and
sum. Later on we will meet natural transformations and monads. We give
a short introduction to all of these concepts before we delve into categorical
datatypes. This is not an introduction to category theory in its own right.
Our perception of the material is heavily biased towards the goal we try to
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reach: a concise and formal yet sufficiently abstract framework in which we
can talk about polymorphic (collection) type constructors. The theory does
even better: it will also provide us with fundamental query operators as these
are induced by the types and their algebras themselves.

Introductory texts on category theory may be found in [2, 10, 42, 63, 64,
79, 98, 103, 104]. Among these texts, Bird and de Moor [10] put particular
emphasis on the exploration of categorical datatypes.

 Category. A category is a system of objects and morphisms (also called
arrows). Fix a category C (categories will be written using a bold font).
Every morphism f in C uniquely determines two C-objects, its source (src f)
and target (tgt f). If src f = A and tgt f = B we write f:A →C B, A → B
is called the type of f in C. If the category C is clear from the context we
declare it to be the default category and write f:A → B instead.

Two C-morphisms f:A → B and g:B → C may be composed to obtain
the morphism g ·f of type A → C in C (closure). Composition is associative,
i. e., for morphisms f:A → B, g:B → C, and h:C → D we have

h · (g · f) = (h · g) · f .

Each object A comes equipped with an identity morphism idA:A → A which
acts as a neutral element with respect to composition (let f:A → B):

f · idA = f = idB · f .

It is sometimes insightful to display objects and morphisms as diagrams,
i. e., directed graphs having their nodes and edges labeled by objects and
morphisms, respectively. The diagram commutes, if any two paths (compo-
sitions of morphisms) connecting the same pair of objects denote the same
morphism. Associativity of composition and neutrality of identity morphisms
may thus be depicted as two commutative diagrams:

A
f

��

g·f
���

��
��

��
��

��
� B

g

��

h·g

���
��

��
��

��
��

�

C
h �� D

A
f

��

idA

��

f

���
��

��
��

��
��

� B

idB

��

A
f

�� B

While we will use diagrams to illustrate the typing of morphisms, we shall
rarely employ them to conduct proofs. Proofs are carried out in the calcula-
tional style introduced in Paragraph 9.
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In what follows we fix the default category to be the category Set. In Set,
objects denote sets while a morphism f is to be interpreted as a total function
with domain src f and range (codomain) tgt f . If we interpret composition
of morphisms as function composition and let idA denote the identity func-
tion λx.x on A, we obey the category axioms. The type of a morphism f
may then be understood as the type of a function f in the sense of typed
functional programming languages. This is exactly the interpretation we will
need during our discussion of datatypes.

 Initiality. An object 1 in category C is the initial object, if C contains
exactly one morphism of type 1 → A for any object A of C. 1 is uniquely
determined up to isomorphism: let 1 ′ be another initial object. Then there
are morphisms f:1 → 1 ′ (by initiality of 1 ) and g:1 ′ → 1 (by initiality
of 1 ′). Since the identity morphisms id1:1 → 1 and id1 ′:1 ′ → 1 ′ are the
only arrows of these types, we can conclude that g · f = id1 and f · g = id1 ′ .
These two equations exactly establish the categorical notion of 1 and 1 ′ being
isomorphic. The initial object in Set is ∅.

In due course, the initiality of an algebra for a datatype will assert the
existence as well as uniqueness of the fundamental operators for that data-
type.

 Functor. A functor F:C → D is a mapping from category C to category
D. This implies that F specifies an object as well as a morphism mapping.
Each object A of C is mapped to its image FA in D. The morphism mapping
“preserves” arrows: if f:A →C B then Ff:FA →D FB. Additionally, F is
required to preserve identities and to distribute through composition:

FidA = idFA and F(g · f) = Fg · Ff . Functor

Note that if G:D → E is another functor, then the composition GF:C → E,
with GFA defined to mean G(FA) (likewise for the morphism mapping), is
a functor as is the identity functor Id:C → C with IdA = A and Idf = f .
(Categories and functors are the objects and morphisms in category Cat
respectively.)

Which role do functors play in the context of categorical datatypes? A
functor F:Set → Set (also called an endofunctor in Set) can perfectly model
a type constructor or, alternatively, type former. Functional programming
languages like Haskell or ML provide a type constructor list that lifts any
type A to the type of lists of A, namely listA. This is the object mapping
part. If we take listf = map f (map being the standard higher-order function
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that applies a function to all elements of a list) we obtain a valid morphism
mapping, because

f:A → B ⇒ map f:listA → listB

and
map idA = id listA and map (f · g) = map f · map g .

This indeed turns the list type constructor with map into an endofunctor
list:Set → Set. The important thing to observe here is the close connection
between the type constructor and its associated morphism mapping. We will
formally justify this intuition soon.

 Product and sum. Given two objects A and B of C we can construct
their product object A × B with accompanying left and right projections
outl:A × B → A and outr:A × B → B if we can find for all morphisms
f:C → A and g:C → B a morphism f � g (“f split g”) in C so that the
following diagram commutes:

A A×B
outl�� outr �� B

C

f

����������������
g

����������������

f�g

��

The diagram asserts the cancellation properties for products outl ·(f�g) = f
and outr · (f � g) = g.

The notion of categorical sum or coproduct is completely dual. The sum
of A and B, denoted A+B, and its injections inl:A → A+B and inr:B →
A+B can be constructed if we are able to find for all morphisms f:A → C
and g:B → C a morphism f � g (“f junc g”) in C so that the diagram

A

f

���
�������������

inl �� A + B

f�g

��

B
inr��

g

		��������������

C

commutes. It displays the cancellation for sums: (f � g) · inl = f and
(f � g) · inr = g.

It may be helpful to perceive � and � as mnemonics for the arrow heads
of split and junc in the corresponding diagrams above.
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If we can build the product (sum) for any two objects, C is said to have
products (sums). Category Set has products and sums: define A × B to be
the cartesian product of pairs (x, y) with x ∈ A, y ∈ B and A + B to be the
disjoint sum of sets A and B. The apparent projections and injections then
are outl (x, y) = x, outr (x, y) = y and inl x = Lx, inr y = Ry respectively
(L and R being tags to distinguish the origin set of the injected elements).
To complete our definition of product and sum in Set finally define

f � g = λx.(f x, g x) and f � g = λx.case x of Ly → f y
Ry → g y ,

so that � essentially implements case selection.

 Bifunctors and polynomial functors. Fix C to be category with prod-
ucts. In C, we can lift the product former × to be applicable to morphisms,
too: for morphisms f:A → B and g:C → D, define

f × g = (f · outl) � (g · outr):A× C → B ×D .

With the definition of � from the previous paragraph, we derive the meaning
of f × g in Set as follows:

f × g

= { definition of × on morphisms }
(f · outl) � (g · outr)

= { definition of � in Set }
λz.((f · outl) z, (g · outr) z)

= { set z = (x, y) }
λ(x, y).((f · outl) (x, y), (g · outr) (x, y))

= { outl and outr in Set }
λ(x, y).(f x, g y) .

For sums we can argue dually and define + on morphisms f:A → B,
g:C → D to mean

f + g = (inl · f) � (inr · g):A + C → B + D

A similar calculation like the one exercised above reveals the meaning of the
thus lifted + in Set:

f + g = λx.case x of Ly → L(f y)
Ry → R(g y) ,
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i. e., f + g uses the tags to scrutinize its argument for application of f or g
and finally injects its argument into the result by restoring the original tag.

Now that × and + act on objects and morphisms one might suspect (or
wish) that they behave like functors. Indeed, defined like above, × and + are
bifunctors, i. e., functors of two arguments: given the morphisms f:A →C B,
g:B →C C and h:D →D E, j:E →D F , � is a bifunctor if f �h:A�D →E

B � E and

idA � idD = idA�D and (g · f) � (j · h) = (g � j) · (f � h) .

We can alternatively view � as a regular functor �:C×D → E, where C×D
denotes the product category of categories C and D. The objects of C × D
are all pairs (C,D) with C being an object of C and D being an object of D.
Morphisms (and likewise their composition) are defined coordinate-wise in
C×D: if f:C1 →C C2 and g:D1 →D D2 then (f, g):(C1, D1) →C×D (C2, D2).

A bifunctor can be used to combine two given functors F and G to give a
functor F�G defined to mean (F�G)A = FA�GA (likewise for morphisms).

We will solely use × and + in place of �. As usual, × binds stronger
than + so that F + G× H parses as F + (G×H). Functor composition binds
weakest.

Functors constructed from the identity functor Id, constant functors KA

(with KAB = A and KAf = idA), bifunctors × and +, and functor composi-
tion only are the so-called polynomial functors. Polynomial endofunctors in
Set form the basis of our system of type constructors: they provide tuples
(built by ×), unions (built by +) and simple or atomic types (built by Id
and K respectively, i. e., objects in Set).

2.3 Categorical Collection Type Constructors

Now that we have got the necessary categorical machinery at our disposal,
we are ready to complete our type system by the introduction of collection
type constructors.

 We have already mentioned in Paragraph 7 that our view of datatypes
will be non-monolithic, i. e., the actual construction of a complex value of
a particular type will be explicitly visible. To represent any such complex
value, we need to assemble it from its constituents (which might be atomic
or complex themselves) by means of its type’s constructor functions.

For collection types, we will adopt the insert representation [111] through-
out this text. In such a representation, it is sufficient for a collection type
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constructor T1 to come equipped with just two constructor functions2

• nil
T

is a constant function representing an empty T-collection, while

• cons
T
(x, xs) inserts x into the T-collection xs .

Issues of polymorphism will be addressed soon. For now, you may assume
x to be of some fixed element type E. The object in Set representing (or:
“the type of ”) T-collections of E-typed elements will be TE.

The economical use of constructors is one of the major advantages of the
insert representation. See Section 2.10 for a discussion of alternative repre-
sentations. Any finite T-collection value may be built by a finite iterative
application of the insertion constructor cons

T
to the seed nil

T
. Put differ-

ently: the type of T-collections is generated by nil
T

and cons
T

(here and in
what follows, we will abbreviate nil

T
by [ ]

T
and cons

T
by the right-associative

infix operator
T
: whenever it renders expressions more readable):

[x1, x2, . . . , xn]
T

= x1
T
:(x2

T
:(· · · (xn

T
:[ ]

T
) · · · )) = x1

T
:x2

T
: · · · T

:[ ]
T
,

The application of this composition of nil
T

and cons
T

to elements xi is some-
times called the spine of [x1, . . . , xn]

T
, mnemonically depicted as

T
:

��
��

�
��

��
�

x1
T
:

��
��

�

�
�

�
�

�
�

�

x2

T
:

��
��

�
��

��
�

xn [ ]
T

The above uses [x1, x2, . . . , xn]
T

as a handy shorthand notation for a T-
collection, but we should keep in mind that we are actually constructing
the value by forming its spine.

In the sequel we will mainly use set, bag, and list as collection type con-
structors and the following paragraphs will introduce the respective functors

1Here we use the sans-serif font that has been reserved to denote functors which will
be justified in Paragraph 34 where we establish T’s functoriality.

2We realize that the names nil (“nothing in list”) and cons (“construct”) have already
been taken by the functional programming community to denote the constructor functions
of the list type constructor. To emphasize various useful analogies, however, we refrained
from inventing new constructor names for collection formers other than list.
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for these. For set as well as bag, the same value may be denoted by different
spines. As the obvious interpretations for cons

set
(x, xs) and nil

set
are {x}∪xs

and ∅, we have that cons
set

is left-commutative and left-idempotent, i. e.,

y
set
: (x

set
: xs) = x

set
: (y

set
: xs) and x

set
: (x

set
: xs) = x

set
: xs .

A bag can contain an element x multiple times but does not preserve the order
of insertions so that cons

bag
is left-commutative only. Constructor cons

list
is

neither. Section 2.7 will formalize the equalities of spines by the notion of
datatype equations.

 Fix an element type E and recall that we started out with the aim to
model a collection type constructor T as an algebra. The carrier set of this
algebra will clearly be TE as already noted in the previous paragraph. The
only operations in this algebra will be the constructor functions nil

T
and

cons
T
. In Set, these are nothing else but the ordinary arrows3 nil

T
:1 → TE

and cons
T
:E × TE → TE. As both constructor functions share carrier TE

as their target object, we can alternatively specify their types by stating:

nil
T � cons

T
:1 + E × TE → TE .

The categorical representation of the thus induced algebra is remarkably
concise.

 Definition. Let F denote an endofunctor in category C. An F-algebra
is an arrow α = FA → A. The object A of C is called the carrier of α. �

 TE collections in insert representation are modeled by the algebra nil
T�

cons
T
:F(TE) → TE, with F being the polynomial endofunctor K1 + KE × Id

in Set. Note that

F(TE)

= { definition of F }
(K1 + KE × Id)(TE)

= { bifunctors + and ×}
K1 (TE) + KE(TE) × Id(TE)

3An arrow f:1 → A is also called an element of object A. In Set, such arrows represent
constant functions and for convenience we shall sometimes identify the arrow and its target
object. In type theory, 1 is often called the unit type consisting of the only element ()
(also referred to as unit).
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= { functors K and Id }
1 + E × TE ,

and analogously Ff = id1 + idE × f .

 Definition. Pin down two F-algebras α = FA → A and β = FB → B.
An F-homomorphism from α to β is an arrow h:A → B such that

h · α = β · Fh , Hom

which we can equivalently render as the commuting diagram

FA
α ��

Fh

��

A

h

��

FB
β

�� B

As an important note, observe that for any object A its identity arrow
id:A → A is an F-homomorphism. For any two F-homomorphisms f and
g, we have that f · g is an F-homomorphism as well. This already provides
everything that is needed to form a category (cf. Paragraph 11): we define
Alg(F) to denote the category whose objects are F-algebras. The arrows of
Alg(F) are the F-homomorphisms. �

 A simple calculation reveals that property Hom of h indeed coincides
with the well-known concept of h being a homomorphism between algebras:
let F = K1 +KE × Id once more denote the functor encoding the constructors
of a type in insert representation introduced in Paragraph 19. Furthermore
fix the F-algebras α = e��:FA → A and β = z��:FB → B (see [10, p. 47]
for a proof that any algebra for functor F with carrier A has the form e � �
with arrows e:1 → A and �:E × A → A). The calculation is as follows:

h · α = β · Fh
≡ {α = e � �, β = z � � }

h · (e � �) = (z � �) · Fh
≡ { sum: h · (f � g) = (h · f) � (h · g) }

(h · e) � (h · �) = (z � �) · Fh
≡ { unfold F, polynomial functor }

(h · e) � (h · �) = (z � �) · (id1 + idE × h)
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≡ { sum: (h � j) · (f + g) = (h · f) � (j · g) }
(h · e) � (h · �) = (z · id1 ) � (� · (idE × h))

≡ { identity arrow }
(h · e) � (h · �) = z � (� · (idE × h))

≡ { cancellation }
h · e = z

∧ h · � = � · (idE × h)

≡ { point-wise reasoning }
h e = z

∧ h(x � xs) = x � (h xs)

The two last equations constitute the familiar statement of h being a homo-
morphism from α to β.

2.4 Catamorphisms

 Up to now we have informally called nil
T

and cons
T

the constructors for
a datatype former T. The intuition behind the constructor notion is that

• every element of the carrier TE of α = nil � cons:F(TE) → TE can
be constructed using applications of nil

T
and cons

T
to values in E only.

No other elements are in TE, i. e., there is no “junk.”

• Secondly, given that there are no equations yet, two elements of TE
are identical only if their spines are exactly the same. Jumping ahead
to Section 2.7 in which we introduce equations, this means that two
elements are identical only if this can be derived from the equations
of the datatype. This prevents us from accidentally “confusing” two
elements of TE with each other.

Let us shed more categorical light on this here.
Assume for now that Alg(F) has an initial object, say τ:FT → T . Ac-

tually this is no strong assumption at all in our setting as for polynomial
functors F, the existence of an initial object in Alg(F) is guaranteed (see [81]
for a proof of this statement).

 Definition. Let τ:FT → T be the initial and α:FA → A an arbitrary
object of Alg(F). An F-homomorphism of type T → A (which is, due to the
initiality of τ , guaranteed to exist and to be unique, cf. Paragraph 12) from
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τ to α is a so-called F-catamorphism. These special homomorphisms will
accompany us through the entire text, so we will adopt the succinct notation
�α �F for the catamorphism from τ to α.4 If the functor is evident from the
context we take the freedom to omit the subscript.

The uniqueness of �α � indeed is its prominent property. Any other F-
homomorphism h from τ to α clearly has to be identical with �α �:

h · τ = α · Fh ≡ h = �α � . Cata

The morphisms involved in law Cata are shown in the commuting diagram
below. A (unique) homomorphic translation between algebras like the one
depicted here will form the basis of our query language.

FT
τ ��

F�α�

��

T

�α�

��

FA α
�� A

�

 Initial algebras. What does the initiality of τ buy us? First, Para-
graph 12 introduced initiality as a concept that determined the initial object
in a category up to isomorphism. Of course the same is true in category
Alg(F): suppose we can identify another initial algebra τ ′, we know that τ
and τ ′ are isomorphic and therefore abstractly the same. But this notion of
abstraction perfectly coincides with the independence of representation of an
abstract datatype. Abstraction is inherent to initiality. In what follows, we
will use the term abstract datatype to refer to the isomorphism class of the
initial algebra τ .

Second, as the next paragraph will show, τ is an isomorphism from FT
(the type of expressions built from operators in τ and elements of the carrier
T ) to T . As τ is a morphism in Set, we thus know that τ is a bijective
mapping from FT to T :

• τ is surjective, so any element in T is represented by at least one ex-
pression in FT . There is no “junk.”

• τ is injective, so we may conclude that the elements of T have a unique
spine representation in FT . Consequently there is no “confusion.”

4The “banana brackets” � ·�—presumably introduced by Lambert Meertens—are the
established catamorphism symbol in the Squiggol community.
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Most importantly however, initiality justifies the principle of defining
functions on T by structural recursion. As each element e of T is constructed
by its unique spine in FT , i. e., a composition of the constructors of τ , we can
define a function h by case selection on the constructor whose application
is outermost in the spine of e. Each case branch may then descend further
down the spine and recursively apply h.

We can also see this as follows: as τ:FT → T is an isomorphism, we
are assured of the existence of an “inverse” isomorphism τ̄:T → FT with
τ · τ̄ = idT and τ̄ · τ = idFT . Observe that the type of τ̄ suggests to interpret
this arrow as a destructor or parser mapping values in T to the expression
(spine) in FT that constructs this value. This gives us more insight into the
nature of the action of a catamorphism h = �α � for some F-algebra α:

h = �α �

≡ {Cata }
�α � · τ = α · F�α �

≡ { τ · τ̄ = idT }
�α � = α · F�α � · τ̄ ,

i. e., h forms the spine of its argument, recursively applies h by walking down
the spine, and finally builds the result by interpreting the spine in algebra α.

The following lemma guarantees the existence of τ̄ and justifies the above.

 Lambek’s Lemma [71]. Let τ:FT → T be the initial algebra of endo-
functor F. Then τ is an isomorphism, i. e., there exists an arrow τ̄:T → FT
such that τ · τ̄ = τ̄ · τ = id .

Proof. Applying the endofunctor F to the algebra τ yields the F-algebra
Fτ:F(FT ) → FT . The unique mapping from τ to Fτ—which is guaranteed
to exist due to the initiality of τ—is �Fτ �:T → FT . We now argue that
τ̄ = �Fτ �.

In the diagram below, the left square merely states that the catamor-
phism �Fτ � is an F-homomorphism which is evident. Both paths in the right
square denote the very same arrow composition so that it trivially commutes.
“Pasting” commutative diagrams yields a commutative diagram.

FT
F�Fτ �

��

τ

��

F(FT ) Fτ ��

Fτ

��

FT

τ

��

T
�Fτ �

�� FT τ
�� T
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The diagram reveals τ · �Fτ � to be a mapping from the algebra τ to τ itself,
so we have τ · �Fτ � = id by initiality. All that remains to be done now is to
carefully look at the left square from which we get

�Fτ � · τ = Fτ · F�Fτ �

≡ { functoriality of F }
�Fτ � · τ = F(τ · �Fτ �)

≡ { τ · �Fτ � = id established above }
�Fτ � · τ = Fid

≡ { functoriality of F }
�Fτ � · τ = id ,

which completes the proof. �

 Lambek’s Lemma suggests an alternative view of datatype semantics
[72]. Observe that the initial object τ:FT → T in Alg(F) may be understood
as a fixpoint of endofunctor F in the underlying category C since FT and T
are isomorphic and therefore abstractly the same (C = Set in our case).
Since τ is initial it is indeed the least fixpoint of F if we interpret the arrows
in C as a pre-order. This observation has led to the so-called least fixpoint
semantics which defines the algebra for a datatype as τ = µF (symbol µ
denotes the least fixpoint operator).

 Let us take up functor F = 1 + KE × Id of datatypes in insert represen-
tation again (E fixed). Algebra τ = nil

T � cons
T
:F(TE) → TE as defined in

Paragraph 19 is initial in Alg(F).
The proof of this claim necessarily involves to show that for any homo-

morphism h from τ to an arbitrary F-algebra α = e � �:FA → A we have
that h = �α � = �e � �� for a suitable definition of � ·�, i. e., we have to
establish the validity of law Cata. We can see this as follows:

h · τ = α · Fh
≡ { τ = nil

T � cons
T
, α = e � � }

h · (nil
T � cons

T
) = (e � �) · Fh

≡ { sum }
(h · nil

T
) � (h · cons

T
) = (e � �) · Fh

≡ {F = 1 + KE × Id, functor }
(h · nil

T
) � (h · cons

T
) = (e � �) · (id1 + idE × h)
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≡ { sum }
(h · nil

T
) � (h · cons

T
) = (e · id1 ) � (� · (idE × h))

≡ { cancellation }
h · nil

T
= e

∧ h · cons
T

= � · (idE × h)

≡ { point-wise reasoning }
h nil

T
= e

∧ h (cons
T
(x, xs)) = x � (h xs) .

Finally, define �e � �� to mean

�e � �� nil
T

= e
∧ �e � �� (cons

T
(x, xs)) = x � (�e � �� xs) ,

Cata-Ins-Rep

which validates law Cata because �e � �� = h.
Note how �e� �� performs the case selection we have just referred to at

the end of Paragraph 24. We can think of �e � �� as using a pattern match
on the root of the argument’s spine to decide for the selection of one of the
two branches shown in Cata-Ins-Rep:

• if nil
T

is encountered as the spine’s root, it is replaced by e. Likewise,

• if cons
T

is matched, it is replaced by function � and the catamorphism
recursively descends into the spine xs whose height is one less than that
of the original argument. This guarantees the recursion’s termination.

The latter case explains the name catamorphism quite figuratively: the Greek
prefix κατά (downwards) refers to the catamorphism’s descent of the argu-
ment’s spine.

The tree notation for spines which we have introduced in Paragraph 16,
reveals that an F-catamorphism essentially performs the following simple tree
transformation:

�e � ��




T
:

��
�� ��

��
�

x1
T
:

��
��

�
�

�
�

�
�

x2

T
:

��
�� ���

�

xn [ ]
T




=

�
��

� ��
�

x1 �
��

�

�
�

�
�

�

x2

�
��

� ��
��

xn e
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This observation immediately yields the so-called reflection law for catamor-
phisms:

�τ � = id . Cata-Reflect

Cata-Ins-Rep obviously adheres to the general recursion scheme of
primitive recursive functions [89]. The simplicity of the action of � ·�F is
all the more remarkable as it is already powerful enough to express the core
operators of relational algebra, nested relational algebra [13, 20], and—as we
will discuss to some depth in this text—modern orthogonal query languages
for complex collection types like ODMG’s OQL [23]. We can be more spe-
cific here: as the catamorphism combinator � ·�F is a generic variant of the
sri structural recursion operator on collections in insert representation it is
capable of expressing exactly the PTIME queries, i. e., those computable in
polynomial time [13, 110, 111].

 A functional inclined programmer has surely noticed that the action
Cata-Ins-Rep of catamorphism �e � �� on a spine is exactly that of the
well-known higher-order function foldr on a list:

foldr : (E × A → A) → A → listE → A
foldr � e nil

list
= e

foldr � e (cons
list

(x, xs)) = x � (foldr � e xs) .

As it happens, foldr is a catamorphism for lists in insert representation (F =
1 + KE × Id,T = list), i. e., we have foldr � e = �e � ��:

1 + E × listE
nil

list�cons
list

��

id1+idE×(foldr � e)

��

listE

foldr � e

��

1 + E × A
e��

�� A

F-catamorphisms—with F being the endofunctor describing the insert rep-
resentation of a datatype—indeed define a generalized foldr for any datatype
former T.

More generally even, executing a calculation like the one in Paragraph 27
automatically provides us with a fold for any endofunctor F and datatype
constructor T.
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 Example. A wide range of list-processing functions turn out to be cata-
morphisms from the list algebra τ = nil

list � cons
list
:F(listE) → listE to other

F-algebras, i. e., these functions compute their result by spine transforma-
tions alone.

Let Num denote the object in Set representing the set of natural numbers
N. The function length:listE → Num which computes the length of a list is
a catamorphism from τ to the F-algebra 0 � (+ · (K1 × id)):FNum → Num
with Kx y = x. Note that + denotes the addition on Num in this example.
We have length = �0 � (+ · (K1 × id))� as the following calculation in which
we apply the length catamorphism to the argument [0, 1, 2]

list
exemplifies:

�0 � (+ · (K1 × id))� [0, 1, 2]
list

= { list insert representation }
�0 � (+ · (K1 × id))� (0

list
: 1

list
: 2

list
: [ ]

list
)

= {Cata-Ins-Rep }
(+ · (K1 × id)) (0, �0 � (K1 × id)� (1

list
: 2

list
: [ ]

list
))

= { calculation }
1 + (�0 � (K1 × id)� (1

list
: 2

list
: [ ]

list
))

= {Cata-Ins-Rep }
1 + ((+ · (K1 × id)) (1, �0 � (K1 × id)� (2

list
: [ ]

list
)))

= { calculation }
1 + 1 + (�0 � (K1 × id)� (2

list
: [ ]

list
))

= {Cata-Ins-Rep }
1 + 1 + ((+ · (K1 × id)) (2, �0 � (K1 × id)� [ ]

list
))

= { calculation }
1 + 1 + 1 + (�0 � (K1 × id)� [ ]

list
)

= {Cata-Ins-Rep }
1 + 1 + 1 + 0

= { arithmetic }
3 .

♦

 Example. A spine resulting from a catamorphism application may
perfectly have a greater or smaller height than the argument spine. The
selection function filter p:listE → listE, with p:E → Bool being some predi-
cate on the list elements of type E, is a catamorphism from τ to the F-algebra
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nil
list � ((cons

list � outr) · (p · outl)?):F(listE) → listE. Here, ? denotes the
infix conditional defined by

? : (A → Bool) → A → A + A
p ?x = if p x then inl x else inr x

The morphism (cons
list � outr) · (p · outl)?:E × listE → listE implements

a conditional cons
list

in Set as a straightforward calculation shows:

(cons
list � outr) · (p · outl)?)

≡ { unfold ? }
(cons

list � outr) · (λz.if (p · outl) z then inlz else inrz)

≡ { conditional, (cons
list � outr) strict }

λz.if (p · outl) z then ((cons
list � outr) · inl) z

else ((cons
list � outr) · inr) z

≡ { sum cancellation }
λz.if (p · outl) z then cons

list
z else outrz

≡ { set z = (x, xs), outl , outr in Set }
λ(x, xs).if p x then cons

list
(x, xs) else xs .

(As the default category we are working in is Set, we will sometimes alter-
natively denote morphisms in this category by λ-expressions directly. The
context of the current calculation will determine which notation suits best
to improve readability.)

We thus have filter p = �nil
list�((cons

list�outr) ·(p ·outl)?)�. To illustrate
the action of filter p on a spine let us instantiate E as Num and the filter
predicate as p = λx.x �= 0:

filter(λx.x �= 0)




list
:

��
��

��
��

��
�

0
list
:

��
��

��
��

��
�

1
list
:

��
��

�� ��
��

�

2 [ ]
list




=

list
:

��
��

��
��

��
�

1
list
:

��
��

�� ��
��

�

2 [ ]
list

♦
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2.5 Type Functors

 The collection type constructors T that we have met up to now have
been monomorphic in the sense that were assuming a fixed element type E.
To remedy this shortcoming, this section introduces real polymorphic type
formers.

In the case of algebras for polymorphic type constructors T, there is the
need to additionally parameterize the algebra’s endofunctor by the object
that represents the element type. This observation naturally leads to the
use of bifunctors to model such algebras, i. e., we enhance our definition of
F-algebras as follows:

 Definition. Let F denote a bi-endofunctor in a category C and let E,A
be objects in C. A polymorphic F-algebra is an arrow α:F(E,A) → A. The
object A is called the carrier of α.

Using the lingo of type theory, polymorphic algebras defined like above
have a second-order type [22]. Type parameter E is universally quantified so
that the proper type for α is ∀E.F(E,A) → A. Once we have fixed a specific
element type E ′, we can revert to the situation in which the monofunctor
FE′ (the left section of the bifunctor F) is sufficient to model the resulting,
now monomorphic, algebra:

αE′:FE′A → A with FE′A = F(E ′, A) and FE′f = F(idE′ , f) .

�

 Polymorphic algebras already provide everything we need to define the
algebra of a polymorphic collection type constructor T in insert representa-
tion. As before (see Paragraph 19), TE will be its carrier but the polymorphic
algebra differs in that we pass the element type E as an additional argument.

α = cons
T � nil

T
:F(E,TE) → TE

with
F(E,A) = 1 + E × A

∧ F(f, g) = id1 + f × g .

Fixing a specific element type E ′ leads to the algebra functor we were used
to until now so that our earlier discussion of monomorphic algebras applies
without revision:

FE′(TE ′) = F(E ′,TE ′) = 1 + E ′ × TE ′

∧ FE′f = F(idE′ , f) = id1 + idE′ × f ,

i. e., FE′ = K1 + KE′ × Id.
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 Type functors. We have claimed earlier, that there is more to the type
former T than lifting a type E to a constructed (collection) type TE: T may
be turned into a functor as well.

Let τ:F(E,TE) → TE be the initial algebra for a polymorphic type
former T. To establish T’s functoriality there does not remain much to be
done. We are already quite familiar with the object mapping part of T: T
forms a new type TE from a given type E (types being objects in Set). Given
this, the type of T’s object mapping part clearly is

f:A → B ⇒ Tf:TA → TB ,

which exactly states the typing rules for map which we have encountered
earlier in Paragraph 13 (replace T by list to obtain a perfect match).

To be more concrete, let τ = nil
T�cons

T
:F(E,TE) → TE with F(f, g) =

id1 + f × g as in the previous paragraph. If we assume for a minute that
map indeed implements the desired arrow mapping we have that

Tf




T
:

��
�� ��

��

x1
T
:

��
��

�
�

�
�

�
�

x2

T
:

��
�� ��

�

xn [ ]
T




=

T
:

��
�� ��

��

f x1
T
:

��
��

�
�

�
�

�
�

f x2

T
:

��
�� ��

�

f xn [ ]
T

where f:E → E ′. Computing Tf is a perfect job for a catamorphism! The
spine transformation depicted above is obviously implemented by

�nil
T � (cons

T · (f × id))�

= { sum }
�(nil

T � cons
T
) · (id1 + f × id)�

= { definitions of F and τ }
�τ · F(f, id)� .

It turns out that this map functor Tf = �τ · F(f, id)� exactly provides what
we were after.

 Definition. Let τ:F(E,TE) → TE be the initial algebra for the poly-
morphic type former T. Its associated type functor (sometimes referred to
as map functor) is defined by
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Tf = �τ · F(f, id)� . Type-Functor

The pair (τ,T) is called the initial type [10] induced by the bifunctor F.
We omit the details of formally establishing that this indeed turns T into a

functor. The proof of Tid = id is a trivial consequence of F’s bifunctoriality
and law Cata-Reflect. The distribution property follows immediately
with the help of law Cata-Map-Fusion (see Paragraph 39 below and [10,
42, 57]). �

 Example. For the type constructor T = list we have listf = mapf
where map denotes the well-known higher-order function which applies func-
tion f to every element of its list argument. For the sake of uniformity we
write listf instead of mapf throughout this text as we will also encounter
the type functors set and bag among others.

The type functor concept is rather generic and gives us a tool to derive
map-like functions for any initial datatype.

Consider the abstract datatype bintree of binary trees with inner nodes
labeled with a tag of type E. Such trees are built by means of the two
constructor functions

empty : 1 → bintreeE
node : E × bintreeE × bintreeE → bintreeE

where empty denotes the empty tree ε and node(n, t1, t2) constructs a tree
with root n and left and right subtrees t1 and t2 respectively. The constructor
expression

node(3, node(2, empty , node(1, empty , empty)), node(4, empty , empty))

thus builds the binary tree

3



��������

����������

2
�����

�
���

��
4

�����
�

���
���

ε 1
�����

�
���

���
ε ε

ε ε

.

The initial algebra for this datatype is τ = empty � node:F(E,TE) → TE
where F(E,TE) = 1 +E×TE×TE, F(f, g) = id1 +f ×g×g, and of course
T = bintree.
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How does the associated type functor look like? By instantiating the
ingredients of Type-Functor and conducting the simple calculation below,
we see that bintree’s map functor indeed is a tree map: the catamorphism for
the functor F defined above (whose derivation we leave to the kind reader)
recursively descends into the two subtrees of an inner node until an empty
tree ε is encountered which is left untouched by the tree map:

bintree f

= { definition of type functor }
�τ · F(f, id)�

= { unfold τ, unfold F }
�(empty � node) · (id1 + f × id × id)�

= { sum }
�empty � (node · (f × id × id))� .

As another and final example let us investigate a non-collection type
former. The type maybeE is the same as E but it additionally comes with a
distinguished element nothing which may serve as, e. g., an error value. Type
former maybe has constructors

nothing : 1 → maybeE
just : E → maybeE .

The accompanying initial algebra is τ = nothing � just:F(E,maybeE) →
maybeE with F(E,maybeE) = 1 + E, F(f, g) = id1 + f . Its type functor
turns out to be a specialized function application operator that propagates
the error value nothing and otherwise simply applies the given function:

maybe f

= { definition of type functor }
�τ · F(f, id)�

= { unfold τ, unfold F }
�(nothing � just) · (id1 + f)�

= { sum }
�nothing � (just · f)�

≡ { point-wise reasoning }
maybe f nothing = nothing

∧ maybe f (just x) = just(f x) .

Among other uses, maybe f is helpful during the implementation of and rea-
soning about functional exception handling mechanisms. ♦
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2.6 Fusion

 Now that it has now become more clear that spine transformations will
be the basic building blocks from which we will construct queries, we can
imagine that a query will typically be built by the functional composition of
such transformations.

In other words, if Q denotes a query expression then it will exhibit a
structure that may be roughly sketched as

Q ≡ · · ·h · g · f · · ·

where the functions f , g, and h represent spine transformers, in particular
catamorphisms and type functor applications (maps). Building query expres-
sions like this leads to a clear and modular way of thinking about query con-
struction itself: complex queries may be formulated by incrementally adding
a basic transformer to an already existing sequence of function compositions.
This compositional flavor of internal query representation facilitates to offer
the same flexibility at the user level (where this taste of query formulation is
often referred to as orthogonality if there is nothing but the language’s type
system that stops the user from freely combining query expressions).

We will not go into the details here as Chapter 6 will investigate the
matter more closely, but let us note that the compositional style does not
come for free:

• Each function generates an intermediate result that has to be taken up
later by the next function in the composition sequence. The manage-
ment of intermediate results may be quite costly.

• Catamorphisms essentially traverse the spine of their arguments while
performing their transformation task and each catamorphism in the
sequence does so from the spine’s root downwards. It may be desirable
to combine two or more of these transformations in such a way that a
single walk of the spine is sufficient.

What we are calling for here is the fusion of two adjacent spine trans-
formers into one [37, 44].

Two well-known theorems provide the handles we need to fuse two cata-
morphisms as well as a type functor application followed by a catamorphism
in the way just described. In Chapter 6, we will accompany these two laws
with a third theorem—also known as the acid rain theorem [112]—which
justifies an effective fusion technique that will prove especially useful during
the derivation of a stream-based (or pipelined) program from a given query.
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 Promotion Theorem [3, 56, 57]. Let F be an endofunctor in category
C so that Alg(F) has an initial object τ . For any two F-algebras f:FA → A
and g:FB → B and an F-homomorphism h:A → B from f to g we have
that

h · �f � = �g � . Cata-Fusion

Proof. A single calculation suffices to establish the claim:

h · �f � · τ
= {Cata: �f � · τ = f · F�f � }

h · f · F�f �

= {Hom: h · f = g · Fh }
g · Fh · F�f �

= {F functor }
g · F(h · �f �)

⇒
h · �f � · τ = g · F(h · �f �)

≡ {Cata, uniqueness of �g � }
h · �f � = �g � .

�
As any F-catamorphism is a special F-homomorphism, law Cata-Fusion

indeed is the catamorphism fusion tool we have appealed for above.

 Theorem. If (τ,T) denotes the initial type (Definition 35) for the en-
dofunctor F, then we can fuse a composition of an F-catamorphism with its
type functor as follows (under typings f:A → B, g:FB → B):

�g � · Tf = �g · F(f, id)� . Cata-Map-Fusion

Proof. The proof invokes law Cata-Fusion as a subroutine which is hardly
surprising because the arrow mapping of the type functor T has been defined
as a specific F-catamorphism (see Definition 35). We calculate as follows (cf.
[10]):

�g � · Tf = �g · F(f, id)�

≡ {Type-Functor for T }
�g � · �τ · F(f, id)� = �g · F(f, id)�
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⇐ {Cata-Fusion }
�g � · τ · F(f, id) = g · F(f, id) · F(id , �g �)

≡ {Cata: �g � · τ = g · F(id , �g �) }
g · F(id , �g �) · F(f, id) = g · F(f, id) · F(id , �g �)

≡ {F bifunctor }
g · F(id , �g �) · F(f, id) = g · F(id , �g �) · F(f, id)

≡ { reflexivity of = }
true ,

which establishes the law as a logical consequence of the trivial premise true.
�

 Example. To become acquainted with the flavor of program transfor-
mations which now have been justified by the fusion laws, let us take a closer
look at a simple spine transformer composition and how to derive its fused
equivalent.

The expression filter p · map f:listA → listB traverses a given argument
spine twice. During the first traversal, map f generates a new spine by re-
placing each list element x by f x. The second traversal then takes up this
intermediate spine to built the final result from all elements that satisfy
predicate p.

We can clearly accomplish the same by walking down the spine only once.
In order no to alter the meaning of the expression we only have to take care
to apply f to the list elements before predicate p checks for their inclusion in
the final result. Fusion allows us to automatically derive an expression that
does just this. No intermediate result is produced.

As before, we are working with collections in insert representation, i. e.,
the underlying algebra functor is F(f, g) = id1 +f×g. Although the example
expression operates on lists only this is not principle to the method, so let
us generalize the argument to some arbitrary type constructor T. We have
map f = Tf , making the expression subject to law Cata-Map-Fusion.
Once we have unfolded filter ’s definition as an F-catamorphism (see Exam-
ple 30), we immediately spot the possibility for fusion:

filter p · Tf
= { unfold filter }

�nil
T � ((cons

T � outr) · (p · outl)?)� · Tf
= {Cata-Map-Fusion }

�(nil
T � ((cons

T � outr) · (p · outl)?)) · F(f, id)�
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= { definition of F }
�(nil

T � ((cons
T � outr) · (p · outl)?)) · (id1 + f × id)�

= { sum }
�nil

T � ((cons
T � outr) · (p · outl)? · (f × id))� ,

which already completes the fusion step. We can rewrite this expression a
bit further so that it reveals its nature of actually being a specialized filter :

�nil
T � ((cons

T � outr) · (p · outl)? · (f × id))�

= { p? · f = (f + f) · (p · f)? }
�nil

T � ((cons
T � outr) · (f × id + f × id) · (p · outl · (f × id))?)�

= { product, sum }
�nil

T � (((cons
T · (f × id)) � (outr · (f × id))) · (p · f · outl)?)�

= { product }
�nil

T � (((cons
T · (f × id)) � outr) · (p · f · outl)?)� .

We finally ended up with a single spine transformer instead of two. Sub-
sequent transformation steps could now proceed with fusion given that the
newly derived catamorphism is adjacent to other transformers in a larger
composition chain. While we do not formulate this as our primary opti-
mization goal, “excessive” fusion—possibly hand in hand with helper trans-
formations that rely on commutativity, distributivity, or similar algebraic
properties—could thus be exploited to minimize the spine transformer count
in a given expression. ♦

 The development of strategies for the removal of intermediate data
structures, for which Wadler [118] has coined the term deforestation, has al-
ways been a major driving force of the program transformation community.5

The impact of this research on our work will be the focus of Chapter 6.
Taken as a whole, the transformation exercised in the last example may

look rather involved. This is especially true for the step in which the infix
conditional is rewritten: p?·f = (f+f)·(p·f)? . While this is no deep insight
at all, the step must be regarded as a so-called Eureka step in this context,
i. e., a rewriting that is not immediately motivated by the goal which the
current calculation strives for. Even worse, asking if a particular morphism
is a homomorphism which, e. g., is necessary to check the applicability of
law Cata-Fusion, is undecidable in general [14, 20].

5Deforestation removes intermediate data structures which Wadler collectively refers
to as trees, hence the name deforestation.
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Such obstacles hinder the construction of a completely unguided program
transformation system, an instance of which—a database query optimizer—
we are discussing in this text.

As it will turn out, however, we do not need the full power of fusion at
our disposal to generate efficient programs from query expressions. While
still retaining the expressiveness needed to cover modern orthogonal query
languages, the query compiler (Chapter 3) will emit expressions in a form that
is amenable to fusion using a simple yet powerful one-step transformation,
cheap deforestation. This process will be fully automatic (see Chapter 6 and
[50, 51, 59, 74, 112]).

2.7 Datatype Equations

 The algebras we have met up to now have all been anarchic or free in
the sense that they do not obey any equations. An equation for a datatype—
actually for its algebra to be precise—is imposed by the designer of that type
at will, or, put more positive, equations provide the instrument to introduce
a controlled form of confusion: two distinct algebra expressions may denote
the very same object if the equality of these expressions is derivable from a
set of specified equations. It is important not to confuse equations with the
notion of law which represents provable statements like the Cata-Fusion

theorem.

We have chosen list as the predominant example of a type former until
now because its algebra is indeed free. The equational theory of the list
algebra in insert representation is empty: there is no confusion between a list
spine (in F(listE)) and the actual list value (in listE) it represents. Note that
this is just the isomorphism statement of Lambek’s Lemma:

F(listE)
τ ��

listE
τ̄

�� ,

which, in this context, can be read as: syntactical equality means semantical
equality.

The need for datatypes that obey equations arises with the problem of
modeling non-free algebras like those for the type formers bag and set. No
isomorphism like the above exists between F(bagE) or F(setE) and their
respective carriers: the left-commutativity of

bag
: and

set
: (the latter addi-

tionally being left-idempotent or left-absorptive) renders these constructors
non-injective (see Paragraph 16). The set spines [1, 2, 4]

set
and [2, 4, 4, 1, 2]

set

both represent the set value {1, 2, 4}, for example.
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 How does the presence of confusion affect query processing in our cata-
morphism-based framework? To retain the determinism of the catamorphism
action on a spine we need the action to be indifferent towards the non-
injectivity of the underlying algebra’s constructors. Otherwise we would in
general have �e � �� [1, 2, 4]

set �= �e � �� [2, 4, 4, 1, 2]
set

which clearly is not
what we aim for.

To be more precise, assume a type T in insert representation with a left-
commutative constructor �. A catamorphism �e� �� over values of T does
not care about the actual order of constructor applications, i. e., we have

�e � �� · � · (outl � (� · outr))

= � · ((outl · outr) � (� · (id × outr))) · (id × (id × �e � ��)) .
Cata-Comm

Read point-wise and slightly simplified, this is equivalent to the equality

�e � �� (y � x � xs) = x � (�e � �� (y � xs)) .

Let � analogously denote a left-idempotent insertion constructor. A dupli-
cate element at the front of a spine does not influence a catamorphism action.
We express this by

�e � �� · � · (outl � �) = � · (id × �e � ��) , Cata-Idem

or, expressed point-wise,

�e � �� (x � x � xs) = x � �e � �� xs .

 The complexity of Cata-Comm and Cata-Idem may make it hard
to detect, but both equalities follow a common theme. If we let τ denote
the initial algebra for the type T in insert representation (so that we have
� = τ · inr and � = τ · inr in the case of Cata-Comm and Cata-Idem,
respectively), the equalities adhere to the pattern

�f � · Lτ = Rf · H�f � ,

if we instantiate functions L, R, and H for Cata-Comm as Lτ = (τ · inr) ·
(outl �((τ · inr) ·outr)), Rf = (f · inr) ·((outl ·outr)�((f · inr) ·(id ×outr))),
and H�f � = id × (id × �f �). For equality Cata-Idem we get Lτ = (τ · inr) ·
(outl � (τ · inr)), Rf = f · inr , and H�f � = id × �f �.

Functions L and R are examples of transformers [42, 43], as we will soon
see. Transformers are categorical encodings of terms with variables of type
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H. In the form we are using them here, “terms” L and R play the role of rep-
resenting the left- and right-hand side (lhs and rhs) of a datatype equation,
respectively. For our purposes, transformers make the burdensome introduc-
tion of non-categorical notions like signature, syntax, and variables—which
are otherwise needed to reason about terms—superfluous. Using transform-
ers, we can stay in the categorical realm.

 Definition. Let h:A → B be an F-homomorphism from F-algebra
α:FA → A to β:FB → B, and let H denote another endofunctor. An arrow
T:Alg(F) → Alg(H) is called a transformer of type H if

h · α = β · Fh ⇒ h · Tα = Tβ · Hh . Transformer

Rephrasing Transformer diagrammatically clearly reveals T ’s property of
preserving the homomorphism h:

FA
α ��

Fh

��

A

h

��

FB
β

�� B

⇒
Transformer

HA
Tα ��

Hh

��

A

h

��

HB
Tβ

�� B

�

 Verifying the Transformer property for equalities Cata-Comm and
Cata-Idem is a straightforward but somewhat tedious task. We will es-
tablish the validity of Transformer for the left-hand side term Lτ =
(τ · inr) · (outl � ((τ · inr) · outr)) of type Hh = id × (id × h) in equal-
ity Cata-Comm only here. The other terms are shown to be transformers
using similar calculational arguments.

So let α = e � �:FA → A and β = z � �:FB → B be two F-algebras
and h:A → B any F-homomorphism (which does not necessarily need to be
a catamorphism as they show up in the equalities) between these as in the
above definition:

h · Lα = Lβ · Hh
≡ { unfold L and H, product }

h · � · (outl � (� · outr))
= � · (outl � (� · outr)) · (id × (id × h)

≡ {h homomorphism }
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� · (id× h) · (outl � (� · outr))
= � · (outl � (� · outr)) · (id × (id × h)

≡ { absorption }
� · (outl � (h · � · outr))

= � · (outl � (� · outr)) · (id × (id × h)

≡ { product }
� · (outl � (h · � · outr))

= � · ((outl · (id × (id × h))) � (� · outr · (id × (id × h)))

≡ { product: outl (f × g) = f · outl , outr (f × g) = g · outl }
� ·(outl � (h · � · outr)) = � · ((outl · id) � (� · (id × h) · outr))

≡ {h homomorphism, identity }
� ·(outl � (h · � · outr)) = � · (outl � (h · � · outr))

≡ { reflexivity of = }
true .

The transformer notion is the only tool we have to fall back upon to
define equations for a datatype. Two transformers sharing the same type
encode the lhs and rhs terms of an equality, so it is obvious to simply define
a datatype equation as a pair of correctly typed transformers. This is exactly
what the following definition states.

 Definition. A pair of transformers (L,R) defines a datatype equation
(or equation for short) if L and R are of the same type. Equation (L,R)
holds for algebra α if Lα = Rα. �

 The equalities Cata-Comm and Cata-Idem of Paragraph 43 do not
only describe the action of a catamorphism on the non-free bag and set alge-
bras, they also induce the transformers we need to characterize these algebras
themselves. For any algebra α in insert representation, the datatype equation
describing the left-commutativity of insertion is given by the transformers of
Cata-Comm, the left-idempotence equation is derived from the transformers
occurring in Cata-Idem:(

(α · inr) · (outl � ((α · inr) · outr)) ,

(α · inr) · ((outl · outr) � ((α · inr) · (id × outr)))
) Eq-Comm

(
(α · inr) · (outl � (α · inr)) , α · inr

)
. Eq-Idem
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Imposing Eq-Comm on the list algebra will give us a bag algebra as we
were calling for in Paragraph 16: if Eq-Comm holds for the algebra [ ]

bag�bag
: ,

then, according to Definition 47, we have

L([ ]
bag � bag

: ) = R([ ]
bag � bag

: )

≡ { instantiate L,R for Eq-Comm, product }
bag
: · (outl � (

bag
: · outr)) =

bag
: · ((outl · outr) � (

bag
: · (id × outr)))

≡ { point-wise, apply both sides to (y, (x, xs)) }
y

bag
: (x

bag
: xs) = x

bag
: (y

bag
: xs) .

The construction of a set algebra includes the above step and additionally
uses equation Eq-Idem to establish the left-idempotence of constructor

set
: :

L([ ]
set � set

: ) = R([ ]
set � set

: )

≡ { instantiate L,R for Eq-Idem, product }
set
: · (outl � set

: ) =
set
:

≡ { point-wise, apply both sides to (x, xs) }
x

set
: (x

set
: xs) = x

set
: xs .

 Imposing an equation (L,R) on an F-algebra α:FA → A induces an
equivalence relation Eq on FA that is a congruence for α [42]. Terms in FA
that belong to the same equivalence class denote the same element of the
carrier A—which renders the constructors described by F non-injective and
thus introduces the desired confusion.

More precisely, Eq is the least equivalence relation containing all pairs
((Lα)t, (Rα)t) for terms t in FA. Additionally, Eq is a congruence for α so
that Eq features a closure property with respect to the constructors encoded
in F. For the insert representation case, which means that α is of the form
e � �, this boils down to (let x, y, xs , ys be in FA)

(x, y) ∈ Eq ∧ (xs , ys) ∈ Eq ⇒ (x � xs , y � ys) ∈ Eq .

Forcing the equation upon the algebra thus means to work with the quotient
algebra, denoted α/(L,R). This construction extends to and preserves initial
algebras: if Alg(F) includes an initial object τ , then τ/(L,R) is initial in
the subcategory of Alg(F) containing all and only those F-algebras for which
(L,R) holds. For a proof of this statement see Fokkinga’s original work on
transformers [42, page 122 ff].
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 Let us not proceed without explicitly noting that query processing with
catamorphisms over non-free algebras like those for bag and set introduces a
well-definedness condition for any catamorphism application.

To illustrate this caveat, suppose that τ is an initial F-algebra upon which
we have forced the equation (L,R) of type H as described in the previous
paragraph. Furthermore, let α denote another algebra, implementing the
target datatype of a query. With these ingredients, we have

true

≡ { reflexivity of = }
�α � = �α �

≡ { equation (L,R) holds for τ }
�α � · Lτ = �α � ·Rτ

⇒ {Transformer on both sides }
Lα · H�α � = Rα · H�α � ,

which tells us that (L,R) holds for α as well, at least on the range of �α �.

In the sequel, which will put the theory into query processing practice,
this observation will require us to make sure that a catamorphism applied
to a bag or set has as its target an algebra with a left-commutative or left-
commutative as well as left-idempotent insertion constructor, respectively.
This is in compliance with our initial conjecture that a catamorphism must
be indifferent to the confusion in the algebra it is applied to.

A check for the left-commutativity and left-idempotence of a constructor
is undecidable in general [14, 20]. However, as the query processing context
only requires a rather narrow and fixed spectrum of algebras, we can indicate
the relevant properties of the involved constructors beforehand, thus freeing
the system from the burden to deduce these. Actually, we find ourselves in
an even better position: user-level queries will be mapped into the world of
initial algebras and catamorphisms by means of an intermediate language,
comprehensions (see Section 2.9), whose programs yield well-defined spine
transformer compositions only.

We have now assembled everything that is needed to give the final spec-
ifications of the collection formers and their algebras that we will encounter
in this text. All that is left is to put the pieces together.

 Definition. Let F(E,TE) = 1 + E × TE. The list, bag, and set
collection type formers in insert representation are defined by the following
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initial types induced by F, respectively:

(nil
list � cons

list
, list)

((nil
list � cons

list
)/Eq-Comm , bag)

((nil
list � cons

list
)/Eq-Comm-Idem , set) ,

where the equation Eq-Comm-Idem is given by(
LC � LI, RC � RI

)
, Eq-Comm-Idem

with (LC, RC) = Eq-Comm and (LI, RI) = Eq-Idem. Building the sum of
the lhs and rhs of two equations like this retainsTransformer (this is easily
checked). The resulting equation forms the conjunction of the two original
equations which is a direct consequence of the properties of categorical sum:

(LC � LI) = (RC � RI) ⇐⇒ LC = RC ∧ LI = RI .

We will use the shorthand (nil
bag � cons

bag
) = (nil

list � cons
list

)/Eq-Comm to
render the notation more compact. Analogously for set. �

2.8 Monads

 Now that the gory details of the underlying categorical machinery have
all been set, let us again take a bird’s eye view to see how the theory developed
so far fits into our overall idea of query processing.

Initial types and catamorphisms are the core concepts for internal query
representation and manipulation in this text. In Chapter 3 we will thus face
the challenge of providing a translation from an external query syntax into
this formal representation. To be honest, the gap between a user-level SQL
or OQL query and its equivalent expressed by means of catamorphisms or,
more generally, spine transformers, seems to be quite wide.

Of the complications that will crop up, let us merely highlight two here:

• the presence of variables in user-level queries, and

• the arbitrarily deep nesting of query clauses.

A query representation based on algebras as we have chosen it in this text
is an inherently variable-free formalism. It is not at all obvious how the
binding and scoping of variables translates into a catamorphism-based alge-
braic equivalent, given that catamorphisms are—in the lingo of λ-calculus—
combinators, i. e., closed expressions that are not dependent on an environ-
ment of variables. The issue is indeed relevant: we will meet examples of
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OQL queries where binding a formerly free variable completely changes the
query semantics. We have to find ways to reflect this phenomenon.

Query nesting poses further problems. A composition of spine trans-
formers is basically a flat sequence of operations. Nested queries have to be
flattened or unnested prior to their translation into catamorphisms and type
functors. We are thus better off to choose an internal query representation
that facilitates such unnesting and related simplification procedures.

 These observations suggested the employment of a query representation
form that will act as a mediator between the user and the catamorphism-
determined world.

It is one of the major claims of this text, that a very general query calculus
notation, monad comprehensions [117]6, can successfully play the role of this
intermediate representation [58, 60, 101]. Comprehensions feature variable
binding and scoping much like the user query languages. Nesting is naturally
expressed by means of comprehensions, and—by far more important for our
purposes—comprehension expressions enjoy a normal form [38, 58] whose
derivation actually implements the unnesting transformations we have just
identified as a major problem source.

This notion of a query calculus is general in the sense that it is based
upon monads [75, 79], algebras that offer just enough structure to interpret
the constructs of a calculus in the style of the relational calculus [13, 117].
The initial types in insert representation induce monad instances, as we will
shortly see. Putting the monad operations down to the now well-known
expressions over initial algebras will ensure that the transition from monad
comprehensions to catamorphisms is not too hard to define. We may indeed
perceive monad comprehensions as mere syntactic sugar for their defining
initial algebra expressions. Monad comprehensions, however, enable us to
take the before mentioned hurdles with remarkable ease, which is the ultimate
rationale behind their employment in this text.

Last but not least: the rather terse comprehension expressions—whose
syntactic appearance closely resembles that of Zermelo-Fraenkel (ZF) expres-
sions [61]—are more easily grasped by the human mind and eye than ever
longer sequences of catamorphisms.

In what follows now, we will provide a monad notion based on our initial
algebras and define the calculus language on top of it. The calculus will be
put to full use in the upcoming chapters.

6The title of this thesis is actually a pun on the title of Wadler’s seminal article Com-
prehending Monads [117].
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 Definition. For an endofunctor T in a category C (as before, C = Set
will be the only instantiation of interest for us) we define a T-monad to mean
a triple (T, unitA:A → TA, joinA:TTA → TA) so that

joinA · unitTA = idTA , Monad-1

joinA · TunitA = idTA , Monad-2

joinTA · joinA = joinA · TjoinA . Monad-3

The involved types are more easily read off the corresponding diagrams:

TA
unitTA ��

idTA

���
������������ TTA

joinA

��

TA
TunitA��

idTA

		�������������

TA

TTTA
TjoinA ��

joinTA

��

TTA

joinA

��

TTA
joinA

�� TA

If there is the danger of confusing the operations of different monads, we
will indicate the monad as a superscript as in join

T
. Note that the arrow

mapping part of functor T plays the role of the monadic map
T

appearing in
Wadler’s monad definition [117]. �

 In the above definition, subscript A ranges over all objects of C, so that
unitA and joinA indeed define two families of arrows. For C = Set, this
essentially amounts to saying that unit and join are polymorphic functions
with types unit:∀A.A → TA and join:∀A.TTA → TA.

Due to parametricity [116], i. e., only by looking at the polymorphic types
of unit and join, we can tell that the two monadic operators satisfy the free
theorems (let f:A → B in C be arbitrary):

Tf · unitA = unitB · f
Tf · joinA = joinB · TTf ,

which, to a category theorist anyway, reveals unit and join to be natural
transformations of types unit:Id →̇ T and join:TT →̇ T, respectively.

 Definition. Given two functors of the same type F,G:C → D, a family
of arrows gA:FA → GA (for each A in C) forms a natural transformation
from F to G (in symbols: g:F →̇ G), if the naturality condition

Gf · gA = gB · Ff i. e.,

FA
gA ��

Ff

��

GA

Gf

��

FB
gB �� GB

Naturality
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is met for each arrow f:A → B in C. Naturality, at least to a certain
extent, thus serves as a categorical encoding of the notion of parametric
polymorphism. �

 We will employ monad comprehensions as a query calculus, so that they
clearly have to support predicates that can act as filters constraining an
expression’s result to those elements that satisfy the predicate.

The goal to support filters in monad comprehensions (see Section 2.9)
will require us to work with slightly extended monads, namely monads with
zero [117]. To complete the monad introduction, let us define this enriched
monad concept here before we go straight on to derive the actual monads
that will be useful in defining our query calculus.

 Definition. If (T, unit , join) denotes a T-monad in C, we can derive a
T-monad with zero (T, unit , join, zeroA:1 → TA) from it, provided that

joinA · zeroTA = zeroA Monad-4

joinA · TzeroA = zeroA . Monad-5

As before, A ranges over the objects of C. Operator zero, just like unit
and join, defines a polymorphic function in Set and fulfills law Naturality

(with f:A → B) which is once more a consequence of parametricity (of zero):

Tf · zeroA = zeroB · f ,

i. e., zero:K1 →̇T (observe that the result of zero is independent of its argu-
ment). �

 The step from an initial datatype (τ,T) in insert representation to a
T-monad with zero is actually a small one, as we will now see. Following the
construction outlined below we will in particular derive collection monads,
i. e., list, bag, and set monads according to the collection formers we defined
in Definition 51.

 Lemma. Any initial type ([ ]
T�T

:,T) induced by the bifunctor F(f, g) =
id1 + f × g gives rise to a T-monad (T, unit , join, zero) with zero by defining

unit =
T
: · (id � [ ]

T
)

join = � [ ]
T � ++ �

zero = [ ]
T
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where function ++ :TA× TA → TA is defined to mean

xs ++ ys = �ys � T
:� xs .

Proof. First, it is easily checked that the so defined monadic operators are
correctly typed. Second, observe that join is well-defined regardless of T
(respectively

T
:) being left-commutative or left-idempotent: as ++ merely con-

catenates the spines of its two arguments, ++ is commutative or idempotent
whenever

T
: is (in this case we will call the T-monad itself commutative or

idempotent, respectively). This, in turn, makes Eq-Comm or Eq-Idem hold
for the algebra [ ]

T � ++ , i. e.,

ys ++ (xs ++ zs) = xs ++ (ys ++ zs) and xs ++ (xs ++ zs) = xs ++ zs ,

which ensures the well-definedness of join (see Paragraph 50). Observe that
++ and join commute in the sense that

join · ++ = ++ · (join × join) ,

which essentially is a consequence of the free theorem corresponding to the
polymorphic type of ++ [116]. We additionally have that [ ]

T
is a left and right

unit for ++ :

[ ]
T

++ xs

= { unfold ++ }
�xs � T

:� [ ]
T

= { Cata-Ins-Rep }
xs

xs ++ [ ]
T

= { unfold ++ }
� [ ]

T � T
:� xs

= { Cata-Reflect }
xs .

The main work we have to do here, namely the verification of the monad
laws Monad-1 through Monad-5, is carried out calculationally. At several
points we will make good use of the catamorphism fusion laws Cata-Fusion
and Cata-Map-Fusion to shorten the calculations.

Monad-1:

join · unit

= { unfold monadic operators }
� [ ]

T � ++ � · (T
: · (id � [ ]

T
))

= {Cata-Ins-Rep }
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++ ·(id � [ ]
T
)

= { [ ]
T

is unit for ++ }
id .

Monad-2:

join · Tunit

= { unfold, Cata-Map-Fusion }
�([ ]

T � ++) · F(unit , id)�

= { unfold F }
�([ ]

T � ++) · (id + (unit × id))�

= { sum }
� [ ]

T � (++ · (unit × id))�

= { unfold unit }
� [ ]

T � (++ · ((T
: · (id � [ ]

T
)) × id))�

= { ++ is catamorphism on its first argument }
� [ ]

T � (
T
: · (id × (++ · ([ ]T × id))))�

= { [ ]
T

is unit for ++ }
� [ ]

T � (
T
: · (id × id))�

= { product, Cata-Reflect }
id .

Monad-3:

join · join = join · Tjoin

≡ {Cata-Map-Fusion }
join · join = �([ ]

T � ++) · (id + (join × id))�

≡ { sum }
join · join = � [ ]

T � (++ · (join × id))�

≡
(∗)

{Cata-Fusion }
true .

To see the applicability of Cata-Fusion at (∗), observe that join is an
F-homomorphism from [ ]

T � ++ to [ ]
T � (++ · (join × id)):

join · ([ ]T � ++) = ([ ]
T � (++ · (join × id))) · F(id , join)
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≡ { unfold F }
join · ([ ]T � ++) = ([ ]

T � (++ · (join × id))) · (id + (id × join))

≡ { sum }
join · ([ ]T � ++) = [ ]

T � (++ · (join × join))

≡ { sum }
(join · [ ]T) � (join · ++) = [ ]

T � (++ · (join × join))

≡ { join is catamorphism, free theorem for ++ }
true .

Monad-4:

join · zero

= { unfold }
� [ ]

T � ++ � · [ ]T
= {Cata-Ins-Rep }

[ ]
T

= { definition of zero }
zero .

Monad-5:

join · Tzero

= { unfold, Cata-Map-Fusion }
�([ ]

T � ++) · F(zero, id)�

= { unfold F, zero }
�([ ]

T � ++) · (id + ([ ]
T × id))�

= { sum }
� [ ]

T � (++ · ([ ]T × id))�

= { [ ]
T

is unit for ++ }
� [ ]

T
, outr �

= {Cata-Ins-Rep }
[ ]

T

= { definition of zero }
zero .

�
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 Collection monads. Applying the above procedure to the three collec-
tion formers of Definition 51 constructs three collection monads. In Set, the
category in which we model the query evaluation process, we specifically get

(list, unit
list
, join

list
, zero

list
) = (list, λx.[x],flatten, [ ])

(bag, unit
bag

, join
bag

, zero
bag

) = (bag, λx.{{x}},⊎, {{}})
(set, unit

set
, join

set
, zero

set
) = (set, λx.{x},⋃,∅) ,

where square brackets [·] and double curly brackets {{·}} are used to denote list
and bag values, respectively. Function flatten:list listA → listA concatenates
a list of lists into a flat list as in

flatten
[
[x1, x2], [ ], [x3, x4, x5], [x6]

]
=

[
x1, x2, x3, x4, x5, x6

]
.

The natural transformations
⋃
:set setA → setA and

⊎
:bag bagA → bagA

flatten a set of sets and a bag of bags in much the same manner. These three
monads provide the primary collection abstraction in the discussion ahead.

 Our use of monads, however, goes further than that. Although the name
insert representation might suggest so, we can perfectly imagine algebras
e � � in insert representation that do not model collection type construc-
tors. Instead, we can instantiate e and � in a way that provides us with
aggregation operators or quantifiers. Everything we have said about such
algebras until now remains valid, with the difference that a spine over these
algebras describes an aggregation or quantification and does not construct a
collection value. Consequently, these algebras operate on carrier sets which
correspond to atomic types. The monads associated with these non-collection
algebras then embed aggregation and quantification seamlessly into the soon
to be defined monad comprehension calculus (see Section 2.9). Much of the
elegance of the approach devised in this text is derived from this uniformity.

 So let E denote the domain of an atomic type like Num or Bool ; addi-
tionally let the identity functor Id instantiate the type functor T. The endo-
functor describing the insert representation constructors FE = K1 + KE × Id
remains unchanged. We obtain a free non-collection algebra over carrier E
with constructors e:1 → E and �:E × E → E (cf. Paragraph 19):

e � �:FE(TE) → TE

= { unfold F,T }
e � �:1 + E × E → E .
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 Definition. Let FE = K1 + KE × Id and e � � as in the previous
paragraph. We define aggregation operators and quantifiers in insert rep-
resentation by means of the following FNum and FBool algebras, respectively
(ignore the functor annotations until the next paragraph):

(0 � +) = (e � �)/Eq-Comm (sum)

(1 � ∗) = (e � �)/Eq-Comm (prod)

(∞Num � min2) = (e � �)/Eq-Comm-Idem (min)

(−∞Num � max 2) = (e � �)/Eq-Comm-Idem (max)

(true � ∧) = (e � �)/Eq-Comm-Idem (all)

(false � ∨) = (e � �)/Eq-Comm-Idem (exists) .

The binary operator min2 (max 2) returns the smaller (greater) of its two
arguments of type Num. Symbol ∞Num shall be perceived as the largest value
representable in a concrete implementation of type Num, so that ∞Num acts
a unit with respect to min2. A dual remark applies to −∞Num and max 2. �

 As the above algebras are not initial, we cannot mimic the construction
of Lemma 60 to derive their monads. There is, however, a monad naturally
associated with e � � and the functor Id, namely

unit = id

join = id

zero = e .

It is easily checked that (Id, unit , join, zero) satisfies laws Monad-1 through
Monad-5 and thus indeed constitutes a monad, namely, adopting a term
used by Wadler in [117], an identity monad with zero. In the following, we will
use the functor aliases listed in Definition 64 to refer to the identity monads
associated with the non-collection algebras, e. g., exists = (Id, id , id , false).

2.9 Monad Comprehensions

 We are finally ready to keep our promise given in the introduction of this
chapter and take a step towards a higher-level query representation, monad
comprehensions [19, 60, 91, 117, 124]. Due to their syntactic resemblance
with the set comprehension notation and thus with the relational calculus,
monad comprehension should be particularly accessible to readers used to
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these classical query notations. Of the things to come, much may indeed
be grasped by applying knowledge acquired in the relational (tuple) calculus
domain, although one is trading generality and uniformity for simplicity then.

To start off with a simple example consider the following comprehension
to be interpreted in the set monad

�x [] x ← xs , x �= 0 	
set

,

which is equivalent to the set comprehension {x : x ∈ xs ∧ x �= 0} (“the set
of all x, so that x ∈ xs and x �= 0”). While x ∈ xs acts as pool from which
successive bindings for variable x are generated (exactly one binding for each
element in the set xs), predicate x �= 0 restricts the final result set to include
only those x that fulfill the specified condition.

More generally, in the T-monad comprehension

� e [] q1, . . . , qn 	
T

,

the qualifiers qi are either generators xi ← ei or filters (expressions of result
type Bool).

The informal semantics of this expression are as follows: starting with
qualifier q1, a generator qi = xi ← ei enriches an initially empty environment
of variable bindings by (sequentially) binding xi to (elements of) its range
ei. (If the range of a generator indeed is of an atomic type, the generator
is essentially equivalent to a let-expression, see Example 71). The binding
of x is propagated through the list of qualifiers qi+1, . . . , qn. Filters, as they
are encountered, inhibit further propagation if they evaluate to false in the
current environment. Head e is evaluated in those environments that pass
all qualifiers. The results are then injected into the T-monad using unit

T
and

finally accumulated via join
T
.

Let us state the monad comprehension syntax more precisely before we
supersede the above informal semantics by a mapping that translates a T-
monad comprehension into a computation over monad T.

 Definition. Let the non-terminal symbol expr represent the terms of
some basic expression language (think of a variant of the λ-calculus). This
language is enriched by monad comprehension syntax through the following
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BNF grammar with start symbol e:

e → mc
expressions| expr

mc → � e [] qs 	
T

monad comprehensions
qs → ε empty

| q qualifiers
| qs , qs qualifier lists

q → v ← e generators (v identifier)
| e filters

T → set | bag | list | exists | all
| sum | prod | max | min

monads

Note that the grammar allows for the arbitrary nesting of monad compre-
hensions. The occurrence of a comprehension as a generator range, predicate,
or head in an enclosing comprehension will allows us to express the diverse
types of query nesting found in user-level query languages. �

 Interestingly, we can give a translation function for the desugaring of a
T-monad comprehension to an equivalent computation in the T-monad that
is guided by the comprehension syntax we have just defined. The translation
scheme employs a recursion over the syntactic structure of the qualifier list,
arbitrarily subdividing it at each recursion level until we are facing qualifier
lists of length one or zero only. The method is originally due to Wadler [117]
(and the translation also being known as the Wadler identities).

Our variant includes a considerable generalization of the idea in that it
allows for the translation of nested comprehensions over different monads—a
characteristic that, to the best of our knowledge, has not appeared before in
the monad comprehension literature [113, 114, 117, 124]. The comprehen-
sions of Wadler’s original work were endo-monadic in the sense that were
evaluated in a single monad only [117]. Working with multi-monad compre-
hensions is crucial if they are to be useful as a query calculus built for query
languages featuring an orthogonal type system of collection constructors as
well as an orthogonal syntactic structure (“subqueries may occur everywhere
as long as typing rules are obeyed”).

The key to this generalization is the catamorphism-based coercion of mo-
nadic types in branch M -3 of the following definition.

 Definition. Let τ denote an algebra in insert representation and be
(T, unit

T
, join

T
, zero

T
) its associated monad. Let T′ �= Id denote another
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monad. We define the T-monad comprehension desugaring scheme M (the
stylized M serves as a mnemonic for monad) to be given by the recursive
function below. The occurring identifiers are chosen to fit with those in the
abstract comprehension syntax of Definition 67 and represent their respective
syntactic category, e. g. qs may be replaced by an arbitrary qualifier list.

M � e [] 	
T

= unit
T
(M e) M -1

M � e [] v ← e′:TE 	
T

= T(λv.M e) (M e′) M -2

M � e [] v ← e′:T′E 	
T

= �τ � (M � e [] v ← e′ 	T′
) M -3

M � e [] e′ 	T
= if (M e′) then unit

T
(M e) else zero

T M -4

M � e [] qs , qs ′ 	T
= join

T (
M � � e [] qs ′ 	T

[] qs 	
T)

M -5

M e = e M -6

�

 Notes. (a) Note that, according to branch M -5, we can arbitrarily
divide the comprehension qualifier list into two sublists qs and qs ′ without
affecting the outcome of M . This is a consequence of qualifier enumeration
(denoted by ‘,’) being an associative operation with the empty qualifier list
as its unit [117].

(b) The argument to type functor T in case M -2 is an anonymous λ-
term, i. e., a morphism in category Set. Consequently, scheme M is bound
to the assumption that we are operating with Set as the underlying category.

(c) Whenever we encounter a generator whose range is of a foreign monad
T′ �= T, branch M -3 temporarily switches the monad in which the monad
comprehension is to be interpreted in to T′. The results are then coerced to
type T using �τ �. Observe that the cases M -2 and M -3 could be merged
to read (with T′ not necessarily different to T)

M � e [] v ← e′:T′E 	
T

= �τ � (T′(λv.M e) (M e′)) , M -2’

which amounts to the same due to law Cata-Reflect.
Coercion is not completely arbitrary though since the well-definedness

condition for catamorphisms derived in Paragraph 50 applies: whenever τ ′ is
a left-commutative respective left-idempotent algebra, so has to be τ . This
restriction is quite natural, however, as it forbids ambiguous and non-well-
defined coercions, like the non-deterministic conversion of set value into a
list.

(d) Note how branch M -4 implements the filter q by mapping values
failing to fulfill the filter predicate to zero

T
so that they do not contribute to

the result in the embracing join
T

(see Monad-4).
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(e) The exchange of qualifiers in M -5, in interplay with the introduction
of λ-abstractions for each generator v ← e′ in M -2, ensures the visibility of
v in each qualifier occurring later in the qualifier list as well as in the head e.

 Example. A rather broad diversity of computational tasks may be ex-
pressed by monad comprehensions and it is the crucial benefit of employing
the comprehension notation that this variety is mapped to a completely uni-
form representation. Quite often we will be able to abstract from the specific
monad the query is to be evaluated in and instead reason in the context of
some monad T. Such general findings may then be reused during the query
translation process in several instantiations and places.

The following examples are, in some sense, teasers that are given here to
provide some insight of what the upcoming chapters have in store.

(a) We can now convince ourselves that the initial example of this section,
the set comprehension �x []x ← xs , x �= 0 	

set
, is indeed equivalent to {x : x ∈

xs ∧ x �= 0}. By means of desugaring we get

M �x [] x ← xs , x �= 0 	
set

= {M -5 }
join

set (
M � �x [] x �= 0 	

set
[] x ← xs 	

set)
= {M -2 }

join
set (

set (λx.M �x [] x �= 0 	
set

) xs
)

= {M -4 }
join

set
(set (λx.if (M (x �= 0)) then (unit

set
(M x)) else zero

set
) xs)

= {M -6 }
join

set
(set (λx.if (x �= 0) then (unit

set
x) else zero

set
) xs)

= { set monad }⋃
(set (λx.if (x �= 0) then {x} else ∅) xs) .

The resulting set-monad computation implements the set comprehension by
mapping each element x of xs to the singleton set {x} if x �= 0. Otherwise
x is mapped to the empty set ∅ so that these elements do not contribute to
the result during the outer

⋃
.

(b) Monad comprehensions over monad all effectively implement univer-
sal quantification. Consider the all-monad comprehension expression � p x []
x ← xs:setE 	

all
in which p denotes a predicate of type E → Bool . Observe

that this already constitutes a multi-monad comprehension which was not
expressible by earlier related proposals. We calculate as follows:

M � p x [] x ← xs:setE 	
all
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= {M -3 }
� true � ∧� (M � p x [] x ← xs:setE 	

set
)

= {M -2 }
� true � ∧� ((set (λx.M (p x)) (M xs)))

= {M -6, η-conversion }
� true � ∧� ((set p xs)) .

The resulting expression obviously computes ∀x ∈ xs: p x. Note that this
also does the right thing if xs = zero

set
= ∅ in which case we get true as

desired.
(c) Monad comprehensions are not bound to denote collection compre-

hensions (as they are understood in [113, 124]). Here is an example of a
non-collection comprehension to be interpreted in the sum monad:

M � (x, y) [] x ← 2, y ← 3 	
sum

= {M -5 }
join

sum (
M � � (x, y) [] y ← 3 	

sum
[] x ← 2 	

sum)
= {M -2 }

join
sum (

sum (λx.(M � (x, y) [] y ← 3 	
sum

) 2
)

= {M -2 }
join

sum
(sum (λx.(sum (λy.M (x, y)) 3)) 2)

= { sum monad }
λx.((λy.(x, y)) 3) 2 .

The final outcome reveals that the sum comprehension boils down to a nested
let-expression:

let x = 2 in let y = 3 in (x, y) .

Note that we could compute the above in any identity monad and that the
actual choice of sum is arbitrary.

(d) Let us conclude this introduction to monad comprehensions with a
more substantial example. The occurrence of a nested exists-comprehension
inside an outer sum-comprehension does not violate the well-definedness con-
dition for multi-monad comprehensions, as the inner comprehension serves
as a filter (comprehensions interpreted in monads exists and all reduce to
values of type Bool) and not as a generator range. We assume the typings
xs:listNum and ys:bagNum.

M �x [] x ← xs , �x = y [] y ← ys 	
exists

	
sum
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= {M -5 }
join

sum
(M � �x [] �x = y [] y ← ys 	

exists
	
sum

[] x ← xs 	
sum

)

= {M -3 }
join

sum
(�0 � +� (M � �x [] �x = y [] y ← ys 	

exists
	
sum

[] x ← xs 	
list

))

= {M -2 }
join

sum
(�0 � +� (list (λx.M �x [] �x = y [] y ← ys 	

exists
	
sum

) xs))

= {M -4 }
join

sum
(�0 � +� (list (λx.if (M �x = y [] y ← ys 	

exists
)

then (unit
sum

x) else zero
sum

) xs))

= {M -3 }
join

sum
(�0 � +� (list (λx.if (� false � ∨� (M �x = y [] y ← ys 	

bag
))

then (unit
sum

x) else zero
sum

) xs))

= {M -2 }
join

sum
(�0 � +� (list (λx.if (� false � ∨� (bag (λy.x = y) ys))

then (unit
sum

x) else zero
sum

) xs)) .

The point to note here is that this expressions shows the typical structure we
expected a query to exhibit in our representation form. Unfolding the mo-
nadic operators discloses the initial monad comprehension to be completely
implemented by means of catamorphisms and type functors:

�0 � +� (list (λx.if (� false � ∨� (bag (λy.x = y) ys)) then x else 0) xs) .
♦

We have reached a point where the foundations for the internal query
representation used in this text have all been laid. The forthcoming chapters
will put this categorical toolbox to, as we will argue, beneficial use in query
translation, transformation, and optimization.

2.10 Union Representation

 Although the insert representation of algebras has been pervasive in ev-
erything we have developed so far, it is not principle to the method. In fact
there is at least one alternative class of algebras, the algebras in union rep-
resentation, which has been extensively studied as an alternative foundation
for collection (query and programming) languages [13, 14, 20, 110, 111].

A collection value in union representation is built from singleton col-
lections which are then merged using an associative binary union operator
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�. The union representation comes with an additional constant constructor
(function), the empty collection z. This last constructor is required to be
a unit of the binary union so that (z,�) forms a monoid. In other words,
general binary trees take the place of the right-deep insertion spines we are
employing in this text. The elements in the front of these trees are the
collection members.

Remarkably few details have to be adapted to turn the material of this
chapter into a discussion of the union representation of types. As we have
encoded the type constructors by means of the insert representation functor
F, it is only this functor that is to be replaced. In principle, everything else
may be left untouched! Let us take the union representation view of the
theory of datatypes for a minute.

Given a polymorphic type constructor T, its G-algebra in union represen-
tation is

empty
T � sng

T � union
T
:1 + E + TE × TE → TE ,

i. e., G(E,TE) = 1 + E + TE × TE and G(f, g) = id1 + f + g × g.
Obvious instances of this generic algebra, for T = set and T = list respec-

tively, include ∅ � λx.{x} � ∪ and [ ] � λx.[x] � ++ . Setting T = Id yields
non-collection instances (with sng

Id
= id) as in 0 � id � + and true � id �∧.

As before, Alg(G) has an initial object τ and it this initial algebra that
describes the datatype. The catamorphisms in Alg(G) turn out to be general
tree transformers: let z � s � � denote any other G-algebra so that (z,�)
has the monoid property, then we get (cf. Paragraph 27)

�z � s � �� empty
T

= z
∧ �z � s � �� (sng

T
x) = s x

∧ �z � s � �� (union
T
(xs , ys)) = (�z � s � �� xs) � (�z � s � �� ys) .

Cata-Union-Rep

Not surprisingly, the induced type functor T behaves like a tree map, since

Tf

= {Type-Functor }
�τ · G(f, id)�

= { unfold τ and union representation functor G }
�(empty

T � sng
T � union

T
) · (id + f + id × id)�

= { sum }
�empty

T � sng
T · f � union

T
� ,
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which tells us that Tf is the specific tree transformer that applies f to the
elements of the front of its argument while retaining the structure of the tree.

From the above it is apparent that the G-catamorphisms � ·�G general-
ize the structural recursion operator over collections in union representation
sru of [13, 110, 111] and the set divide-and-conquer operator pump appear-
ing in the functional database language FAD [4] as well as in the work of
Beeri and Kornatzky on algebraic optimization of object query languages
[6].

Initial types in union representation induce monads in much the same
manner as their insert representation variants. Specifically, for a given type
(empty

T � sng
T � union

T
,T), obtain the corresponding T-monad with zero

(T, unit , join, zero) by defining

unit = sng
T

join = �empty
T � id � union

T
�

zero = empty
T

,

which exactly generates the monads we have already met in Paragraph 61.
This implies that an identical notion of monad comprehensions may alterna-
tively be built on top of types in union representation.

What, then, has been our principle rationale for the choice of the insert
representation in this text?

The more obvious reason, which we have already mentioned, is related to
a core virtue: laziness. The insert representation makes economical use of
just two (instead of three) constructors which, in a world of inductive types
and structural recursion, has the pertinent effect of rendering definitions more
compact and to simplify calculations. A similar observation can be made for
datatype equations. Encoding the monoidal structure of (empty

T
, union

T
)

requires the specification of two equations even for the T = list algebra in
union representation. Remember that the list algebra is freely generated in
insert representation.

Another, and deeper, reason relates the efficiency and expressiveness of
programs written in insert and union representation style, respectively: for
some fixed type constructor T, suppose that (σ = empty

T � sng
T �union

T
,T)

denotes the initial type induced by the functor G. Given this, we can derive
an equivalent F-algebra τ = nil

T�cons
T
in insert representation that operates

over the same carrier:

nil
T

= empty
T

cons
T

= union
T · (sng

T × id) .

This construction preserves the initiality property: τ is initial in Alg(F) if
and only if σ is initial in Alg(G) [14]. A query in union representation style,
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i. e., effectively a G-catamorphism �z� s���G, thus has a simple first-order
and efficient translation into insert representation style:

�z � (� · (s× id))�F .

Can we do the converse? We can certainly construct a G-algebra σ from
a given initial F-algebra τ = nil

T � cons
T
:

empty
T

= nil
T

sng
T

= cons
T · (id � nil

T
)

union
T
(xs , ys) = �ys � cons

T
� xs ,

and the resulting algebra will be initial in Alg(F) as well. The bad news
is that the above construction is not valid for an arbitrary (especially non-
initial) source algebra. This implies that we cannot use this scheme to derive
a query in union representation style from a given insertion style query as the
query’s target algebra will not be initial in general [14]. In fact there is no
translation from the insertion to the union style that is simple (first-order)
and efficient at the same time:

• In [14], Breazu-Tannen and Subrahmanyam give a simple translation
that makes use of the monoidal structure inherent to (id , ·) and thus
is higher-order. This would require us to extend our system of type
constructors by the function type former (→) which we are trying to
avoid.

• Suciu and Wong present a first-order translation that is inefficient in
that it maps certain polynomial time computable insertion style queries
into union style equivalents that require exponential space [111].

The bottom line of this argument is that a query representation based on
the insert representation is at least as expressive as its union representation
variant. At the same time, an insertion style query is efficiently computable
whenever the equivalent union style query is. The converse is not true.

 Collection Comprehensions, Kleisli Monads, and Ringads. In a series
of articles, Trinder et al. developed a theory of collection types based on an
extended monad notion, the ringad [113, 123]. This work used the union
representation of a collection type constructor T as its starting point, i. e.,
the G-algebra (which is non-free: empty

T
is required to be a unit of union

T
):

empty
T � sng

T � union
T
:G(E,TE) → TE ,
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with G denoting the union representation functor of the previous paragraph.
The theory then added an iteration abstraction in the form of the binary
operator 

 (pronounced bind) to this algebra to complete its notion of a
collection type. Operator 

 is expected to interact with the above algebra as
follows (with f:E → TE ′):

(

f) · empty
T

= empty
T

(

f) · sng
T

= f
(

f) · union

T
= union

T · ((

f) × (

f)) ,

in which (

f) denotes a section (partial application) of 

 defined to mean
λx.x

f . Note that 

 provides a restricted form of structural recursion that,
in contrast to a general G-catamorphism � ·�G, is always well-defined:

(

f) = �empty
T � f � union

T
�G .

Operator 

 has been shown sufficiently expressive to cover a broad range of
query primitives.

Trinder observed that the triple (T, sng
T
,

) forms a Kleisli triple [70],

an alternative encoding of the monad concept that is, however, equivalent to
the one we introduced in Definition 54 which

sng
T

= unit
T

(

f) = join
T · Tf

suggest (for a formal proof of the equivalence see [80]). Based on this ringad
structure, i. e., the triple (T, sng

T
,

) in companion with empty

T
and union

T

(these two constructors indeed add to the expressivity as they are not ex-
pressible in the monad, see [20]), Trinder postulated monad comprehensions
as an effective notation for collection query languages.

Chan and Trinder developed this basic theory of collection types into a so-
called object comprehension language that incorporated the features needed
to communicate with the object type hierarchy of an object-oriented DBMS
[24, 25]. However, they never intended to interpret comprehensions in non-
collection monads. Query language concepts like quantification and aggre-
gation have instead been added as additional features outside the collection
theory domain.

Along similar lines, Buneman, Naqvi, Tannen, and Wong laid the foun-
dation of a theory of collection types by successively enriching Kleisli monads
(T, sng

T
,

) to ringads, which were subsequently enhanced with a notion of

equality and conditional expressions [13, 20]. (Note that for the monad ex-
tension operator ext occuring in this work we have ext f xs = xs 

 f .) The
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resulting language, if restricted to operate in the set monad, was shown to be
exactly as expressive as the nested relational algebra of Schek and Scholl and
related proposals for relational non-first normal form algebras [99].

Building on this foundation, Wong devised the Kleisli collection pro-
cessing framework which incorporated collection monad comprehensions as
a sublanguage [124]. This language relies on monad morphisms—mappings
between two monads T′ and T that preserve the monadic operators (see
Definition 86 and [117])—to allow for generator ranges of type T′ inside a
comprehension to be interpreted in collection monad T. The relevant trans-
lation step is (the rest of the translation resembles desugaring scheme M of
Definition 69)

� e [] v ← e′:T′E 	
T � e′ 

′ (λv.sng

T · e) ,

based on a modified monadic bind 

′ defined to mean

(

′ f) · empty
T′

= empty
T

(

′ f) · sng
T′

= f
(

′ f) · union

T′
= union

T · ((

′ f) × (

′ f)) ,

so that (

′ sng
T
) constitutes a monad morphism between the collection mo-

nads T′ and T.
In the form proposed by Wong however, the monad morphism approach

did not enable the interpretation of comprehensions in non-collection monads.
The resulting language is thus a hybrid assembled from collection comprehen-
sions and separate structural recursion operators to implement aggregation
and quantification. The work of Buneman, Naqvi, Tannen, and Wong has,
nonetheless, been a major source of inspiration for the work we are discussing
in this text. It is the group of researchers around Buneman to which many
of the foundational ideas of a categorical treatment of query languages have
to be attributed to.

 Monoid Comprehensions. Fegaras and Maier fabricated an alternative
query calculus, the monoid comprehension calculus, based on monoids and
homomorphisms between these [38, 40]. The core of the calculus is, once
more, formed by G-algebras, i. e., types in union representation. The prin-
cipal query construct are monoid homomorphisms—or rather homomorphic
extensions—between instances of these types. In the lingo of initial algebras,
given the initial type (τ = empty

T � sng
T � union

T
,T) and the G-algebra

α = z � s � �, the homomorphic extension of function f from τ to α is

homτ→α f = �z � f � ��G .
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Like 

, combinator hom defines a well-behaved structural recursion.7 Unlike


, hom is additionally capable of coercing types (from τ to α in the case
above) while 

 is bound to operate in the T-monad induced by its initial
type only:

(

f) = �empty
T � f � union

T
�G = homτ→τ f .

This property of hom enabled Fegaras and Maier to postulate monoid com-
prehensions over different union representation types, including non-collec-
tion instances like, e. g., true � id � ∧. Let τ ′ denote the monoid associated
with the type constructor T′, then the relevant monoid comprehension trans-
lation rule reads:

� e [] v ← e′:T′E 	
T � homτ ′→τ (λv.sng

T · e) e′ .

If we rewrite the above only slightly, we can spot a (more or less rough)
similarity to the catamorphism-based coercion of monadic types (cf. M -2’):

homτ ′→τ (λv.sng
T · e)

= { unfold homomorphic extension hom }
�empty

T � (λv.sng
T · e) � union

T
�

= { sum, v not free in sng
T }

�(empty
T � sng

T � union
T
) · (id + λv.e + id × id)�

= { union representation functor G }
�(empty

T � sng
T � union

T
) · G(λv.e, id)�

= {Cata-Map-Fusion }
�τ � · T(λv.e) ,

which relates monoid comprehensions and our proposal for multi-monad com-
prehensions.

2.11 Monad Comprehensions in

Functional Programming

 Moggi has been the first to establish a connection between the categori-
cal monad notion and the semantics of programming languages [86, 87]. Since
these days, Wadler and others proposed monads as a paradigm after which
functional programs and libraries should be structured. Monads have become

7Given that � is commutative and idempotent whenever unionT is, respectively.
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ubiquitous in functional programming [68, 73, 93, 94, 117, 119, 120, 121]. In
spite of the terseness of their interface, monads opened new and exciting ways
to construct combinator libraries for a broad variety of tasks, including those
that, up to then, were stumbling stones in a purely functional environment:
side-effect free I/O, stateful computation, exception handling, and the often
notationally cumbersome continuation passing style of programming.

Even better: the intimate connection between monads and comprehen-
sions provided a convenient syntax to express the just mentioned tasks in
functional programs for free. This had an impact on the design of the func-
tional programming language Haskell 1.4 [91] in which the list monad lost its
exceptional role: comprehensions could be defined over an arbitrary monad
T (with the generator ranges bound to be of type T, too).8

Let us close this chapter with the review of two monad instances which
could especially affect the optimization of database programming and update
languages: the exception and state transformer monads, respectively.

Recall from Example 36 the definition of the type constructor maybe
which lifts any type E onto a type with a distinguished constant nothing :

nothing � just:1 + E → maybeE .

An expression evaluated in the monad induced by maybe may be interpreted
as a computation that may fail and thus raise an exception (which is indicated
by returning nothing as the result).

We get hold of the maybe monad through

unit
maybe

= just

join
maybe

= �nothing � id �

zero
maybe

= nothing .

(Remember that the morphism mapping maybe f yields f x for an argument
just x and returns nothing otherwise.)

The meaning of a comprehension evaluated in the maybe monad is given
by the desugaring scheme M of Definition 69: a generator v ← e:maybeE
binds variable v to x if e = just x and propagates the binding. Should e
raise an exception, the comprehension evaluates to nothing as a whole (the
exception is “thrown”); a filter acts like an assertion that, should it fail, also
raises an exception. Given this, the comprehension

�x/y [] x ← f, y ← g, y �= 0 	
maybe

8At the time of writing, this design decision has been reversed on a syntactical level:
the now current Haskell 98 definition adopts the equivalent do-notation to express monadic
computations [65].
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computes just (f/g) provided that both arguments are well-defined and the
denominator is not zero. Otherwise the comprehension indicates failure by
evaluating to nothing .

Stateful computation and purely functional programming can live to-
gether if a representation of the program state (of type S, say) is explicitly
passed as an extra argument between function calls. State update is imple-
mented by construction of a fresh copy of the state representation. Passing
the state explicitly quickly becomes cumbersome and error-prone, especially
if the type of state representation S is subject to change during program
development. However, an expression that is evaluated in the state monad
to be defined in a minute, may act as if updatable state were available to
the program: the state is passed implicitly and its representation becomes
opaque (which is what we desire).

The type constructor we need here is stateE = S → E × S, which con-
structs the type of state transformers. A value of type stateE denotes a
computation that yields a result of type E (which possibly depends on the
state it is evaluated in) and additionally “side-effects” the state by construct-
ing a (modified) copy of it. Both E and the new state are returned. Note
that state makes use of the function type former (→) which we are not cov-
ering as a datatype constructor in this text; since we are working in the
cartesian-closed category Set this is no principle obstacle however (e. g., see
[10]).

The ingredients of the state monad thus are as follows (state gets by
without zero):

stateE = S → E × S

state f = λs.(f × id) · s

unit
state

x = (Kx � id)

join
state

ss = apply · ss with apply (f, x) = f x .

The functoriality of state directly follows from the properties of arrow com-
position. Observe that unit

state
x denotes a computation that simply returns

x without affecting the state. join
state

ss applies the state transformer ss
yielding a state transformer which is then applied in a subsequent step (i. e.,
join

state
threads the state through a sequence of transformations).

Based on the above, we can readily implement mutable references in a
pure functional language. Ohori used a closely related technique to enrich
a referentially transparent database programming language with a notion
of object identity and mutable objects without sacrificing the optimizability
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of the language [90]. Assuming that a reference is identified by a unique
sequence number, it is sufficient to keep the next sequence number to assign
and a list that associates those numbers with the referenced content (of type
String in this example) in the state, thus S = Num × list(Num ×String). To
unclutter the syntax let us additionally define three primitives that operate
on a store of type S: new allocates a new sequence number and initializes
the content of the newly created reference; asgn overwrites the content of a
given reference; deref accesses the contents of a given reference but does not
alter the store:

new : String → stateNum
new c = λ(n, l).(n, (n + 1, assoc l (n, c)))

asgn : (Num × String) → state1
asgn (n′, c) = λ(n, l).((), (n, assoc l (n′, c)))

deref : Num → stateString
deref n′ = λ(n, l).(lookup l n′, (n, l))

(the functions assoc and lookup do the obvious on assocation lists of type
list(Num × String)).

Comprehensions evaluated in the state monad exhibit a remarkably “im-
perative” flavor although we are, of course, still operating in a purely func-
tional environment. The comprehension (applied to the initial state (0, nil)
in which no references have been allocated yet)

� z[]x ← new "foo", y ← new "bar", z ← deref y, p ← asgn (x, z) 	
state

(0, nil)

evaluates to
(
"bar", (2, [(0, "bar"), (1, "bar")])

)
and thus describes the same

computation as the imperative program

x := "foo"; y := "bar"; z := y; x := z .

It is our conjecture (which we regrettably cannot investigate more deeply
this text) that not only queries but database languages in general may benefit
from a monadic interpretation. An appropriately adapted multi-monad com-
prehension desugaring scheme M could provide the basis for the optimization
theory for database programming languages that speak about collections and
stateful computation (i. e., updates) at the same time.

But let us not get carried away. We started out to Comprehend Queries.
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Chapter 3

Query Compilation and
Normalization

 A comprehension of queries is not complete if it lacks the apparatus
to assign meaning to user-level query syntax. The first part of this chap-
ter will connect the internal categorical machinery to the “outside” world of
declarative query languages. Thanks to the work we have spent with the
introduction of monad comprehensions, we will be able to establish this con-
nection by means of a syntactic mapping, Q, to be defined shortly. Once we
have established Q, the composition M ·Q will assign a categorical seman-
tics to user queries and thus provides us with a formal, albeit preliminary,
query comprehension in terms of catamorphic mappings.

Interpreting a query by way of M · Q alone is far from feasible if we
hope for an efficient query execution. M ·Q emits nothing but nested spine
transformers from which an underlying query engine can hardly derive any-
thing but naive nested-loop iteration strategies. In certain cases, however,
nested-loop iteration may actually be an adequate execution strategy and in
these cases an execution plan may be directly “read off ” the catamorphisms
emitted by M · Q. This is the reason why, from time to time, we invest
some initial thought in optimizations which are immediately applicable to
catamorphic queries. We will have to say more about this.

Nevertheless, it is our hypothesis that monad comprehensions assign
meaning to queries in a form from which more efficient execution strategies
are derivable. The normalization of the monad comprehension expressions
constructed by Q will provide an important rewriting step towards a query
form that facilitates exploitation of the various advanced join or grouping
operators which database query engines have to offer. A number of well-
established query unnesting techniques turn out to be normalization steps if
we express them in the lingo of monad comprehensions. Normalization will
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take up the second part of this chapter.

 Throughout this text, ODMG’s second version of the object query lan-
guage OQL will be the source language of choice. In [23, Chapter 4], it is
stated that OQL shall be understood as a functional language and we will
treat it as such: OQL queries are built from basic query formers which,
given that the language’s typing rules are obeyed, may be freely composed
to form more complex query expressions. None of the query formers initiate
side-effects.

It is our ambition to understand almost anything of OQL in terms of the
categorical framework we have set up so far. We are, however, falling short of
emphasizing the purely object-oriented features of the language: object types
will be viewed as abstract data types that allow for equality tests (presumably
based on object identity but we are not looking into this). Invocation of
side-effect free methods will be modeled as the application of a function
which—besides type information—remains opaque to us. Lacking the object
notion, we will also not reason about inheritance and late binding on method
calls. These omissions are no principle obstacles. Fegaras and Maier have
sketched a translation from OQL to a monoid comprehension calculus (see
Paragraph 74) that has been extended later by Fegaras with a notion of object
identity and destructive updates expressed within the monoid calculus itself
(cf. Section 2.11 and the discussion of the state monad) [39, 40].

Given these restrictions, OQL queries may be typed using the orthogonal
system of categorical datatype constructors we have discussed in Chapter 2.
Put differently, we are querying values of arbitrary but finite nesting depth
which—as it was argued by Abiteboul and Kanellakis in [1]—form the core of
object-oriented database systems. The adoption of OQL as a source language
is, of course, not principle to the method. We are positive that other query
languages for complex value databases, e. g., the query fragments of SQL-92
and SQL-3, may be comprehended using the techniques we are developing:
OQL constitutes a test case that embraces the SQL dialects in terms of
expressiveness of its type system as well as orthogonal applicability of its
query formers.

Familiarity with OQL syntax as it was proposed in [23] is assumed from
now on. The forthcoming will supply the semantics and additionally—as
remarked in the last paragraph—initial catamorphic means for the actual
execution of OQL queries. In anticipation of the things to come and to
provide reference, Riedel and Scholl as well as Cherniack discuss alternative
semantic assignments that are reasonably close to ours [30, 97].
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3.1 A Catamorphic Interpretation of OQL

This is the right time to explain a few notational conventions and prelimi-
naries, some of which are consequences of the categorical model of data types
we are dealing with. OQL keywords will be typeset in typewriter style.

 Types. (a) The default category is Set. As before we will use the names
E,E ′, . . . as well as subscripted variants thereof to indicate variables that
range over types, i. e., objects in Set. If not stated otherwise, T and variants
denote one of the type functors list, bag, and set. The type functors imple-
ment the OQL collection type constructors list , bag , and set , respectively.

(b) We translate OQL’s basic types as follows: numerical types are rep-
resented by type Num; character and string literals are of type String ; Bool
implements the type of the two boolean values. Object types map into the
abstract type Obj .

(c) OQL comes equipped with a record type constructor with tagged fields
and its corresponding value constructor struct(l1:e1, . . . ,ln:en) in which
the li denote unique field tags and the ei are field entries (arbitrary OQL
expressions). If we have ei:Ei, the thus constructed value has the OQL type
struct(l1:E1, . . . , ln:En).

Such record values are represented as right-deep nested products of the
form (e1, (e2, (· · · (en, ()) · · · ))) whose types are E1×(E2×(· · · (En×1 ) · · · )).
During this translation we maintain a mapping tag = {li �→ i}, i = 1 . . . n,
that keeps track of tag positions. We may, however, safely drop the rigid
parenthesized notation and write (e1, . . . , en):E1 ×· · ·× En instead, i. e., we
may act as if we were operating with n-ary product types and values, the
latter also called tuples from now on. These simplifications are justified by a
simple observation about isomorphisms: in a category with products, objects
E1 × (E2 × E3) and (E1 × E2) × E3 are isomorphic by means of the arrows

(id × outl) � (outr · outr) : E1 × (E2 × E3) → (E1 × E2) × E3

(outl · outl) � (outr × id) : (E1 × E2) × E3 → E1 × (E2 × E3) ,

which renders × associative so that the absence or presence of parentheses
does not alter the meaning of a nested product. Likewise, E × 1 and E are
isomorphic because we have that outl · (id � ()) = idE and (id � ()) · outl =
idE×1 . This justifies the omission of the () in tuple notation.

(d) All types E built from the basic types Num, String , Bool , Obj , and
categorical datatype constructors are equality types in the ML sense [85], i. e.,
they admit equality tests by means of the overloaded predicate =:E ×E →
Bool . Equality of products is defined component-wise. Equality on TE is
decided by the initial algebra that induces T (see Section 2.7).
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Types Num and String are taken to be ordered. The type E1 ×· · ·× En

is ordered if the Ei are ordered (in which case the ordering of the tuple
type is defined lexicographically). If E is ordered, we are admitted to apply
the overloaded predicate <:E × E → Bool to check if its argument pair is
ordered.

(e) To summarize, the following grammar yields all valid query types ty :

ty → Num | String |Bool |Obj basic types
| set ty | bag ty | list ty type functors
| ty × ty products
| ( ty )

 Typing OQL fragments. (f) Designed as a syntax-directed mapping,
Q descends the parse tree of its argument query, starting with the root
which represents the entire query text. Q operates in a bottom-up manner:
subquery fragments are translated before these translations are assembled
to emit a translation of the enclosing query. During its walk of the parse
tree, Q consequently encounters open OQL fragments, i. e., OQL subqueries
containing free query variables whose binding sites are located further up the
parse tree (the root fragment is expected to be closed).

In the OQL query below, variable y appears free in three subqueries: y
(in the select clause), forall x in xs: x = y, and x = y. Variable x appears
free in x = y. The binding sites of y and x are the from clause and the forall
quantifier, respectively:

select y
from ys as y
where forall x in xs: x = y .

To cope with the typing of OQL fragments in order to clearly define query
variable scoping, we will interpret open OQL fragments as functions of their
free variables. To illustrate, the above query will be understood as

select (λv.v) y
from ys as y
where (λv.forall x in xs: (λv′.v′ = v)x) y ,

so that, for example, the where clause of an OQL select-from-where block
is a function of type E → Bool (where type E is determined by the query’s
from clause).

(g) Query types will be given and derived using standard notation [22]:
the type judgment Γ � e:E asserts the type of term e to be E, given that
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the free variables in e are typed according to the type environment Γ (“e has
type E in Γ”). A type environment is of the form ∅, v1:E1, . . . , vn:En (with
n ≥ 0, ∅ denotes the empty environment).

A typing rule derives the type judgment for a term (below the horizontal
rule) under the premise of a number (maybe zero) of conditions—typically
other type judgments—listed above the rule. The typing rule for OQL’s
forall quantifier reads (note that v may appear free in p and the predicate
is thus typed λv.p:E → Bool):

Γ � e:TE Γ, v:E � p:Bool
(Ty-Forall)

Γ � forall v in e: p:Bool

where Γ, v:E denotes Γ after the addition of variable-type assignment v:E.
To render environment updates more compact, let Γ, vn:En denote the en-
vironment Γ, v1:E1, v2:E2, . . . vn:En in which n will be determined by the
context. For n = 0, this denotes Γ itself.

 Miscellaneous. (h) The term e[x/y] denotes term e with all free occur-
rences of variable y in e replaced by term x. Let e[x/yn] be a shorthand for
e[x/y1][x/y2] · · · [x/yn] if the yi are in context. Likewise, we write e[xn/yn] to
abbreviate the replacement e[x1/y1][x2/y2] · · · [xn/yn].

(i) During the translation, we will identify basic OQL constants with their
obvious meaning in the categorical world, e. g. we do not distinguish + and
+ =

sum
: or true and true = [ ]

all
, respectively.

 OQL translation. We will define Q by case selection on the various
query formers provided by OQL. Much of the simplicity of Q is due to its
uniform translation strategy [111]: a query e may be compiled independently
from subqueries occurring in it. During the translation of e, the subquery
fragments are treated as free variables that may be instantiated later to
complete the translation. In the variant described in this text, Q calls itself
recursively to perform these instantiations.

Nevertheless, the strategy may also be used in system contexts that call
for separate compilation of query fragments. Such situations typically arise
if the query language is embedded into a host programming language: parts
of the query text are dependent on host language variables or are even com-
puted by host language routines and are not known beforehand. Despite the
presence of such dynamically generated query parts, we could translate the
statically known query fragments (under the premise that the dynamic parts
themselves will be correctly typed) at compile-time of the host program.
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This completes the preliminaries, so let us now turn to the actual defini-
tion of the OQL translation function Q.

 Definition. At several places we provide notes concerning simplifica-
tions of the translation. Skipping these should not affect the understanding
of Q.

Query variables. We use Γ, v:E,Γ′ to denote an environment that contains
the variable-type-assignment v:E.

(Ty-Var)
Γ, v:E,Γ′ � v:E

Q v = v Q-Var

Constants of atomic type. Let Basic denote one of Num, String , Bool , or
Obj .

c ∈ Basic
(Ty-Basic)

Γ � c:Basic

Q c = c Q-Basic

Record construction (struct). As already noted in Paragraph 78, we main-
tain a tag = {li �→ i} mapping as a side-effect of the struct constructor
translation. For mere simplicity we assume that record tags are database-
wide uniquely determined.

Γ � e1:E1 · · · Γ � en:En
(Ty-Struct)

Γ � struct(l1:e1, . . . ,ln:en):E1 ×· · ·× En

Q (struct(l1:e1, . . . ,ln:en)) = (Q e1, . . . ,Q en) Q-Struct
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Record access. For a function f , define its iterated application by f 0 = id
and fn = f · f (n−1).

Γ � e:E1 ×· · ·× En tag l = i (1 ≤ i ≤ n)
(Ty-Dot)

Γ � e.l:Ei

Q (e.l) = (outl · outr (i−1)) (Q e) Q-Dot

Collection-typed constants (set, bag, list). Let coll be one of set, bag,
or list and define Tset = set, Tbag = bag, and Tlist = list.

Γ � e1:E · · · Γ � en:E
(Ty-Coll)

Γ � coll(e1, . . . ,en):T
collE

Q (coll(e1, . . . ,en))

= cons
Tcoll

(Q e1, cons
Tcoll

(· · · cons
Tcoll

(Q en, nil
Tcoll

) · · · )) Q-Coll

Arithmetic operators. Let symbol � denote - (unary minus) or abs, and
let � represent one of +, - (subtraction), *, /, or mod.

Γ � e:Num
(Ty-Arith-1)

Γ � � e:Num

Γ � e:Num Γ � e′:Num
(Ty-Arith-2)

Γ � e � e′:Num

Q (� e) = � (Q e) Q-Arith-1

Q (e � e′) = (Q e) � (Q e′) Q-Arith-2

Equality and comparison operators. Let � stand for one of the infix oper-
ators <, <=, =, !=, >=, or >. We then have that �:E × E → Bool (E must
be ordered if � represents one of the relational comparison operators).

Γ � e:E Γ � e′:E
(Ty-Comp)

Γ � e � e′:Bool

Q (e � e′) = (Q e) � (Q e′) Q-Comp
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Boolean connectives. We use symbol � to denote either and or or.

Γ � e:Bool
(Ty-Bool-1)

Γ � not e:Bool

Γ � e:Bool Γ � e′:Bool
(Ty-Bool-2)

Γ � e � e′:Bool

Q (not e) = ¬ (Q e) Q-Bool-1

Q (e � e′) = (Q e) � (Q e′) Q-Bool-2

Selecting into a set (select-distinct-from-where). The types of e2, . . . , en

express the possibility to specify dependent joins in the from clause, i. e.,
x1, . . . , xi−1 may occur free in ei (Q accounts for this by placing the ei as
generator ranges in order of their appearance in the from clause). We adopt
a widespread convention and assume Q p = true should the query expression
lack the where clause.

Γ, xn:En � e:E
Γ, xi−1:Ei−1 � ei:TiEi (1 ≤ i ≤ n)
Γ, xn:En � p:Bool

(Ty-Set-Sfw)

Γ �

select distinct e

from e1 as x1, . . . ,en as xn

where p


 :setE

Q


select distinct e

from e1 as x1, . . . ,en as xn

where p




= �Q e [] x1 ← Q e1, . . . , xn ← Q en,Q p 	
set Q-Set-Sfw

Selecting into a bag (select-from-where). Note that, to render the trans-
lation well-defined, we require Ti �= set as the bag algebra obeys equation
Eq-Comm only (cf. Paragraph 70).

Γ, xn:En � e:E
Γ, xi−1:Ei−1 � ei:TiEi Ti �= set (1 ≤ i ≤ n)
Γ, xn:En � p:Bool

(Ty-Sfw)

Γ �

select e

from e1 as x1, . . . ,en as xn

where p


 :bagE
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Q


select e

from e1 as x1, . . . ,en as xn

where p




= �Q e [] x1 ← Q e1, . . . , xn ← Q en,Q p 	
bag Q-Sfw

Grouping (select-from-where-group by). OQL’s grouping construct par-
titions the n-fold product of the e1, . . . , en with respect to the grouping cri-
teria g1, . . . , gm (accessible in the select clause e under names l1, . . . , lm):
n-tuples that agree on all criteria are collected into a bag (accessible in e by
referring to name partition). References to these names are replaced with
corresponding tuple accesses by function tuplify . During the recursive de-
scent of Q, the thus introduced tuple accesses are subsequently translated
into sequences of projections by Q-Dot.

Γ, lg:E ′
g, partition:bag(E1 ×· · ·× En) � e:E

Γ, xi−1:Ei−1 � ei:TiEi Ti �= set (1 ≤ i ≤ n)
Γ, xn:En � p:Bool Γ, xn:En � gj:E

′
j (1 ≤ j ≤ m)

(Ty-Group)

Γ �




select e
from e1 as x1, . . . ,en as xn

where p
group by l1:g1, . . . ,lm:gm


 :bagE

Q




select e
from e1 as x1, . . . ,en as xn

where p
group by l1:g1, . . . ,lm:gm




= �Q (tuplify e) []
y ← �

(
Q g1, . . . ,Q gm, � (x′

1, . . . , x
′
n) []x

′
1 ← Q e1, . . . , x

′
n ← Q en,

Q g1 = Q (g1[x′
n/xn]), . . . ,

Q gm = Q (gm[x′
n/xn]) 	

bag)
[]

x1 ← Q e1, . . . , xn ← Q en,Q p 	
bag

	
bag

Q-Group

where

tuplify t = t[y.1/l1] · · · [y.m/lm][y.(m + 1)/partition] .
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Constrained Grouping (select-from-where-group by-having). We have
to call tuplify on both the select clause e and p′—a predicate to be evaluated
against all partitions—to replace references by name into tuple projections.

Γ, lm:E ′
m, partition:bag(E1 ×· · ·× En) � e:E

Γ, xi−1:Ei−1 � ei:TiEi Ti �= set (1 ≤ i ≤ n)
Γ, xn:En � p:Bool Γ, xn:En � gj:E

′
j (1 ≤ j ≤ m)

Γ, lm:E ′
m, partition:bag(E1 ×· · ·× En) � p′:Bool

(Ty-Having)

Γ �




select e
from e1 as x1, . . . ,en as xn

where p
group by l1:g1, . . . ,lm:gm

having p′


 :bagE

Q




select e
from e1 as x1, . . . ,en as xn

where p
group by l1:g1, . . . ,lm:gm

having p′




= �Q (tuplify e) []
y ← �

(
Q g1, . . . ,Q gg, � (x′

1, . . . , x
′
n) []x

′
1 ← Q e1, . . . , x

′
n ← Q en,

Q g1 = Q (g1[x′
n/xn]), . . . ,

Q gm = Q (gm[x′
n/xn]) 	

bag)
[]

x1 ← Q e1, . . . , xn ← Q en,Q p 	
bag

,
Q (tuplify p′) 	

bag

Q-Having

Sorting (select-from-where-order by). In the query below, let ord be a
placeholder for asc or desc—a hint to sort the query result in ascending or
descending order, respectively. The type E ′ of the sort criterion is required
to be ordered.

Γ, xn:En � e:E
Γ, xi−1:Ei−1 � ei:TiEi Ti �= set (1 ≤ i ≤ n)
Γ, xn:En � p:Bool Γ, xn:En � o:E ′

(Ty-Sort)

Γ �




select e
from e1 as x1, . . . ,en as xn

where p
order by o ord


 :listE
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Q




select e
from e1 as x1, . . . ,en as xn

where p
order by o ord




= �Q (e[y/xn]) [] y ← �nil
list � ins

list
�� �Q o [] x1 ← Q e1, . . . ,

xn ← Q en,Q p 	
bag

	
list

Q-Sort

where

� =

{
< :E ′ × E ′ → Bool if ord = asc,

> :E ′ × E ′ → Bool else.

Notes. Coherent with our quest for a catamorphic model for OQL, �nil
list �

ins
list

�� provides a purely (see below) catamorphic representation of inser-
tion sort : F-algebra nil

list � (ins
list

�):F(E ′, listE ′) → listE ′ is the algebra of
sorted lists in insert representation. Parameterized with �, operator ins

list

inserts an element into an already sorted list, respecting order �. Note that
ins

list
itself may be understood as a catamorphism:

ins
list

� (x, xs) = � [x]
list � (swap · (� · (id × hd))?� xs

where

hd · T
: = outl

tl · T
: = outr

swap =
T
: � (

T
: · ((hd · outr) � (

T
: · (id × tl))))

(defined like this, ins
list

� is left-commutative but not left-idempotent).

Catamorphic sorting does not stress the efficient implementation of sort-
ing but rather its algebraic properties; it is these properties that we would
like Q to make explicit (however, see [49] where merge sort is derived from
a catamorphic insertion sort by program transformations alone). Applied to
algebra nil

list � ins
list

�, Lemma 60 yields a monad of sorted lists and thus its
corresponding monad comprehension notion, but we are not following this
route here.
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Intersection (intersect).

Γ � e:TE Γ � e′:T′E
(Ty-Intersect)

Γ � e intersect e′:TE

Q (e intersect e′)

= �x [] x ← Q e, �x = x′ [] x′ ← Q e′ 	exists
	
T Q-Intersect

Difference (except). Note that this translation of except does not subtract
multiplicities of elements (but rather removes all elements from the result
that occur in both e and e′) if T = T′ = bag.

Γ � e:TE Γ � e′:T′E
(Ty-Except)

Γ � e except e′:TE

Q (e except e′)

= �x [] x ← Q e, �x �= x′ [] x′ ← Q e′ 	all
	
T Q-Except

Union and concatenation (union and +). OQL designates symbol + to de-
note list concatenation if T = T′ = list. If (τ,T) and (τ ′,T′) denote the initial
types associated with type functors T and T′, define T′′ = T if τ obeys all
equations that τ ′ obeys, otherwise set T′′ = T′.

Γ � e:TE Γ � e′:T′E
(Ty-Union)

Γ � e union e′:T′′E

Q (e union e′)

= join
T′′ (

� [ ]
T′′

� T′′
: � (Q e)

T′′
: � [ ]

T′′
� T′′

: � (Q e′) T′′
: [ ]

T′′)
Q-Union

Notes. By inlining the definition of join
T′′

and with the help of lawAcid-Rain

(Chapter 6), this initial translation may be simplified to read

�(� [ ]
T′′

� T′′
: � (Q e′)) � T′′

: � (Q e) ,

which, for the case T′′ = T = T′, further reduces to

�(� [ ]
T′′

� T′′
: � (Q e′)) � T′′

: � (Q e)

= { Cata-Reflect }
�Q e′ � T′′

: � (Q e)

= { definition of ++ for T′′ (Lemma 60) }
(Q e) ++ (Q e′) .
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Universal quantification (forall-in).

Γ � e:TE Γ, v:E � p:Bool
(Ty-Forall)

Γ � forall v in e: p:Bool

Q (forall v in e: p) = �Q p [] v ← Q e 	
all Q-Forall

Existential quantification (exists-in).

Γ � e:TE Γ, v:E � p:Bool
(Ty-Exists)

Γ � exists v in e: p:Bool

Q (exists v in e: p) = �Q p [] v ← Q e 	
exists Q-Exists

OQL defines alternative syntactic forms for the quantifiers which we rewrite
so that they become subject to Q-Forall or Q-Exists. As before, � serves
as a placeholder for the operators <, <=, =, !=, >=, or >.

Γ � e:E Γ � e′:TE

Γ � e � all e′:Bool

Γ � e:E Γ � e′:TE

Γ � e � some e′:Bool

Q (e � all e′) = Q (forall v in e′: e � v)

Q (e � some e′) = Q (exists v in e′: e � v)

Γ � e:E Γ � e′:TE

Γ � e in e′:Bool

Q (e in e′) = Q (exists v in e′: e = v)
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Test for non-empty collections (exists).

Γ � e:TE
(Ty-Peek)

Γ � exists(e):Bool

Q (exists(e)) = � true [] x ← Q e 	
exists Q-Peek

Notes. This translation may suggest to scan collection e completely just to
determine whether e contains at least one arbitrary element. There are two
points to note here. First, remember that Q’s purpose is to assign mean-
ing to queries, not execution plans. Second, depending on the execution
model implemented by the query engine, Q-Peek actually is as efficient a
translation as one may hope for. To see this, consider the calculation

(M · Q) (exists(e))

= {Q-Peek }
M � true [] x ← Q e 	

exists

= {M -3 }
� false � ∨� (M � true [] x ← Q e 	

T
)

= {M -2 }
(� false � ∨� · (TKtrue)) (Q e)

= {Cata-Map-Fusion }
�(false � ∨) · (id + Ktrue × id)� (Q e)

= { product, true ∨ x = true }
� false � Ktrue � (Q e) .

A database engine that implements query operators following a lazy (or on-
demand) stream iterator model [18, 54] will demand evaluation of Q e not
beyond the point at which it gets hold of the top-most constructor ([ ]

T
or

T
:) of the spine of Q e. In terms of functional programming languages, it is
sufficient to evaluate Q e to weak head normal form [18, 92]. We will have
to say a lot more about streaming in Chapter 6.

Test for singleton collections (unique).

Γ � e:TE
(Ty-Unique)

Γ � unique(e):Bool

Q (unique(e)) = (= · (K[ ]
T � tl)) (Q e) Q-Unique

(tl defined as before).
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Subset relationship (<=). The monad comprehension below implements the
semantics of the subset relationship predicate ⊆. The typing allows for the
application to arbitrary collection type formers but multiplicity or order of
elements is not accounted for.

Γ � e:TE Γ � e′:T′E
(Ty-Subset)

Γ � e <= e′:Bool

Q (e <= e′) = � �x = x′ [] x′ ← Q e′ 	exists
[] x ← Q e 	

all Q-Subset

Summation (sum).

Γ � e:TNum T �= set
(Ty-Sum)

Γ � sum(e):Num

Q (sum(e)) = �x [] x ← Q e 	
sum Q-Sum

Counting (count).

Γ � e:TE T �= set
(Ty-Count)

Γ � count(e):Num

Q (count(e)) = �K1 x [] x ← Q e 	
sum Q-Count

Average (avg).
Γ � e:TNum T �= set

(Ty-Avg)
Γ � avg(e):Num

Q (avg(e))

=
(
/ · ((λv.Q (sum(v))) � (λv.Q (count(v))))

)
(Q e) Q-Avg

Notes. After recursive invocation of Q and subsequent monad comprehen-
sion desugaring, the translated query essentially exhibits the typical shape
of a tupling catamorphism �f � � �g �. Operationally speaking, tupling cata-
morphisms walk their argument twice but the equational theory for catamor-
phisms once more provides a hook for optimization, this time in terms of law
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Banana-Split: for a tupling catamorphism �f �F � �g �F whose components
are F-catamorphisms, it is true that

�f �F � �g �F = �(f · Foutl) � (g · Foutr)�F Banana-Split

(a proof may be found in several places, including [67] and [42]).
For an avg query, Banana-Split yields the catamorphism

�(K0 � K0) � ((+ · (id × outl)) � (+ · (K1 × outr)))� ,

which, using a single traversal of Q e, computes a (nominator, denominator)
pair from which the average is immediate.

Maximum and minimum (max and min). Types instantiating E are required
to be ordered.

Γ � e:TE
(Ty-Max)

Γ � max(e):E

Γ � e:TE
(Ty-Min)

Γ � min(e):E

Q (max(e)) = �x [] x ← Q e 	
max Q-Max

Q (min(e)) = �x [] x ← Q e 	
min Q-Min

Flattening (flatten). If (τ,T) and (τ ′,T′) denote the initial types associ-
ated with type functors T and T′, define T′′ = T if τ obeys all equations that
τ ′ obeys, otherwise set T′′ = T′.

Γ � e:TT′E
(Ty-Flatten)

Γ � flatten(e):T′′E

Q (flatten(e)) = �x′ [] x ← Q e, x′ ← x 	
T′′

Q-Flatten

Note. An appeal to M and the functoriality of T′′ reveals OQL’s flatten

operator to simply be the monadic join
T′′

if T′′ = T = T′.

Duplicate elimination (listtoset and distinct).

Γ � e:listE
(Ty-DupElim-1)

Γ � listtoset(e):setE

Γ � e:bagE
(Ty-DupElim-2)

Γ � distinct(e):setE

Q (listtoset(e)) = �x [] x ← Q e 	
set Q-DupElim-1

Q (distinct(e)) = �x [] x ← Q e 	
set Q-DupElim-2
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Extraction (element and first). OQL designates the keyword first for
the case T = list.

Γ � e:TE
(Ty-Element)

Γ � element(e):E

Q (element(e)) = �⊥ � outl � (Q e) Q-Element

Notes. The catamorphism yields ⊥ should e evaluate to [ ]
T
. Here, the bottom

symbol ⊥ (denoting a completely undefined value) signals a situation in which
the query engine should raise an exception according to the specification in
[23]. For the above to work we require outl to be non-strict in the second
component of its argument, i. e., outl (x,⊥) = x. �

 Arrays. As presented in Definition 82, mapping Q lacks support for
OQL’s array type former and its associated query primitives, most notably
array subscripting via [ · ]. Support for arrays in a setting of categori-
cal datatypes and catamorphic computation raises no principal problems—
indeed, a number of efforts in that direction have already been undertaken
[5, 16, 40, 77].

An insert representation of arrays is conceivable but leads to a rather
awkward handling of arrays as either (a) each insertion affects the array shape
(dimensionality and extension of each dimension) or (b) the array needs to
hold empty slots on creation into which array elements are to be inserted
later. Arrays are more naturally constructed in a bulk-oriented fashion. In
[5], arrays with element type E are constructed by the initial algebra

σ � ρ:listE + Num × arrayE → arrayE

(where array denotes the array type functor). An array is constructed from
a potentially infinite list of values of type E. Rather than on the array it-
self, the constructors operate on the shape of the array and thus describe
how the array is to be built from the infinite pool of values supplied by the
list: an application of the scalarize constructor σ [x0, x1, . . . ]

list
builds the 0-

dimensional (scalar) array consisting of element x0 only; redimensioning ρ n
raises the dimensionality of the array by 1 (the new dimension has extension
n): ((ρ 3) · σ) [x0, x1, . . . ]

list
constructs a 1-dimensional array containing ele-

ments x0, x1, x2; (ρm) · (ρ n) ·σ denotes the (n×m)-matrix constructor, and
so on.

It is this rather different nature of arrays which led us to exclude their
treatment in this text. The details of their coverage would blur much of
the conceptual simplicity (e. g., the need for the single insert representation
functor F = K1 + KE × Id, only) we benefit from in this stage of discussion.
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 The catamorphisms (primarily in the disguise of monad comprehen-
sions) emitted by Q provide a somewhat unfamiliar view of database queries.
Much of this is due to the uniform catamorphic representation of query prim-
itives: the encoding of projections, joins, and selections (e. g., the translation
of a select-from-where block) is subject to inspection as is the representa-
tion of quantification or element extraction.

This is unlike the situation we face with “classical” query formalisms,
relational algebra or calculus, say. User-level query language primitives that
lie outside the reach—in terms of expressiveness—of the relational operators
find their way into the relational query representation as black box operators
or function calls. During the query rewrite phase these black boxes may be
merely moved around as their algebraic properties are not known. Their
interaction with the well-understood optimization rules in the relational do-
main remains unclear. Much may be missed that way.

To prove the catamorphic (monadic) comprehension of queries viable,
there are thus two questions on our agenda:

• How is already well-established and provably useful knowledge on query
optimization expressed in the catamorphic model? Can we mimic these
approaches? We try to find answers to these questions starting with the
section on query normalization in the current chapter and the material
on query combinators in Chapter 4. Actually, we hope to provide more
than just mimicry: in places, the categorical query model can simplify
and unify previous ideas.

• Where does the catamorphic comprehension of queries give additional
insight? Can the categorical query model answer previously open ques-
tions? We explore the now newly opened opportunities for query com-
prehension throughout this text, especially in Chapters 5 and 6.

Before we go on to work on the items of this agenda, let us spend the
next few paragraphs and try to give a taste of what kind of possibilities for
optimization show up if queries are tackled using a categorical toolbox.

 Different placements of OQL’s extraction operator element (or first,
respectively) in a query may obviously influence the quality of a query plan
in dramatic ways. Early execution of element extraction can lead to removal
of joins or even query unnesting. Join removal, e. g., is possible for the OQL
query below (remember the convention that a query expression like f x y
denotes a query f containing free variables whose occurences are replaced by
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x, y):
element(select f x y

from xs as x, ys as y) .

Computing the cartesian product of xs and ys is wasted work as we are
throwing the result away should the product unexpectedly contain more than
a single element (in which case the query raises an exception). An element-
aware query optimizer could emit the equivalent

f (element(xs)) (element(ys))

which removes the need for the cartesian product and thus never wastes work.
Note that the simplified query raises an exception if and only if the original
form would. However, element pushdown has a perilous nature:

• The above rewrite does not preserve equivalence if we are computing
with sets (replace select by select distinct): function f might
not be one-to-one and duplicate removal could potentially reduce the
product to hold exactly one element.

• We must not push element extraction beyond a selection as the selection
might filter its input so that exactly one element passes (e. g., selection
on a key).

This raises at least two questions. How are the safe rewrites recognizable
and, in safe cases, how do we obtain the optimized form?

This is where the theory jumps in. Once we have observed that OQL’s
element extraction operators act like monad morphisms we can answer both
questions.

 Definition. Given two monads T,T′, an arrow h:TE → T′E is called
a monad morphism [117] if it interacts with the operations of T and T′ as
follows:

h · Tf = T′f · h Monad-Morph-1

h · unit
T

= unit
T′

Monad-Morph-2

h · join
T

= join
T′ · T′h · h . Monad-Morph-3

Should T and T′ be monads with zero, we additionally require

h · zero
T

= zero
T′

. Monad-Morph-4

�
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 Element extraction acts like a monad morphism from a collection mo-
nad T to the identity monad Id (here we take the freedom to mix OQL
keywords and formal notation, having in mind that Q-Element establishes
the correspondence element = �⊥ � outl �):

element · Tf = f · element Elem-Pushdown-1

element · unit
T

= id Elem-Pushdown-2

element · join
T

= element · element . Elem-Pushdown-3

Two restrictions apply. First, Elem-Pushdown-1 does not hold for T = set
in general but only for constant f (i. e., f = Kx for some x). Second, element
is not a morphism between monads with zero since element · zero

T
= ⊥ �=

zero Id.
Observe that element fails to act like a monad morphism in exactly

those two situations that we have identified as unsafe pushdown rewritings
in Paragraph 85. This suggests to exploit the above three equivalences as
rewritings that propagate element through the monad operations and use
these with Q as a basis for safe element pushdown.

For the example query of Paragraph 85 we get

(M · Q)

(
element(select f x y

from xs as x, ys as y)

)
= {Q-Element,Q-Sfw }

element (M � f x y [] x ← xs , y ← ys 	
bag

)

= {M -5 }
(element · join

bag
) (M � � f x y [] y ← ys 	

bag
[] x ← xs 	

bag
)

= {M -3 }
(element · join

bag
) (bag (λx.M � f x y [] y ← ys 	

bag
) xs)

= {M -3 }
(element · join

bag
) (bag (λx.(bag (λy.f x y) ys)) xs)

= {Elem-Pushdown-3 }
(element · element · bag) ((λx.(bag (λy.f x y) ys)) xs)

= {Elem-Pushdown-1 }
element ((λx.(bag (λy.f x y) ys)) (element xs))

= { β-reduction }
(element · bag) ((λy.f (element xs) y) ys)

= {Elem-Pushdown-1 }
(λy.f (element xs) y) (element ys)
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= { β-reduction }
f (element xs) (element ys)

and thus obtain the optimized form we were after. The propagation rules
(Elem-Pushdown-1 through Elem-Pushdown-3) push element extrac-
tion down as far as possible but not beyond filters (which are implemented
with the help of monadic zeroes for which no propagation rule applies). We
can see this even more easily if we exploit the syntactic sugar we have intro-
duced for monadic computations: comprehension syntax.

In [117], Wadler observed that the action of a monad morphism on a
monadic computation may be concisely described by way of comprehension
syntax. A monad morphism h:TE → T′E acts on a T-monad comprehension
as follows:

h � e [] qs 	
T

= � e [] h qs 	
T′

Monad-Morph-5

where h’s extension on a qualifier list qs is defined by (ε and identifiers
v, e, qs , qs ′ represent the syntactic categories of Definition 67)

h ε = ε empty
h (v ← e) = v ← h e generators
h (qs , qs ′) = h qs , h qs ′ qualifier lists

h e = e . filters

For h = element, these simple syntactical rewritings exactly express
the element pushdown optimization and are therefore especially suitable for
inclusion into a rule-based optimizer. For our former example we calculate:

element � f x y [] x ← xs , y ← ys 	
bag

= {Monad-Morph-5 }
� f x y [] element (x ← xs , y ← ys) 	

Id

= {Monad-Morph-5 }
� f x y [] element (x ← xs), element (y ← ys) 	

Id

= {Monad-Morph-5 }
� f x y [] x ← element xs , y ← element ys 	

Id

= { comprehension in Id monad }
f (element xs) (element ys)

(for the last step remember that a monad comprehension in the Id-monad
essentially describes a nested let-expression, cf. Example 71).
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Optimizations like these are indeed relevant. Early execution of element
extraction can decrease the nesting depth of a query as the final example
shows:

Q


element(select (select f x y

from ys as y)
from xs as x)




= {Q }
element � � f x y [] y ← ys 	

bag
[] x ← xs 	

bag

= {Monad-Morph-5 }
� � f x y [] y ← ys 	

bag
[] element (x ← xs) 	

Id

= {Monad-Morph-5 }
� � f x y [] y ← ys 	

bag
[] x ← element xs 	

Id

= { comprehension in Id monad }
� f (element xs) y [] y ← ys 	

bag
.

The last monad comprehension has the equivalent OQL form

select f (element(xs)) y
from ys as y ,

i. e., a query which simply maps f over collection ys instead of creating a
nested bag of bags like the original form did.

 It is rather straightforward to check that OQL’s duplicate elimination
primitives listtoset and distinct act like monad morphisms from the list
and bag monads to the set monad, respectively. In other words, the function
listtoset = λe.�x []x ← e 	

set
:listE → setE fulfills laws Monad-Morph-1

through Monad-Morph-4 and thus law Monad-Morph-5. An analogous
remark applies to distinct.

We can exploit this observation to delay duplicate removal inside the
query engine.

• To delay the removal of duplicates may seem counter-productive as,
in general, duplicate elimination reduces operand sizes and thus might
save execution costs. Duplicate removal, however, is a rather expensive
operation to perform as it requires a sort or hash pass to identify dupli-
cate elements. This, in turn, may disrupt the desirable stream-based
processing of queries (to which we will turn in Chapter 6).
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• Second, if we take a look at the innards of a query engine implemented
on a common platform, actual implementations are almost exclusively
list-based. This is partly due to the just mentioned cost inherent to
duplicate removal (which manifests itself in the

set
: constructor) but

additionally enables the engine to reason about interesting (sort) orders
[102] of the streams it processes.

The query rewrite that enables delay of duplicate elimination is justified
by the equivalence (let xs:listE, we could reason analogously for xs:bagE
and distinct)

� e [] qs , x ← xs , qs ′ 	set
= listtoset � e [] qs , x ← xs , qs ′ 	list

.

The right-hand side evaluates the comprehension in the list monad which
preserves an potentially interesting sort order of xs until duplicates are finally
removed by the outer listtoset primitive.

We could verify the correctness of this transformation by means of the mo-
nad morphism properties of listtoset. We will not do so here but rather
appeal to monad comprehension unnesting which will be the focus of the
forthcoming section. The correctness of delayed duplicate removal is imme-
diately asserted by comprehension nesting :

� e [] qs , x ← xs , qs ′ 	set

= { nesting via M -Norm-3 }
�x′ [] x′ ← � e [] qs , x ← xs , qs ′ 	list

	
set

= { definition of listtoset }
listtoset � e [] qs , x ← xs , qs ′ 	list

.

Unnesting plays a crucial role during monad comprehension normalization
to which we will turn now.

3.2 Monad Comprehension Normalization

 Being a completely syntax-directed translation, Q rather directly re-
flects the nested structure of an OQL query in the comprehensions it emits.
Deriving anything but nested loop forms from a deeply nested query expres-
sion is a considerably hard task and a widely recognized challenge in the
query processing literature [35, 48, 69, 105, 107]. In order to make good use
of the efficient processing primitives of an underlying query engine we are
better off to unravel nested queries.
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The monad comprehension calculus provides particularly efficient yet sim-
ple handles to attack the problem.

• Different types of query nesting lead to similar, if not identical, nested
forms of monad comprehensions. Rather than to maintain and iden-
tify a number of special cases of nesting—this route has been taken
by numerous approaches, notably Kim’s original and followup work on
classifying nested SQL queries [48, 69]—we can concentrate on unnest-
ing the relatively few comprehension forms.

• Much of the actual unnesting work can be achieved by the application
of a small set of normalization rules to monad comprehensions. De-
spite its simplicity, comprehension normalization covers a wide range
of query unnesting techniques.

The normalization rules will prove to be valuable transformation tools in
general (above we have already used one of these rules—more specifically its
dual, nesting rule—to justify delayed duplicate removal).

 The normalization rule set is assembled from a number of sources.
Wadler already described the core rule M -Norm-3 in his original work on
endo-monadic comprehensions [117]. We augment this rule with a number of
comprehension transformations that have appeared in the work of Wong and
Fegaras [38, 124].

Here, we will put these rules to use and confirm their correctness in the
multi-monad comprehension framework. An assessment of the soundness of
the rules is crucial. The past has shown that relational unnesting is a query
transformation already complex enough to let incorrect rewritings—e. g., the
infamous count bug of [69]—remain undiscovered for long.

 Definition. The following set of equivalences is referred to as the mo-
nad comprehension normalization rules (an equivalence defines a normali-
zation rule if it is read from left to right—interpreted from right to left we
obtain the dual or nesting rule). Let T′ �= Id.

� e [] qs , v ← zero
T′
, qs ′ 	T

= zero
T M -Norm-1

� e [] qs , v ← unit
T′
e′, qs ′ 	T

= � e[e′/v] [] qs , qs ′[e′/v] 	T M -Norm-2

� e [] qs , v ← � e′ [] qs ′′ 	T′
, qs ′ 	T

= � e[e′/v] [] qs , qs ′′, qs ′[e′/v] 	T

M -Norm-3

� e [] qs , � e′ [] qs ′′ 	exists
, qs ′ 	T

= � e [] qs , qs ′′, e′, qs ′ 	T M -Norm-4
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(
T
: left-idempotent)

� � e [] qs ′ 	Id
[] qs 	

Id
= � e [] qs , qs ′ 	Id M -Norm-5

�

 Theorem. The set of monad comprehension normalization rules is sound,
i. e., the left-hand and right-hand sides of each rule map to equivalent mo-
nadic values under M .

Proof. We will only prove rules M -Norm-3 and M -Norm-5 valid here.
The structure of the proofs for the other three rules closely follows that
of M -Norm-3 and thus provide few new insights. Along the way of estab-
lishing the correctness of M -Norm-3, however, we will invoke a transfor-
mation (validated in Lemma 93) that will be useful in its own right later
on.

If we slightly specialize the comprehension qualifier list by setting qs = ε
we can find a rather simple proof for rule M -Norm-3. Being so far, we
establish the proof in a second step by generalizing from qs = ε to arbitrary
qs , assuming the specialized rule to be valid.

Set qs = ε. Let, as usual, τ denote the initial algebra of the initial type
(τ,T).

M � e [] v ← � e′ [] qs ′′ 	T′
, qs ′ 	T

= {M -5 }
join

T
(M � � e [] qs ′ 	T

[] v ← � e′ [] qs ′′ 	T′
	
T
)

= {M -3 }
(join

T · �τ �) (M � � e [] qs ′ 	T
[] v ← � e′ [] qs ′′ 	T′

	
T′
)

= {M -2 }
(join

T · �τ �)
(
T′ (λv.M � e [] qs ′ 	T

) (M � e′ [] qs ′′ 	T′
)
)

= {Functor-M -Fusion, established below }
(join

T · �τ �) (M � � e[e′/v] [] qs ′[e′/v] 	T
[] qs ′′ 	T′

)

= {M -3 }
join

T
(M � � e[e′/v] [] qs ′[e′/v] 	T

[] qs ′′ 	T
)

= {M -5 }
M � e[e′/v] [] qs ′′, qs ′[e′/v] 	T

.

Generalize to arbitrary qualifier list qs :

M � e [] qs , v ← � e′ [] qs ′′ 	T′
, qs ′ 	T



88 Chapter 3. Query Compilation and Normalization

= {M -5 }
join

T
(M � � e [] v ← � e′ [] qs ′′ 	T′

, qs ′ 	T
[] qs 	

T
)

= {M -Norm-3 with qs = ε }
join

T
(M � � e[e′/v] [] qs ′′, qs ′[e′/v] 	T

[] qs 	
T
)

= {M -5 }
M � e[e′/v] [] qs , qs ′′, qs ′[e′/v] 	T

.

Following the course of the proof for rule M -Norm-3, establishing rule
M -Norm-1 then is immediate by appealing to the functoriality of T′ and
law Monad-4. A similar remark applies to rule M -Norm-2 and monad
law Monad-2. For M -Norm-4 note that if

T
: is left-idempotent we have

(for arbitrary x)

if (p ∨ q) then unit
T
x else zero

T

= { ++ idempotent }
(if p then unit

T
x else zero

T
) ++ (if q then unit

T
x else zero

T
) .

To prove M -Norm-5 simply observe that in the Id-monad we have
join

Id
= id and thus

M � � e [] qs ′ 	Id
[] qs 	

Id

= { join
Id

= id }
join

Id
(M � � e [] qs ′ 	Id

[] qs 	
Id
)

= { M -5 }
M � e [] qs , qs ′ 	Id

.

�

 Lemma. The application of a type functor T �= Id may be fused with a
comprehension evaluated in the associated T-monad (no variable bound in
qs may appear free in f):

Tf (M � e [] qs 	
T
) = M � f e [] qs 	

T
. Functor-M -Fusion

Proof. Induction over qs . The equation holds for qs = ε due to M -1 and
the functoriality of T. For non-empty qs , we may safely assume that qs starts
with a generator, i. e., qs = v ← e′, qs ′. Should qs start with a filter p we
simply move p to the end of qs . (It is straightforward to see that filters may
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take an arbitrary place in the qualifier list as long as they are not moved out
of the scope of the free variables they refer to. In our case, p is constant with
respect to the variables bound in qs .)

Quite like in the validation of the normalization rules, we will first estab-
lish Functor-M -Fusion for qs ′ = ε and later generalize our findings to
arbitrary qs ′.

Induction base case. Set qs ′ = ε. In general, e:T′E with T �= T′, E
arbitrary:

M � f e [] v ← e′ 	T

= {M -3 }
�τ � (M � f e [] v ← e′ 	T′

)

= {M -2 }
(�τ � · T′(λv.f e)) (M e′)

= {Cata-Map-Fusion }
T(λv.f e) (M e′)

= { v not free in f,T functor }
(Tf · T(λv.e)) (M e′)

= {M -2 }
Tf (M � e [] v ← e′ 	T

) .

Assuming that the lemma is true for qs ′, perform the induction step. This
will complete the proof.

M � f e [] v ← e′, qs ′ 	T

= {M -5 }
join

T
(M � � f e [] qs ′ 	T

[] v ← e′ 	T
)

= { induction hypothesis }
join

T
(M � Tf � e [] qs ′ 	T

[] v ← e′ 	T
)

= { induction base case }
(join

T · TTf) (M � � e [] qs ′ 	T
[] v ← e′ 	T

)

= { join
T

is natural transformation TT →̇ T }
Tf (join

T
(M � � e [] qs ′ 	T

[] v ← e′ 	T
))

= {M -5 }
Tf (M � e [] v ← e′, qs ′ 	T

) .

See Lemma 114 for a related transformation applicable to Id-monad com-
prehensions. �
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 Rules M -Norm-1 through M -Norm-5 form a confluent and termi-
nating set of rewriting rules which is the main incentive to refer to them as
normalization rules. Given a monad comprehension, repeated application of
the rules derives an equivalent syntactic normal form

� e [] v1 ← e1, v2 ← e2, . . . , vn ← en, p 	
T

for the original comprehension. This is achieved by rules M -Norm-3 and
M -Norm-4. Normalization gives an unnesting procedure that is complete
in the sense that an exhaustive application of the rules leads to a compre-
hension in which all semantically sound unnestings have been performed
[40, 41]. If a query is evaluated in idempotent monads only (cf. the proviso
of M -Norm-4), then this can go as far as that all ei are atomic expressions
with respect to the monad comprehension syntax given in Definition 67, i. e.,
database entry points or constants. Nested terms may still occur in the filter
p and the comprehension’s head e. We will approach these types of nesting
when we have introduced algebraic combinators in the upcoming Chapter 4.

The comprehension normal form has been used by Fegaras and Maier as
a canonical starting point for query optimization [40, 41]. Scanning the
comprehension qualifier list from left to right, the algorithm described in [41]
introduces outerjoins and algebraic grouping operators to cope with nested
comprehensions that could not be flattened by normalization.

Unnesting disentangles queries and makes operands of formerly inner
queries accessible in the outer enclosing comprehension. This, in turn, pro-
vides new possibilities for further rewritings and optimizations that will prove
especially useful in the course of Chapters 4 and 5. Unnesting principally fa-
cilitates the applicability of other optimizing transformations that may help
to, e. g., trade a nested loop for a more efficient join.

Comprehension syntax provides a rather poor variety of syntactical forms,
but in the early query translation phase this is more of a virtue than a
shortcoming. Monad comprehensions extract and emphasize the structural
information contained in a query rather than to stress diversity of query
clauses. It is this uniformity that facilitates deep query analysis like the
completeness result for query unnesting via comprehension normalization
which we have mentioned in Paragraph 94. This can lead to new insights
and simplifications which is the point the three concluding paragraphs try to
make.
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 In [106], Steenhagen, Apers, and Blanken analyzed a class of SQL-like
queries which exhibit correlated nesting in the where-clause, more specifically

select distinct f x
from xs as x
where p x z

with z =


select g x y

from ys as y
where q x y


 .

It is the question whether queries of this class may be rewritten into flat
join queries of the form

select distinct f x
from xs as x, ys as y

where q x y
and p′ x v

with v = g x y .

Queries for which such a replacement predicate p′ cannot be found have to
be processed either (a) using a nested loop strategy, or (b) by grouping, ide-
ally via a nestjoin (see Paragraph 108 and [48, 69, 105, 106, 107]). Whether
we can derive a flat join query is, naturally, dependent on the nature of the
yet unspecified predicate p.

Steenhagen et al. state the following theorem—reproduced here using mo-
nadic terminology—which provides a partial answer to the question:

Whenever p x z can be rewritten into � p′ x v [] v ← z 	
exists

(for
some p′) the original query may be evaluated by a flat join.

For space reasons a proof is omitted in [106]. After the original query
is compiled via Q, however, normalization can provide a succinct proof in a
few lines (collection monad T is arbitrary):

� f x [] x ← xs , p x z 	
set

= { unfold p }
� f x [] x ← xs , � p′ x v [] v ← z 	

exists
	
set

= { M -Norm-4 }
� f x [] x ← xs , v ← z, p′ x v 	

set

= { unfold z }
� f x [] x ← xs , v ← � g x y [] y ← ys , q x y 	

T
, p′ x v 	

set
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= { M -Norm-3 }
� f x [] x ← xs , y ← ys , q x y, p′ x (g x y) 	

set
.

A flat join between xs and ys can evaluate the resulting comprehension (this
will become more apparent in Chapter 4).

But we can say even more and strengthen the statement of the theorem
(thus answering an open question that has been put by Steenhagen et al. in
[106]):

If p is not rewriteable into an existential quantifier like above,
then we can conclude—based on the completeness result for com-
prehension normalization—that unnesting will in fact be impos-
sible whatsoever.

Note. In [106], the antijoin (cf. Chapter 4) is also considered a flat join
operator and we will do so in the upcoming chapters, too. This turns
�¬p′ x v [] v ← z 	

all
into an additionally acceptable form for predicate p.

 Kim’s seminal work on the unnesting of SQL queries [69] may largely be
understood in terms of normalization if queries are interpreted in the monad
comprehension calculus. At the same time we can generalize and avoid the
treatment of special cases. We additionally gain insight into questions on
the validity of these unnesting strategies in the context of a complex object
model featuring diverse collection type formers beyond set.

In [69], a classification of query nesting was proposed which associates
each type of nesting with an equivalence-preserving unnesting transformation
(modulo the infamous count bug whose treatment requires the introduction
of the relational outerjoins or nestjoins [48, 107]) whose primary goal is to
rewrite the original nested expression into a flat join query. Monad com-
prehension normalization readily unnests queries of Kim’s type J, i. e., SQL
queries of the form

select distinct f x
from xs as x
where p x in (select g y

from ys as y
where q x y) .

Note that predicate q refers to the query variable x so that outer and nested
query are correlated; uncorrelated (type N ) queries need no special treatment
and are transformed likewise. We will turn to a considerable generalization
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of type D queries—containing universal quantifiers and thus essentially per-
forming relational division—in Paragraph 116 when the associated notions
are in context.

Normalization deduces an equivalent join query for a type J expression
in two steps:

� f x [] x ← xs , � p x = v [] v ← � g y [] y ← ys , q x y 	
T

	
exists

	
set

= {M -Norm-3 }
� f x [] x ← xs , � p x = g y [] y ← ys , q x y 	

exists
	
set

= {M -Norm-4 }
� f x [] x ← xs , y ← ys , q x y, p x = g y 	

set
.

The resulting comprehension is Kim’s canonical 2-relation query (i. e., the
join)

select distinct f x
from xs as x, ys as y
where q x y
and p x = g y .

 Above, we have chosen the collection monads as general possible: this
form of type J full unnesting is sound only if the outer query is evaluated in
the set monad; no such restriction is necessary for the inner query.

This restriction on the type formers becomes void, however, if we already
stop the unnesting process after the application of rule M -Norm-3. As
we will see in the next chapter, this comes with the extra benefit that the
query becomes subject to evaluation by an efficient semijoin (�) while the
fully unnested query calls for a general θ-join. Full unnesting may blur the
detection of beneficial query execution alternatives.

On these grounds, while we believe in monad comprehension normali-
zation as an important preprocessing step that should precede other query
optimization phases, we do not subscribe to full comprehension unnesting as
it was argued for in [38, 40, 41].
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Chapter 4

Combinators

 Given a simple spine transformer-based query engine as well as the map-
ping M ·Q we are already able to rapidly prototype a fully functional complex
value database system with OQL support. Based on the work reported in
the two previous chapters, a spine transformer database engine has actually
been manufactured from scratch and successfully operated in the realm of
the CROQUE object database project [52, 58]. For efficiency reasons we
have discussed in the introduction to Chapter 3, this is, however, clearly not
the route we want to take. We will nevertheless briefly take up the idea in
Chapter 6.

On the other hand, from the viewpoint of the catamorphic query represen-
tation, we know that any action executed in the query engine may eventually
be broken down into walks of a spine. It is only that a classical database
query engine implements algorithms—physical operators [66]—which allow
for a significantly more efficient, possibly parallel, execution of a potentially
large series of spine transformations. Typically this efficiency is accomplished
by means of more or less involved support data structures, e. g., indices. Al-
though these physical operators construct spines they generally do so in com-
pletely different ways (random access to spine nodes, block-wise processing,
and so on) than in adherence to the primitive catamorphic recursion pattern.

The principle observation that motivates the present chapter is that it is
nevertheless possible to encode the action of a physical operator using our
abstract query representation, i. e., via monad comprehensions and thus cata-
morphisms. This encoding emphasizes the algebraic properties of the opera-
tor rather than its—potentially many—underlying physical realizations. Join
✶, for example, is an abstraction that reduces join algorithms like sort-merge
join or hash-join to their algebraic properties (e. g., being commutative).

We refer to these encodings as combinators for reasons which will become
clear soon. Unlike in the monad comprehension calculus, expressing a query
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in terms of combinators provides the query engine with clear hints which
algorithms, besides nested loops, may be enlisted to execute the query. The
set of combinators encoding the physical algorithms of a query engine forms
the logical algebra associated with this engine [55].

 Combinators. We have just said that a combinator encodes a series of
actions on a spine which, when viewed from the outside, act like a possibly
complex catamorphic spine transformer. For our aims, this is an operator’s
prominent property. Its actual physical realization is going on behind the
scenes. This opacity is reflected by the means we use to model operators,
namely as closed expressions, i. e., combinators, in the sense of the λ-calculus
[92, 95]. As an example, the relational selection operator σ is represented by
the closed expression

σ : (E → Bool) → setE → setE
σ = λp.λxs .�x [] x ← xs , p x 	

set

closed

.

As the set of free variables of a combinator expression is empty by defini-
tion we do not encounter inter-combinator variable dependencies in a compo-
sition of combinators. This facilitates the reordering and transformation of
pure combinator expressions, a property that has long been exploited in al-
gebraic query rewriting frameworks. (Although surprisingly many proposed
“query algebras” heavily depend on the presence of free variables and thus
do not qualify as algebras in the strict sense of the word.)

To reach specific optimization goals, notably the generation of stream-
based programs for queries (query execution plans that do not allocate mem-
ory to buffer intermediate results), it pays off to break the encapsulation the
combinator notion provides. We will not do so until Chapter 6, however.

 Combinators from monad comprehensions. The path is clear: given
a query engine’s logical algebra we encode the actions of its operators as
closed monad comprehension expressions or, in rare cases, catamorphisms.
The PTIME expressive power of the catamorphic query model makes this
possible for query engines implementing classical relational algebra as well
as a broad range of advanced query algebras, from various proposals for the
non-first normal form (NF2) relational model [1, 12, 35, 99, 100, 105] to
algebras for complex value databases [6, 24, 30, 32, 76, 115]. Here, we will
focus on a variant of the latter.

The equational theory of monads and the initial algebras the monads were
derived from will provide the equational theory for the combinator algebra.
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Since a combinator is, in principle, nothing else than a monad comprehension
macro (built adhering to the closed expression property) its interaction with
an enclosing comprehension expression is well-defined.

This paves the way for a step-wise or incremental discipline for the deriva-
tion of a pure combinator expression from a given monad comprehension:
the combinator definitions serve as patterns which may be used to trigger a
replacement trading the matched comprehension subexpression for an equiv-
alent combinator. Along the way we are left with hybrid query expressions
of which parts are either built using comprehension syntax or combinators.
If the underlying query engine implements the catamorphism combinator � ·�
for the initial algebras its data model rests upon—this is actually a light
requirement—this step-wise replacement process is guaranteed to generate
a pure combinator expression. Falling back onto catamorphisms, however,
should clearly be the last resort.

Each replacement step enriches the original query expression by hints on
which strategies for query execution may be profitable. This does not yet
select the physical operators themselves, but (a) the introduction of a com-
binator seeds the search for the actual execution plan, and (b) a combinator
comes with a limited number of physical implementation alternatives. In
this sense we decrease the level of abstraction by placing combinators inside
a formerly comprehension-based query.

 An exploration of a mixture of the calculus and algebra styles of query
rewriting over monadic types forms the core of this chapter. Query trans-
formations may be formulated using the style in which their applicability is
most easily detected and expressed.

This procedure has much in common with the work of Nakano as well as
Steenhagen, Apers, Blanken, and de By in the relational and NF2 domains,
respectively [88, 105, 106, 107]. There, logical algebra semantics were spec-
ified using specific instances of the relational tuple calculus. As already
described in the previous paragraph, this opens the scene for a hybrid query
rewriting framework. Steenhagen et al. make significant use of relational cal-
culus to prove correct and justify rewritings, especially when it comes to the
processing of complex predicates containing quantifiers. The actual query
transformation rules (and thus the actual query rewriting), however, are for-
mulated at the algebra-level.

Here, we employ the monad comprehension calculus also as a tool to
calculate on the “semantics level”, i. e., the core query transformation work
is performed on the calculus-level. Once again, comprehension normaliza-
tion greatly simplifies our task. (The explicit treatment of conjunctive path
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formulas in [105, p. 67 ff.] is, for example, an algebra-level formulation of
unnesting rule M -Norm-4).

It is our aim not to restrict our attention to queries that originate from
the use of a specific subset of the user-level query language (OQL, say). The
select-from-where block is the principle query construct, but we believe
that studying its efficient translation in isolation from the rest of the query
language comes with the danger of missing profitable plans. The uniformity
of monad comprehension-based query representation has something to offer
here. (Chapter 5 presents extended examples of the treatment of queries
other than of the select-from-where type.)

4.1 Defining and Detecting Combinators

 The following definition sets up a combinator algebra for a query engine
that can operate over monadic types. It is our assumption that the query
engine copes with set, bag, as well as list values and supports similar facilities
for the three collection formers. At the combinator level this is reflected by
polymorphic typing: the combinators are parametric in their monadic input
and result types which implies that they behave similarly for the different
type instantiations in which they are going to be used. At the same time
this prevents the introduction of a large number of families of combinators
in which the members of a family implement a common operator but each
member for a specific type only.

 Definition. Let T,T′ denote monadic types and let E,E ′, E ′′ be place-
holders for valid query types (cf. Paragraph 78). The list below defines the
set of combinators that we will refer to in the sequel. Because we will en-
counter curried (i. e., partial) applications of the combinators, this definition
displays them in prefix notation instead of the “classical” infix form. (Fully
applied binary operators are also written between their collection-typed ar-
guments, i. e., we consider

✶ p f xs ys and xs ✶
p | f

ys

to be equivalent notations.) It goes without saying that a combinator ap-
plication is sensible only if—given the monadic types of its arguments—its
defining monad comprehension is well-defined for these type instantiations.

π : (E → E ′) → TE → TE ′
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π f xs = Tf xs = � f x [] x ← xs 	
T

Project

α
T

: (E → E ′) → T′E → TE ′

α
T
f xs = � f x [] x ← xs 	

T
Aggregate

σ : (E → Bool) → TE → TE

σ p xs = �x [] x ← xs , p x 	
T

Select


 : TE → T′E → T(E × E ′)


 xs ys = � (x, y) [] x ← xs , y ← ys 	
T

Cross

✶ : (E → E ′ → Bool) → (E → E ′ → E ′′)
→ TE → T′E ′ → TE ′′

✶ p f xs ys = � f x y [] x ← xs , y ← ys , p x y 	
T

Join

� : (E → E ′ → Bool) → (E → T′E ′ → E ′′)
→ TE → T′E ′ → TE ′′

� p f xs ys = � f x � y [] y ← ys , p x y 	
T′

[] x ← xs 	
T

Nestjoin

� : (E → E ′ → Bool) → TE → T′E ′ → TE

� p xs ys = �x [] x ← xs , � p x y [] y ← ys 	
exists

	
T

Semijoin

�� : (E → E ′ → Bool) → TE → T′E ′ → TE

�� p xs ys = �x [] x ← xs , �¬p x y [] y ← ys 	
all

	
T

Antijoin

µ : TT′E → TE

µ xss = �x [] xs ← xss , x ← xs 	
T

Unnest

ς : (E × E → Bool) → TE → listE

ς � xs = �nil
list � ins

list
�� xs Sort

�

 Notes. (a) Issues of polymorphism aside, the combinators are stan-
dard and should explain themselves. The nestjoin � combines joining with
grouping: for each x in xs a group from those y in ys is built that make
predicate p x y evaluate to true. Note that nestjoin provides an abstraction
for nesting in a comprehension’s head, a case the normalization rules of Def-
inition 91 do not account for. Nestjoin thus plays a central role in nested
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query processing. Variants of nestjoin have appeared as, e. g., the binary
grouping operator of [35] or the hierarchical join of [96].

(b) Semijoin and Antijoin define the left variants of the semijoin and
antijoin operators, respectively. The right variants � and �� are dually de-
fined. Semijoin � p xs ys emits all x in xs for which some (arbitrary) y in ys
with p x y can be found. The corresponding antijoin computes the comple-
ment.

(c) In a setting of monadic types, combinator α
T
has two facets: evaluated

in an identity monad, i. e., a monad that has been derived from the algebras
of Definition 64, α

T
acts like a quantifier or aggregation operator; evaluated

in a collection monad the combinator coerces between collection types (e. g.,
duplicates are eliminated for T = set).

(d) Remember that it has not been our goal to define a minimal algebra
in the sense that each combinator adds expressive power (indeed, � ·� is all
what would be needed then). Highly specialized combinators like nestjoin
rather flag the presence of an efficient execution algorithm inside the query
engine and are thus introduced for optimization purposes only.

 Partial matches. It is actually only a small step from a combinator
definition to its associated detection rule: reading a definition from right to
left specifies a rewriting rule that spots the opportunity to completely replace
the right-hand side by a combinator. Note that such a rule application is
valid only if the lhs combinator arguments are closed expressions (this is a
requirement inherent to the combinator notion). Rarely, however, will such
perfect matches occur.

The detection process is significantly enhanced if we provide (rule-based)
knowledge about partial matches and replacements. Rules of this type ob-
viously lead to hybrid query expressions as we have discussed them in Para-
graph 100. As the thus induced rules exhibit a similar structure let us list
only a selection of them below.

Most of the rules rely on the simple syntactic recipe after which monad
comprehensions are constructed: as before, let qs , qs ′, qs ′′ represent the syn-
tactic category of possibly empty lists of qualifiers (cf. Definition 67). The
left-hand sides thus specify (qualifier) list patterns that match the specified
template of generators and filters. We will assess the rules’ correctness in the
next paragraph.

Note. The uses of p x or p x y below denote predicates p in which no variables
besides x (or x and y, respectively) may occur free. This includes closed
predicates. The replacements in the rhs of rules M -Join and M -Nestjoin

implement the deconstruction of the tuple-typed elements found in the join
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results. The introduction of pattern-matching capabilities for comprehension
generators—which we have not done for simplicity reasons, but see [92, 125]—
make such replacements obsolete.

� f e [] qs 	
T → π f � e [] qs 	

T M -Project

(f closed)

� e [] qs:T′ 	T → α
T

id � e [] qs 	
T′

M -Aggregate

� e [] qs , x ← xs ,
qs ′, p x, qs ′′ 	T

→ � e [] qs , x ← σ p xs ,
qs ′, qs ′′ 	T

M -Select

� e [] qs , x ← xs , y ← ys , qs ′

p x y, qs ′′ 	T
→ � e[outl v/x][outr v/y] [] qs ,

v ← xs ✶
p|λx.λy.(x,y)

ys ,

qs ′[outl v/x][outr v/y],
qs ′′[outl v/x][outr v/y] 	

T

M -Join

� e [] qs , x ← xs , qs ′,
p x e′, qs ′′ 	T

with
e′ = � g x y [] y ← ys , q x y 	

T′

→ � e[outl v/x] [] qs ,
v ← xs �

q|λx.λy.(x,g x y)

ys ,

qs ′[outl v/x],
p[outl v/x][outr v/e′],
qs ′′[outl v/x] 	

T

M -Nestjoin

� e [] qs , x ← xs , qs ′,
� p x y [] y ← ys 	

exists
,

qs ′′ 	T

→ � e [] qs , x ← xs �
p

ys ,

qs ′, qs ′′ 	T

M -Semijoin

 Lemma. The introduction of combinators via the rules listed in Para-
graph 105 does not alter the meaning of the affected monad comprehensions.

Proof. The proof scheme is so simple that we establish the correctness of
rules M -Project and M -Join only here: (a) in the rhs, unfold the combi-
nator definition found in Definition 103, then (b) use monad comprehension
normalization to derive the lhs.

M -Project:

π f � e [] qs 	
T
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= { unfold π via Project }
� f x [] x ← � e [] qs 	

T
	
T

= {M -Norm-3 }
� (f x)[e/x] [] qs 	

T

= { replacement }
� f e [] qs 	

T
.

M -Join: we assume xs:T′E for some E:

� e[outl v/x][outr v/y] [] qs , v ← xs ✶
p|λx.λy.(x,y)

ys ,

qs ′[outl v/x][outr v/y],
qs ′′[outl v/x][outr v/y] 	

T

= { unfold ✶ via Join, β-reduction }
� e[outl v/x][outr v/y] [] qs , v ← � (x, y) [] x ← xs , y ← ys , p x y 	

T′
,

qs ′[outl v/x][outr v/y],
qs ′′[outl v/x][outr v/y] 	

T

= {M -Norm-3 }
� e[outl v/x][outr v/y][(x, y)/v] [] qs , x ← xs , y ← ys , p x y,

qs ′[outl v/x][outr v/y][(x, y)/v],
qs ′′[outl v/x][outr v/y][(x, y)/v] 	

T

= { replacements, product }
� e [] qs , x ← xs , y ← ys , p x y, qs′, qs ′′ 	T

= { shift filter in qualifier list }
� e [] qs , x ← xs , y ← ys , qs ′, p x y, qs ′′ 	T

.

�

It comes as no surprise that unnesting the rhs of the combinator intro-
duction rules derives their lhs: it is the ultimate point of combinators to
capture the structure of a comprehension that has not been fully unnested
or, equivalently, rewritten into its nested loops form (cf. Paragraph 97).

4.2 Combinators From Monad Comprehensions

 Where is our current position in the greater picture? Prior to the
introduction of combinators in this chapter we were dealing with a com-
pletely deterministic query translation process, namely M · Q followed by
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full unnesting. This has changed with our goal to derive combinator queries
from monad comprehensions: the set of rewriting rules built from the nor-
malization rules, combinator definitions, and partial combinator patterns (of
Paragraph 105) is clearly non-confluent. From the monad comprehension,
e. g., � f x [] x ← xs , y ← ys , p y 	

T
, the rules open a spectrum from purely

catamorphic plans (i. e., nested loops), over combinator queries using 
 or ✶

to the most efficient �-based alternative.

• A query rewriter that gives preference to the application of rules stem-
ming from the combinator definitions will perform a top-down deri-
vation—with respect to the syntactic structure of comprehensions—of
combinator queries. Benefit: early detection of, e. g., a semijoin occur-
rence (or of a flat join in general), can significantly improve the overall
quality of the emitted combinator expression.

• The lhs of partial match rules inspect the innards of a comprehension
and, once applied, replace parts of the comprehension (qualifier list),
thus working their way bottom-up. Benefit: the lhs are much more
likely to match a given query as they require partial matches only and
may rewrite a comprehension such that a combinator definition can
subsequently be detected.

This suggests the following sketch of a procedure which can guide a query
optimizer in its task to assign priorities to rule groups and to organize its
rewriting strategy. Probing the rules of the topmost alternative first, the
optimizer only as a last resort falls through to the generation of nested loops
via the monad comprehension desugaring scheme M (Definition 69).

�� Detect occurrence of ✶,�, �� (flat joins), on success
recursively apply procedure to combinator arguments.

�� success Use partial matches to detect ✶,�, �� (flat joins).

Detect occurrence of other operators, on success
recursively apply procedure to combinator arguments.

�� success Use partial matches to detect other operators.

no normal form Normalize (unnest).

Use M to trade remaining comprehension syntax
for catamorphisms.
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 Let us pick up the query class of Paragraph 95:

Q ≡ select f x
from xs as x
where p x z

with z =


select g x y

from ys as y
where q x y


 .

We already know how to deal with this type of query should predicate p
be essentially equivalent to � p′ x v [] v ← z 	

exists
for some p′. The theorem

sketched in Paragraph 95 indicates the need for grouping in all other cases. To
illustrate, let p denote a predicate of general form. A combinator query for Q
should ideally employ the nestjoin � as this is the combinator which encodes
the grouping functionality of the underlying query engine. The calculation
goes on as follows (collection monads T,T′ are arbitrary):

QQ

= {Q, unfold z }
� f x [] x ← xs , p x � g x y [] y ← ys , q x y 	

T′
	
T

= {M -Nestjoin }
� (f x)[outl v/x] [] v ← xs �

q|λx.λy.(x,y)

ys , (p x)[outl v/x] 	
T

= { replacements }
� (f · outl) v [] v ← xs �

q|λx.λy.(x,y)

ys , (p · outl) v 	
T

= {M -Select }
� (f · outl) v [] v ← σ (p · outl) (xs �

q|λx.λy.(x,y)

ys) 	
T

= {Project }
π (f · outl) (σ (p · outl) (xs �

q|λx.λy.(x,y)

ys)) .

The resulting combinator query is a close variant of the plan that has
been proposed in the original work on nestjoin-based query processing [106].
As we do not invoke some sort of Eureka step, it is reasonable to assume that
the above trail of rewritings will actually be found by the optimizer.

Nestjoin encodes nesting a comprehension’s head (see Paragraph 104) so
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that its canonical use arises whenever queries of the form

Q′ ≡ select f x z
from xs as x
where p x

with z =


select g x y

from ys as y
where q x y




are to be processed. For g x y = y, the nestjoin occurrence in Q′ is apparent
as soon as Q has desugared the OQL syntax [107]:

QQ′

= {Q, unfold z }
� f x � y [] y ← ys , q x y 	

T′
[] x ← xs , p x 	

T

= {M -Project }
� f x � y [] y ← ys , q x y 	

T′
[] x ← σ p xs 	

T

= {Nestjoin }
(σ p xs) �

q|λx.λy.(x,y)

ys .

For arbitrary projections g, a tupling transformation hand in hand with
Functor-M -Fusion pulls g out of the nested query block, thus paving
the way for the use of nestjoin. A generalized nestjoin operator (accepting
g as a parameter) that perfectly matches the above query class has been
proposed in [106].

Query rewriting in this hybrid framework of combinators and monad com-
prehensions draws much of its attractiveness on the interleaving of combi-
nator detection and calculus-level rewriting. The uniformity of the monad
comprehension calculus—together with its syntactical simplicity—allows to
strengthen the rewriting framework by adding only few but generic (i. e.,
parametric in the monads) rules. This is the next point we try to make.

 Example. Both nested existential quantifiers in the following OQL
query are not closed (neither p nor q may be evaluated in the scope of one
of the quantifiers only):

Q′′ ≡ select distinct x
from xs as x
where exists y in ys:

(exists z in zs: q x z and p y z) .
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Such variable interdependencies in the source query and its equivalent
under mapping Q may render the introduction of combinators a hard prob-
lem. Assuming that the query rewriter is equipped with monad comprehen-
sion normalization rules and combinator patterns (we will redo this example
shortly), we then calculate as follows:

QQ′′

= {Q }
�x [] x ← xs , � � q x z ∧ p y z [] z ← zs 	

exists
[] y ← ys 	

exists
	
set

= {M -Norm-4 }
�x [] x ← xs , y ← ys , � q x z ∧ p y z [] z ← zs 	

exists
	
set

= { partial match for 
 }
� outl v [] v ← xs 
 ys ,

� q (outl v) z ∧ p (outr v) z [] z ← zs 	
exists

	
set

= {M -Semijoin }
� outl v [] v ← (xs 
 ys) �

λv.λz.q (outl v) z∧p (outr v) z
zs 	

set

= {Project }
π outl

(
(xs 
 ys) �

λv.λz.q (outl v) z∧p (outr v) z
zs

)
The introduction of the cross product performs a tupling of xs and ys

so that predicates p and q may be evaluated given this stream of tuples and
the bindings of z generated from zs . Only then we obtain a constellation
a semijoin can implement. Tupling comes at a rather high cost, not least
because of the necessary untupling realized by the π combinator. ♦

 The rewriting process will clearly benefit from general means to un-
wind variable interdependencies. Transformations of this type are naturally
expressed at the monad comprehension calculus level. The following three
lemmata provide such tools. Having these at hand, Paragraph 115 will revisit
the above example.

 Lemma. Let T denote a commutative monad. Adjacent qualifiers
qs ′, qs ′′ in a T-monad comprehension may be exchanged without affecting
the comprehension’s meaning under M , given that qs ′ does not refer to vari-
ables bound in qs ′′ and vice versa [114]:

M � e [] qs , qs ′, qs ′′, qs ′′′ 	T
= M � e [] qs , qs ′′, qs ′, qs ′′′ 	T

Qual-Ex
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Note that repeated application of Qual-Ex gives a more general qualifier
exchange theorem.

Proof. We can reuse the proof scheme we have applied to establish the
monad comprehension normalization rules in Theorem 92: a proof for the
case qs = ε is found by desugaring the lhs of Qual-Ex and an appeal to the
commutativity of ++ in join

T
= � [ ]

T � ++ � (cf. Lemma 60). Appealing to M
and the base case then readily establishes the statement for arbitrary qs . �

A direct consequence of the above and comprehension unnesting rule
M -Norm-5 is the following.

 Lemma. For Id-monads (monads derived from the algebras of Defini-
tion 64) we have that

M � � e [] qs ′ 	Id
[] qs 	

Id
= M � � e [] qs 	

Id
[] qs ′ 	Id

Nest-Ex

provided that qs and qs ′ do not include mutual variable references.

Proof.

M � � e [] qs ′ 	Id
[] qs 	

Id

= {M -Norm-5 }
M � e [] qs , qs ′ 	Id

= {Qual-Ex }
M � e [] qs ′, qs 	

Id

= {M -Norm-5 }
M � � e [] qs 	

Id
[] qs ′ 	Id

.

�

The last of the three “unwinding” tools provides a catamorphic general-
ization of the descoping transformation described in [106] and [15]. Based
on the notion of distributivity defined below, descoping can pull expressions
out of a comprehension’s head.

 Definition. Let α = z � �:FA → A denote an F-algebra, with F
being the polynomial endofunctor in Set describing algebras in insert repre-
sentation. Function �:A× A → A distributes over α if for all c:A

� · (Kc � �α �) = �z � � · ((� · (Kc � id)) × id)� , Dist
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which, in terms of transformations of a spine [x1, . . . , xn]
T

(with T denoting
the initial type induced by F), can be depicted as

�

��
�� ��

�

c �
��

�

�
�

�
�

�

x1

�
��

� ��
��

xn z

=

�
��

�

�
�

�
�

�

�

��
�� ��

�

c x1 �
��

� ��
��

�

��
�� ��

� z

c xn

In this sense, ∧ distributes over false � ∨, ∨ distributes over true � ∧,
and max2 distributes over ∞ � min2, for example. �

 Lemma. Let (τ = z � �, Id) denote an initial type in insert rep-
resentation. Given that � distributes over τ we can pull applications of
�:E × E → E out of the scope of a monad comprehension if no variable
bound in qs appears free in c (with e, c:E):

c � M � e [] qs 	
Id

= M � c � e [] qs 	
Id

. Descope

Proof. Following the proof scheme of Lemma 93, we assume qs = v ←
e′:T′, qs′ and first set qs ′ = ε. If T′ = Id then Descope reads c � let v =
e′ in e = let v = e′ in c � e which is true because v does not appear free in c.
For T′ �= Id we calculate:

c � M � e [] v ← e′ 	Id

= {M -3 }
c � (�τ � (M � e [] v ← e′ 	T′

))

= {Dist }
�z � � · (� · (Kc � id) × id)� (M � e [] v ← e′ 	T′

)

= {Acid-Rain }
(�τ � · T′(� · (Kc � id)))M � e [] v ← e′ 	T′

= {Functor-M -Fusion }
�τ � (M � c � e [] v ← e′ 	T′

)

= {M -3 }
M � c � e [] v ← e′ 	Id

.
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Induction step. Assume that Dist holds for qs = qs ′.

M � c � e [] v ← e′, qs ′ 	Id

= {M -5 }
join

Id
(M � � c � e [] qs ′ 	Id

[] v ← e′ 	Id
)

= { induction hypothesis }
M � c � � e [] qs ′ 	Id

[] v ← e′ 	Id

= { induction base case }
c � M � � e [] qs ′ 	Id

[] v ← e′ 	Id

= {M -Norm-5 }
c � M � e [] v ← e′, qs ′ 	Id

.

�

 Example (continued from Paragraph 109). Now that we are equipped
with these calculus-level rewriting rules, let us revisit query Q′′ and the prob-
lem of correlated quantifiers. An appeal to Nest-Ex and Descope can
unwind the nested exists-clauses which finally enables the derivation of an
efficient semijoin plan for Q′′:

QQ′′

= {Q }
�x [] x ← xs , � � q x z ∧ p y z [] z ← zs 	

exists
[] y ← ys 	

exists
	
set

= {Nest-Ex }
�x [] x ← xs , � � q x z ∧ p y z [] y ← ys 	

exists
[] z ← zs 	

exists
	
set

= {Descope }
�x [] x ← xs , � q x z ∧ � p y z [] y ← ys 	

exists
[] z ← zs 	

exists
	
set

= { � p ∧ q [] qs 	
exists

= � p [] qs , q 	
exists }

�x [] x ← xs , � q x z [] z ← zs, � p y z [] y ← ys 	
exists

	
exists

	
set

= {M -Semijoin }
�x [] x ← xs , � q x z [] z ← zs �

λz.λy.p y z
ys 	

exists
	
set

= {Semijoin }
xs �

q
(zs �

λz.λy.p y z
ys) .

Similar mechanical calculations derive the algebraic forms that have been
proposed by Bry to efficiently process the open nested quantified queries listed
in [15, Section 3.2]. ♦
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To conclude this chapter on hybrid query rewriting, we briefly review
the transformation of another class of queries that has been discussed by
Claussen, Kemper, Moerkotte, and Peithner in [34].

 Example. Queries of the form shown below are considered hard
to translate for purely algebraic optimizers mainly because there exists no
canonical translation for universal quantification in the where-clause:

Q′′′ = select x
from xs as x
where forall y in z : q x y

with z =


select y

from ys as y
where p y




(Claussen et al. distinguish 16 instances in this query class, each instance
corresponding to a subset of {x, y} of free variables referenced in p and q.
Here, we discuss instances in which (a) the universal quantifier, and (b) the
quantifier and z are correlated with the outer query block as these were
identified as the most challenging in [34].)

Possible algebraic equivalents involve set difference, relational division, or
a combination of grouping and counting to implement the universal quanti-
fier, e. g.,

xs \ (π outl (xs ✶
¬q|λx.λy.(x,y)

(σ p ys)))

(symbol \ denotes set difference).
The derivation of these algebraic forms is tedious, however, and the re-

sulting expressions are judged to be inefficient and too complex to be useful
as input to subsequent rewriting phases [34, 88, 105]. The case is even more
complex if z is not closed (e. g., if the quantifier predicate p y is replaced by
p x y). This renders the use of a division combinator impossible.

The universal quantifier poses no particular problem for the monad com-
prehension calculus. By means of Q-Forall, the universal quantifier is
translated into a comprehension to be interpreted in monad all. If z is closed,
QQ′′′ already emits a perfect match for the rhs of Antijoin:

QQ′′′

= {Q }
�x [] x ← xs , � q x y [] y ← � y [] y ← ys , p y 	

bag
	
all

	
bag

= {Antijoin }
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xs ��
λx.λy.¬q x y

(� y [] y ← ys , p y 	
bag

)

= {Select }
xs ��

λx.λy.¬q x y
(σ p ys) .

Should z be correlated with the outer query (replace p y by p x y), the
derivation of an antijoin-based plan is immediate once p has been moved
into the scope of the universal quantifier:

QQ′′′

= {Q }
�x [] x ← xs , � q x y [] y ← � y [] y ← ys , p x y 	

bag
	
all

	
bag

= {M -Norm-3 }
�x [] x ← xs , � q x y [] y ← ys , p x y 	

all
	
bag

= { � p [] qs , q 	
all

= � p ∨ ¬q [] qs 	
all }

�x [] x ← xs , � q x y ∨ ¬p x y [] y ← ys 	
all

	
bag

= {Antijoin }
xs ��

λx.λy.¬q x y∧p x y
ys .

The derived combinator queries are identical to those that have been
identified as the most efficient forms by Claussen et al. [34]. ♦

 Consider a rewriting rule set consisting of (a) defining equations for
the algebraic combinators (Definition 103) as well as their associated partial
match rules (Paragraph 105), (b) monad comprehension normalization rules
(Definition 91), and (c) the calculus-level equivalences of this section.

Thanks to the poor syntactic variety monad comprehensions exhibit, the
patterns occurring in this rule set are simple. The generic nature (being
parametric in the monads) of the rules renders this rule set compact. A
quite simple heuristic ordering of the rules, sketched in the introduction
to this section, has already led to promising rewriting results. We could
significantly improve the quality of the rewriting process with only few rules
which is mainly due to their general applicability in many instantiations.
Should the derivation of a pure combinator query fail, this rule set comes
with a guaranteed fallback, namely M , that emits catamorphisms for those
query parts that could not be mapped to combinators (these parts are subject
to further optimization, see Chapter 6). In this sense, the rule set is complete.

We believe that such a comprehension of queries makes a promising foun-
dation upon which to rest a query optimizer for OQL-like declarative lan-
guages.
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Chapter 5

Comprehending Queries

 Perhaps the most principle and influential decision in solving a problem
is the choice of language in which we represent both the problem and its
possible solutions. Choosing the “right” language can turn the concealed or
difficult into the obvious or simple. This chapter revisits three problems in
the advanced query processing domain. In all three cases, it is our aim to
show how a catamorphic and monadic query language can (a) simplify, if
not automate, the derivation of proposed solutions to the problem, (b) help
to assess the correctness of these solutions, (c) possibly generalize the class
of queries described by the problem and thus clarify the applicability of its
solution.

The three problems were previously identified and tackled by others. The
first two concentrate on the efficient processing of queries featuring grouping
and aggregation (Chatziantoniou and Ross, Groupwise Processing of Rela-
tional Queries [27] and Cluet and Moerkotte, Efficient Evaluation of Aggre-
gates on Bulk Types [36]), while the last is concerned with a pure combinator
query representation and its normalization (Cherniack, Malhotra, and Zdonik,
Experiences with Query Translation: Object Queries meet DB2, [31]). We ap-
preciate the work of these authors and the following is certainly not to lecture
them. Rather, we like to argue that the techniques developed and applied in
this text can contribute to the comprehension of queries.
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5.1 Parallelizing Group-By Queries

 The database backends of decision support systems frequently face
SQL queries of the following general type (termed group queries in [26, 27]):

Qf g agg xs ≡ select f x, agg(g x)
from xs as x

group by f x .

Group queries extract a particular dimension or feature—described by func-
tion f—from given base data xs and then pair each data point f x in this
dimension with aggregated data agg(g x) associated with that point; agg may
be instantiated by one of the SQL aggregate functions, e. g., sum or max.

There exist a number of execution plans suitable to process the queries
in class Q, one of the more efficient but maybe not so obvious variants being
a self-nestjoin of xs with itself. To find this variant, start with the monad
comprehension equivalent for Q (derivable by Q if its definition is slightly
modified to take care of syntactic sugar provided by SQL):

Qf g agg xs ≡ � (f x, � g y [] y ← xs , f y = f x 	
agg

) [] x ← xs 	
set

(let agg denote the Id-monad associated with the non-collection algebra im-
plementing the SQL aggregate agg , e. g., sum or max). Then perform com-
binator pattern matching as we have proposed in Chapter 4 (we assume
xs:bagE for some E):

� (f x, � g y [] y ← xs , f y = f x 	
agg

) [] x ← xs 	
set

= {M -Aggregate }
� (f x, α

agg
g � y [] y ← xs , f y = f x 	

bag
) [] x ← xs 	

set

= { product }
� (f × α

agg
g) (x, � y [] y ← xs , f y = f x 	

bag
) [] x ← xs 	

set

= {M -Project }
π (f × α

agg
g) � (x, � y [] y ← xs , f y = f x 	

bag
) [] x ← xs 	

set

= {Nestjoin }
π (f × α

agg
g) (xs �

λx.λy.f x=f y|λx.λy.(x,y)

xs) .

 In [26, 27], Chatziantoniou and Ross propose to take a rather different
three-step route to execute queries of type Q:
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(a) Separate the data points in dimension f of xs in a preprocessing step,
i. e., partition xs with respect to f .

(b) Evaluate a simplified variant Q′ of Q on each partition. In particular, Q′

does not need to take care of grouping. Let ps denote a partition of xs ,
then we have

Q′ f g agg ps ≡ select f x, agg(g x)
from ps as x ,

or, equivalently,

Q′ f g agg ps ≡ � (f x, � g y [] y ← ps 	
agg

) [] x ← ps 	
set

.

(c) Finally, join the results obtained in step (b) to form the query response.

This strategy clearly shows its benefit in stage (b): first, since xs has been
split into disjoint partitions during the preprocessing step, we may execute Q′

on the different partitions in parallel. Second, there is a chance to process Q′

in main memory should the partitions of xs fit. Measurements reproduced
in [26, 27] show the performance gains in terms of time and I/O costs to
compensate for the effort spent in the partitioning and joining stages.

 In [26, 27], classical relational algebra is the language at which the
translation of group queries is targeted. This choice of query representation
introduces subtleties.

Relational algebra lacks canonical forms to express the grouping and ag-
gregation operations found in Q. Chatziantoniou and Ross thus propose to
understand Q as a syntactical query class: the membership of a specific query
in this class and thus the applicability of the partitioning strategy is decided
by inspection of the SQL parse tree for that query. (Actually, query graphs
are extracted from the parse trees and a query graph level criterion decides
the group query property.)

Relational algebra falls short to provide idioms that could express the
preprocessing, i. e., partitioning, step of the strategy. To remedy the situ-
ation, Chatziantoniou and Ross attribute the nodes of the query graphs to
indicate which partition is represented by a specific node.

Finally, the core stage (b) of the partitioning strategy has no equivalent
at the target language level as well. Classical relational algebra is unable to
express the iteration (or parallel application) inherent to this stage.1

1Chatziantoniou and Ross implemented this step on top of the relational backend and
thus outside the relational domain.
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Facing this mix of query representations (SQL syntax, query graphs, re-
lational algebra, iteration), it is considerably hard to assess the correctness
of Chatziantoniou and Ross’ parallel processing strategy for class Q.

 Reasoning in the monad comprehension calculus and its associated
combinator algebra can significantly simplify the matter. Once expressed
using monadic notions, we can construct a correctness proof for the strategy
which is basically built from the unfolding of definitions and normalization
steps alone (and thus could possibly be conducted automatically, although
we consider automated proofs outside the scope of this text). Let us proceed
by filling the two gaps (partitioning and iteration) that relational algebra has
left open.

First, partitioning the base data collection xs with respect to a function
f is expressible in the monad comprehension calculus simply as (let T denote
a collection monad and E ′ some equality type, cf. Paragraph 78)

partition : (E → E ′) → TE → setTE
partition f xs = � � y [] y ← xs , f x = f y 	

T
[] x ← xs 	

set
, Partition

which builds a set of disjunct partitions so that all elements inside one par-
tition agree on feature f .

Second, recall from Section 2.5 that the type or map functors provide
the principle iteration abstractions in our categorical setting. At the combi-
nator algebra level, iteration is at our disposal by means of the combinator
π f = Tf (see Project). Map functor Tf also adequately encodes parallel
application of f to the elements of its (collection-typed) argument: the ap-
plications of f to the spine elements do not interfere and can be evaluated
in parallel. See, for example, the work of Hill in which a complete theory of
data-parallel programming is developed on top of map functors [62].

With the definition of Q′ from Paragraph 120 we can now recast the
parallel grouping plan as

µ
(
π (Q′ f g agg) (partition f xs)

)
.

The following rewrite finally establishes the equivalence of this plan and
Qf g agg xs and thus provides a purely calculational proof of the correctness
of parallel grouping.

µ
(
π (Q′ f g agg) (partition f xs)

)
= {Unnest }

� y [] ys ← π (Q′ f g agg) (partition f xs), y ← ys 	
set
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= { [68]: � e [] qs , v ← Tf e′, v′ ← v, qs ′ 	T

= � e [] qs , v ← e′, v′ ← f v, qs ′ 	T }
� y [] ys ← partition f xs , y ← (Q′ f g agg) ys 	

set

= { unfold Q′ }
� y [] ys ← partition f xs ,

y ← � (f x, � g x′ [] x′ ← ys 	
agg

) [] x ← ys 	
set

	
set

= {M -Norm-3 }
� (f x, � g x′ [] x′ ← ys 	

agg
) [] ys ← partition f xs , x ← ys 	

set

= { unfold partition }
� (f x, � g x′ [] x′ ← ys 	

agg
)[]

ys ← � � z′ [] z′ ← xs , f z′ = f z 	
bag

[] z ← xs 	
set
, x ← ys 	

set

= {M -Norm-3 }
� (f x, � g x′ [] x′ ← � z′′ [] z′′ ← xs , f z′′ = f z 	

bag
	
agg

)[]
z ← xs , x ← � z′ [] z′ ← xs , f z′ = f z 	

bag
	
set

= {M -Norm-3 }
� (f x, � g z′′ [] z′′ ← xs , f z′′ = f z 	

agg
)[]

z ← xs , x ← � z′ [] z′ ← xs , f z′ = f z 	
bag

	
set

= {M -Norm-3 }
� (f z′, � g z′′ [] z′′ ← xs , f z′′ = f z 	

agg
) [] z ← xs , z′ ← xs , f z′ = f z 	

set

= { � e (f v) [] qs , v ← e′, v′ ← e′, f v = f v′, qs ′ (f v) 	
set

= � e (f v′) [] qs , v′ ← e′, qs ′ (f v′) 	
set }

� (f z, � g z′′ [] z′′ ← xs , f z′′ = f z 	
agg

) [] z ← xs 	
set

= { query class Q }
Qf g agg xs .

5.2 Aggregation by Decomposition

 In a compositional query language, there exist constellations of query
clauses that lend themselves to more efficient—in terms of space and time
complexity—evaluation algorithms than the complexity of the evaluation of
its parts, i. e., subqueries, leads one to assume. The SQL queries in the
following class, with some close resemblance to Kim’s type JA queries [69],
provide instances of this phenomenon (once more, let agg denote an SQL
aggregate function; replace � by a comparison operator, e. g., = or <=, below
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we assume � = <=):

Qf � agg xs ys ≡ select f x (agg z)
from xs as x

with z =


select y

from ys as y
where y � x


 .

To be more precise, assume xs:TE, ys:T′E, f:E → E → E ′, �:E × E →
Bool and let agg denote the identity monad realizing agg (see Section 5.1).
Q is implemented by the combinator form

π (λx.f x (α
agg

(σ (λy.y � x) ys)) xs .

We always have the naive catamorphic interpretation at hand but Kim al-
ready described a superior evaluation strategy for Q in [69]: (a) join collec-
tions xs and ys with respect to �, then (b) group the join result, and finally
(c) aggregate the groups separately to form the overall query result.

Although an improvement, given that the join in step (a) in general will
not be an equi-join of xs and ys , we need O(|xs| · |ys|) space to hold the
intermediate result. The time complexity of this strategy is clearly the same.

 Cluet and Moerkotte realized that an optimizer can reduce both the
space and time needed to evaluate queries in Q, provided that the aggregate
agg exhibits a decomposition property [36]. Importing the work presented in
[36] into our system of categorical type constructors is straightforward.

For ys:T′E, the aggregate function agg:T′E → E is decomposable, if we
can find functions α:T′E → E and �:E → E → E so that

agg ys = (α ys ′) � (α ys ′′) with ys = union
T′

(ys ′, ys ′′) .

Note that this almost characterizes agg as a homomorphism of algebras in
union representation (cf. Section 2.10).

The decomposition property of aggregate agg paves the way for an effi-
cient but non-standard evaluation strategy for Q: since agg is decomposable
we can incrementally update the aggregate value for each group every time
we encounter a member of that group [52]. Each group’s current aggregate
state is kept in a support data structure—the �-table—which forms the core
of the algorithm.

The following pseudo-code sketches the implementation of this procedure:
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new(t,�);
foreachx in xs

ins(t, x);
sort(t);
foreach y in ys

update(t, y);
eval(t);

new(t,�): Allocate an empty �-table t of type list(Num × E × E). For
each list member, the first tuple component protocols the multiplicity
of element x:E in xs ; x is stored in the second component; the last
component reflects the aggregate state of the group x is associated
with.

ins(t, x): t := (1, x, α empty
T′
)

list
: t.

sort(t): Sort list t on second component with respect to �, remove duplicates
but update multiplicity and aggregate components accordingly.

update(t, y): Incremental update: search for tuple (n, x, a) with smallest x
such that y � x. Replace this tuple in t with

(
n, x, a � (α (sng

T′
y))

)
.

eval(t): a′ := α empty
T′
;

foreach (n, x, a) in t do
a′ := a � a′;
replace tuple by (n, x, a′);

od;

Note that the actual groups are never constructed. The �-table thus has
space requirements of O(|xs|) as there are no more groups than elements in
xs . Furthermore, should � impose an order on E, we can exploit binary
search to implement the update operation on the table. This reduces the
time complexity to O(|xs| · log |xs| + |ys| · log |xs|).

 There remains the question of the effective applicability of the �-table
approach. Among other concluding remarks in [36], Cluet and Moerkotte
marked two open issues concerning effectiveness:

(a) How to enable the optimizer to automatically deduce functions α and �
for a given query, specifically for a given aggregate agg?
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(b) Clearly, there is a larger class of queries which can benefit from �-table-
driven processing. A �-table can support the evaluation of non-equi-joins
like ✶ (λx.λy.x � y) f xs ys and may additionally prove efficient during
nestjoin processing (cf. query class Q′ of Paragraph 108). A syntactical
characterization as it is provided by Q seems to be too coarse.

We can provide effective answers to both questions once we have re-
expressed Q via our catamorphic (monadic) comprehension of queries.

 There is an obvious connection between the almost homomorphic na-
ture of a decomposable aggregate function and its catamorphic realization
in our world of categorical query semantics. This observation provides an
answer to issue (a) raised in the previous paragraph.

Application of mapping M · Q makes the catamorphic implementation
of Q accessible (let τ = e � �:1 + E × E → E denote the algebra in
insert representation that is associated with the identity monad agg, see
Definition 64):

(M · Q) (Qf � agg xs ys)

= {Q }
M � f x � y [] y ← ys , y � x 	

agg
[] x ← xs 	

T

= {M -3 }
� f x (�τ � � y [] y ← ys , y � x 	

T′
) [] x ← xs 	

T
,

i. e., we have agg = �τ �:T′E → E.
Now note that the �-table algorithm exclusively performs element-wise

insertions of elements into the �-table (by means of function update) which,
in turn, lead to element-wise updates of the aggregate state. This suggests to
take an insert representation view of the decomposition property: aggregate
function agg:T′E → E is decomposable, if we can find functions α:T′E → E
and �:E → E → E so that

agg ys = y � (α ys ′) with ys = y
T′
:ys ′ .

Being so far, we can almost immediately read off suitable definitions for
α and �:

agg ys

= { ys = y
T′
:ys ′, agg = �τ � }

�τ � (y
T′
:ys ′)

= { τ = e � �,Cata-Ins-Rep }
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y � (�e � �� ys ′)

⇒ { aggregate decomposition }
α = �e � �� = �τ �

∧ � = � .

 To tackle the effective detection of (sub)queries that are subject to
�-table-based evaluation, observe that the �-table algorithm is obviously
capable of processing queries of the general form

� f x � y [] y ← ys , y � x 	
T′

[] x ← xs 	
T

.

The monad comprehension form provides a structural characterization of
the �-table processible queries. This structural encoding of the query class
is more effective and useful2 than the simple syntactical query pattern Q.
The monad comprehension form covers all application scenarios envisioned
in [36], including those that were understood as possible future extensions:

(a) (Sub)queries in class Q are detected since QQ is an instance of the
above monad comprehension form (with T′ = agg, see the previous para-
graph).

(b) For the particular queries in which monad T′ is instantiated by a
collection monad (as opposed to an Id-monad), we obtain a perfect match
with the defining pattern for � (Nestjoin), specifically � � f xs ys . In fact,
this is a rediscovery of a remark in [36] in which the possible applicability of
�-tables to the efficient implementation of nestjoin-like operators has been
outlined.

(c) Finally, the cases in which T′ denotes a collection monad are not
special with respect to an automatic derivation of α and �. To see this,
simply repeat the calculation of the previous paragraph (with τ = [ ]

T′
� T′
:):

α = � [ ]
T′

� T′
: � = id (Cata-Reflect)

∧ � =
T′
: .

These choices for α and � exactly configure the �-table algorithm for the
processing of non-equi-joins and nestjoins as it has been proposed in [36] .

2Here, “useful” is used in the sense of Cluet and Moerkotte in [36]: “[Further research
should] come up with a useful characterization of the corresponding queries. By useful
we mean that an optimization can easily detect the applicability of θ-tables.” (In [36],
Cluet and Moerkotte use symbol θ in place of �.)
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Note that the above insights are completely based on rather simple pat-
tern matches and unifications with the monad comprehension-based encod-
ing of the query class. It is this encoding which enables a query optimizer to
effectively exploit the �-table idea.

5.3 Normalization of KOLA Combinator Queries

In a series of articles, Cherniack and Zdonik developed the KOLA query
algebra as a target algebra for the translation and optimization of OQL
queries [28, 29, 30, 31, 32, 33]. Being a successor to the AQUA algebra
[108, 109], KOLA follows a design that emphasizes the use of few but generic
higher-order query primitives. All KOLA primitives are combinators: KOLA
has no notion of variables, scope, and binding, whatsoever. In this sense,
KOLA exhibits similarities with the combinator algebra of Chapter 4.

Mainly because the meaning of variables is strongly tied to their scope,
Cherniack and Zdonik argue that programs expressed in variable-based query
languages are hard to optimize: the analysis of subqueries is inherently
tightly coupled with the inspection of the global variable environment in-
herited from the enclosing query. There is no true locality of query analysis.
This, in turn, complicates the formalization of query transformations and
rewriting rules. The applicability of a rule is not only dependent on a struc-
tural (syntactical) match with its lhs but, in general, additionally on the
current variable environment.

KOLA queries, lacking variables, enable pure syntactical rule matching
and rewriting. The detection of a query pattern requires local analysis only.
In any expression of the form (join denotes KOLA’s θ-join combinator; the
predicate is evaluated against pairs built from the elements from collections
xs and ys)

join ((p · outl) ∧ q) xs ys

p may be pushed down the expression tree for xs since p is applied after the
projection outl and thus cannot depend on the second join argument ys (an
assurance justified by p’s nature of being a combinator). Here, predicate p’s
independence of ys is expressed structurally rather than by (the absence of)
variable references. Cherniack and Zdonik exploited this feature of KOLA to
prove a large library of rewriting rules correct with the help of an automated
theorem prover [29, 30].

 Let us emphasize one consequence of the combinator approach. KOLA
uses nested pairs to represent tuples and structured objects much like we did
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in the preparations to the discussion of mapping Q in Paragraph 78. A
typical KOLA query is swamped with primitives that build and destruct
pairs as there are no means to reference a specific tuple or object component
besides an explicit sequence of projections on pairs. Similar remarks apply
to KOLA rewrite rules. The rule sets that implement a specific global query
rewrite—like the KOLA normalization we will examine in detail below—tend
to be large: a rewrite is not only concerned with the global transformation
goal but also needs to appeal to a variety of auxiliary rules which are primarily
designed to, e. g., manipulate nested pairs.

The large number of rules calls for sophisticated rewriting strategies to
prevent a KOLA optimizer from getting lost in the vast space of equiva-
lent expressions it can generate from these rule sets. This observation led
Cherniack and Zdonik to the design and implementation of a control lan-
guage for rule application, KOKO [32, 33].

While there are clear benefits of combinator query languages (cf. Para-
graph 99), we believe that the combinator paradigm considerably complicates
the implementation of certain query translation stages. To exemplify, we will
try to comprehend a complex KOLA query rewrite [31] in terms of the monad
comprehension calculus. A change in the point of view on query represen-
tation can have significant effects on the complexity of the specification and
implementation of optimization goals. This is the point we are trying to
make before we conclude the current chapter.

 In [31], Cherniack et al. describe an OQL frontend which is designed
to run on top of the relational DBMS DB2. OQL queries are translated into
KOLA, then optimized. A subsequent stage generates DB2 SQL statements
from KOLA queries. For the OQL select-from-where block

select f (x1, . . . , xn)
from e1 as x1, . . . ,en as xn

where p (x1, . . . , xn) ,

the frontend emits the KOLA form(
(iterate p f) · (unnest id (K fn)) · · · · · (unnest id (K f1)) · singleton

)
()

in which the combinators and symbols are defined to mean (here, we recast
the combinators as monadic functions to give their precise semantics as well
as to prepare the things to come)

unnest f g xs = � f (x, y) [] x ← xs , y ← g x 	
bag
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iterate p f xs = � f x [] x ← xs , p x 	
bag

singleton = unit
bag

K = K

() = an arbitrary dummy value

fi = KOLA form to represent ei.

This translation scheme is applicable to arbitrary ei (e. g., path expression,
subqueries) and does not restrict the ei to be constant collections (in the
KOLA query above, the fi may be arbitrarily complex KOLA functions).

The goal of the subsequent optimization stage is to derive a join query
from this initial KOLA form.3 Cherniack et al. proceed in two steps to
achieve this: (a) normalize the initial form, i. e., rewrite it into an equivalent
query in which a chain of unnest combinators is invoked on the fi directly,
thus rendering the auxiliary construction involving the dummy value () void,
and (b) derive a join query from the normalized expression which is more
amenable to join detection as the initial form.

The KOLA implementation of this rewrite is too complex to reproduce
here as it falls back on 46 rewrite rules and about 100 lines of rule firing
control code [31].

 A monad comprehension semantics for KOLA, in contrast, provides
a straightforward, almost mechanical, derivation of a join query from the
initial KOLA form. There is nothing more involved than the unfolding of
combinator definitions given in the previous paragraph and the application of
monad comprehension normalization rules from Definition 91. The simplicity
of this process makes external guidance through specific rule firing control
code obsolete.

The appeal to comprehension normalization comes at no surprise once
we analyze the involved KOLA rewriting rules a bit deeper. A significant
ratio of these rules actually implement specific calculus normalization steps.
The KOLA rule (with shr ((x, y), z) = (x, (y, z)); note that shr is one of
the two arrows that establish the isomorphism between nested products, cf.
Paragraph 78)

(unnest (outr · shr) (f · outr)) · (unnest id (K e)) · singleton �
K (unnest id f e) ,

3This join query forms the input to the last stage which finally emits code to implement
the OQL select-from-where block using DB2 SQL.
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for example, bundles the application of normalization rules M -Norm-2 and
M -Norm-3:(

(unnest (outr · shr) (f · outr)) · (unnest id (K e)) · singleton) e′
= { unfold KOLA combinators }

� (outr · shr) (x, y) [] x ← � (x′, y′) [] x′ ← unit
bag

e′, y′ ← Ke x
′ 	bag

,
y ← (f · outr)x 	

bag

= {M -Norm-2 }
� (outr · shr) (x, y) [] x ← � (e′, y′) [] y′ ← e 	

bag
, y ← (f · outr)x 	

bag

= {M -Norm-3 }
� (outr · shr) ((e′, y′), y) [] y′ ← e, y ← (f · outr) (e′, y′) 	

bag

= { outr , shr }
� (y′, y) [] y′ ← e, y ← f y′ 	bag

= { unnest, K }
K (unnest id f e) e′

(from which the rule follows immediately by the principle of extensionality).
The normalization of the KOLA form goes off as a canonical monad

comprehension normalization once we have unfolded the monadic KOLA
combinator definitions:(

(iterate p f) · (unnest id (K fn)) · · · · · (unnest id (K f1))·
singleton

)
()

= { unfold singleton, unnest }(
(iterate p f) · (unnest id (K fn)) · · · · · (unnest id (K f2))

)
� (x1, y1) [] x1 ← unit

bag
(), y1 ← Kf1 x1 	

bag

= {M -Norm-2 }(
(iterate p f) · (unnest id (K fn)) · · · · · (unnest id (K f2))

)
� ((), y1) [] y1 ← f1 	

bag

= { unfold unnest }(
(iterate p f) · (unnest id (K fn)) · · · · · (unnest id (K f3))

)
� (x2, y2) [] x2 ← � ((), y1) [] y1 ← f1 	

bag
, y2 ← Kf2 x2 	

bag

= {M -Norm-3 }(
(iterate p f) · (unnest id (K fn)) · · · · · (unnest id (K f3))

)
� (((), y1), y2) [] y1 ← f1, y2 ← f2 	

bag

= { repeat last two steps n− 3 times }
(iterate p f)

� ((· · · ((), y1) · · · ), yn) [] y1 ← f1, . . . , yn ← fn 	
bag
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= { isomorphism of nested products, iterate }
� f (y1, . . . , yn) [] y1 ← f1, . . . , yn ← fn, p (y1, . . . , yn) 	

bag
.

The generation of an equivalent KOLA join query is now immediate by
means of the combinator patterns Join and M -Join.

Note, in addition, that the normalized query is exactly what mapping Q
would directly emit for the OQL select-from-where block shown in the pre-
vious paragraph. We believe that a pure combinator representation renders
the early stages of query processing—namely translation and normalization—
an unnecessarily hard task. An employment of the monad comprehension
calculus clearly shows its elegance here.
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Chapter 6

Query Deforestation

 Recall that a combinator query exhibits a tree-like structure in which
the nodes represent abstractions of the spine transformers (physical opera-
tors) supplied by the query engine backend (cf. the introduction to Chap-
ter 4). It is a demanding task to efficiently schedule the flow of data from
the leaves of this processing tree—i. e., the complex values which are ac-
tually materialized on persistent storage—to its root which represents the
query result.

Query engine models that assign combinators to separate operating sys-
tem processes or threads connected by inter-process communication (IPC)
facilities (to control the flow of execution) as well as disk files (to commu-
nicate temporary results) have been found to be inefficient: the operating
system scheduler, necessary process context switches, IPC, and I/O of tem-
porary results incur an overhead that dominates the overall query cost by far
[53, 54].

Different lines of research [46, 47, 78] thus led to the development of single-
process query engines. A combinator query is compiled into a single iterative
or recursive procedure which is then executed inside the monolithic query en-
gine process. Whenever possible, these approaches strive for a stream-based
or pipelined query execution to avoid the I/O of temporary data. The query
engine benefits from streaming since data is addressed and brought in from
persistent storage only once. Further processing is in-memory and no inter-
mediate writes to the persistent store and subsequent reads of materialized
intermediate results occur.

 The derivation of a stream-based query program from a combinator ex-
pression is a problem that has been primarily tackled on the implementation
level only. In a sense, the forthcoming material drags this query processing
phase out of the hands of the database implementors and instead aims at
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making the matter accessible to our categorical tools—and thus comprehen-
sible by an optimizer.

6.1 Streaming

 Given that the query compiler arranges the query plan as a tree struc-
ture of independent combinators, it is not immediate how an efficient stream-
ing procedure may be automatically derived. Combinators consume their
input spine as a whole, transform it, and then emit the transformed spine as
an intermediate result. We are not given any reference to “reach inside” and
collect partial results early in order to immediately pass them to the parent
combinator. The possibility to do so would be the key to realize streaming
but violates the combinator encapsulation.

These observations led to a spectrum of solutions to this dilemma, ranging
from implementation level modifications to the query engine to algebraic
transformation of execution plans.

 In his seminal work on the engineering of query engines for large data-
bases, Graefe proposed an iterator implementation discipline for combinators
that facilitates streaming [53, 54]. Any combinator implements an interface
specifying a function next and a constant empty!. Application of this iterator
discipline does not alter the initial combinator tree but leads the combinators
to schedule each other inside the tree structure.

Given a combinator tree, query evaluation is driven by the root combi-
nator on demand : repeated calls to next request the production of the next
stream element (e. g., tuple, complex value, or object) by the combinator’s
child node(s). The children recursively forward the next call until a leaf
combinator can satisfy the request through read access to the data source
it is associated with. Each combinator passes stream elements upwards the
processing tree, possibly after application of a combinator-specific action to
the elements. Combinators iterate this procedure until the special stream
element empty! signals that the child nodes are exhausted.

Following this discipline, a sketch of the implementation of function next
for the π f combinator (see Project) would thus read (with empty?x ⇔
x = empty!):

x := next;
if (not (empty?x)) then

return (f x);
return empty!;
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 The on-demand scheduling of combinators to thread the next stream
element (the head of the stream’s tail) through the combinator tree bears
close resemblance with the lazy semantics of evaluation in functional pro-
gramming systems [92]. Buneman, Frankel, and Rishiyur actually devised a
combinator query language with lazy semantics, FQL, in [18].

A lazy stream xs is represented in its weak head normal form [92] x � s
in which x denotes the stream’s head element and s represents a suspension,
i. e., a function that—if ever evaluated—returns the stream x′�s′, the tail of
xs . A suspension, or closure, �f, x� bundles a function f and its argument x.
Function f is not applied until the suspension is actually evaluated (forced):

eval �f, x� = f x .

Iterating over a stream then means to repeatedly evaluate its suspended tail.
In continuation from the previous paragraph, we could implement the π

combinator in the suspension model as

π f xs = �f, x� � �π f, eval s�

with xs = x � s .

Note that π does not yet apply f to the stream’s head x but rather creates
a suspension �f, x�. This saves the cost for the application of f to x should
the stream element be discarded later on.

Suspensions are, once again, a device that postpones the solution of the
streaming problem until query engine implementation. It is the point of this
chapter to show that we can benefit from pulling the issue up to the query
representation level. At this level, streaming programs are derived by rewrit-
ing much like in a transformation-based query optimizer. Let us proceed with
a short review of a transformational approach due to Freytag and Goodman
[44, 45, 46, 47] before the next section discusses a remarkably simple method
to achieve streaming in the catamorphic query model.

 Guided by observations about the advantages of single-process query
engines, Freytag and Goodman set out with the principal goal to transform
combinator queries into monolithic iterative procedures [44, 45, 46, 47]. The
emitted code was designed to be compiled and then linked against a relational
database backend.

During the derivation of an iterative program form, Freytag and Goodman
break the encapsulation inherent to the combinator notion (cf. Paragraph
99): given a combinator query Q, combinators in Q are unfolded, i. e., re-
placed by their defining expressions—recursive programs expressed in a sub-
set of LISP—with the principle aim to fuse these with the definitions of
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neighboring combinators. To continue our treatment of the π combinator in
different streaming models, unfolding π f xs would reveal its control structure
and action as the LISP form on the rhs

π f xs = (if (empty? xs)
empty!
(cons (f (hd xs)) (π f (tl xs)))) .

Actual fusion is then performed through simplification of the unfolded
LISP forms (all occurring forms are restricted to use a referentially transpa-
rent subset of LISP thus facilitating the specification of equivalence-preser-
ving simplification rules). The rules aim to transform the program for Q so
that occurrences of the defining expression for Q can be detected. On detec-
tion, these subexpressions are replaced by recursive calls to Q itself (folding).
In a final step, recursion is traded for iteration.

To illustrate, consider the following sketch of the unfold -simplify-fold
steps for the combinator query Qf g xs = π g (π f xs):

Qf g xs

= { unfold defining query for Q }
(π g (π f xs))

= { unfold π g }
(if (empty? xs)

empty!
(cons (g (hd (π f xs)))

(π g (tl (π f xs)))))

= { unfold π f once }
(if (empty? xs)

empty!
(cons (g (hd (if (empty? xs)

empty!
(cons (f (hd xs)) (π f (tl xs))))))

(π g (tl (π f xs)))))

= { further unfolding, simplification steps }
(if (empty? xs)

empty!
(cons (g (f (hd xs)))

(π g (π f (tl xs)))))

= { fold marked occurrence of Qf g (tl xs) }
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(if (empty? xs)
empty!
(cons (g (f (hd xs)))

(Qf g (tl xs)))) .

Note that the simplified program for Q is equivalent to the combinator query
π (g·f) xs which, unlike the original query, does not generate any intermediate
result.

 This approach comes with apparent difficulties.
(a) Combinators are encoded by recursive LISP forms that intertwine

control structure and action. Consequently, simplification rules are not only
concerned with the optimization of stream operations like, e. g.,

(tl (cons e e′)) � e′

but also modify control structure as in

(if p e (if p e′ e′′)) � (if p e e′′) .

The resulting derivations tend to be long, leading to significant transforma-
tion effort [44]. We could clearly benefit from a separation of control and
action.

(b) As an instance of Burstall and Darlington’s general unfold -transform-
fold program transformation strategy [21], the approach suffers from the need
for a fold step. The transformation algorithm needs a “memory” to spot pre-
viously seen expressions in order to be able to successfully “tie the knot”. We
also have to find an upper bound on the number of unfolding steps to per-
form. Otherwise, unfolding might never stop for the cases in which we fail
to spot expressions to recur. The resulting complexity of the approach has
prevented its inclusion into actual query optimizers.

6.2 Cheap Deforestation

 The catamorphic query discipline provides us with handles to rather el-
egantly approach these difficulties. First, note that the catamorphism �e���
separates action (the target algebra e��) from control in that � ·� abstracts
from the primitive recursion scheme Cata-Ins-Rep. Second, as � ·� is the
only recursive form occurring, we do not need the full power of a general
unfold -fold transformation strategy.

A general theme of this text recurs once again: a restrictive discipline of
expression can lead to deeper insights.
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 The following continues the train of thought we have started in Sec-
tion 2.6 on spine transformer fusion. To see that fusion is tightly connected
with the derivation of streaming programs let us take up the π combinator
as an example one last time.

An illustration of the application of query Q = (π g) · (π f) to xs =
[x1, . . . , xn]

T
gives the obvious sequence of spine transformations (recall from

Project that π f = Tf):
T
:

��
� ���

x1
T
:

��
�

�
�

�
�

x2

T
:

��
� ��

xn [ ]
T

�
π f

T
:

��� ���

f x1
T
:

���

�
�

�
�

f x2

T
:

���
��

f xn [ ]
T

�
π g

T
:

��� ���

g(f x1)
T
:

���

�
�

�
�

g(f x2)
T
:

���
��

g(f xn) [ ]
T

A streaming program for Q would skip the intermediate step but rather
directly emit the spine on the right-hand side. Reducing the length of a spine
transformer chain reduces the number of necessary spine walks and thus the
number of intermediate results to handle. Complete fusion ultimately leads
to real stream-based execution.

In the example above, we experience no particular difficulty to derive the
streaming program as we only have to appeal to the functoriality hidden in
π:

(π g) · (π f)

= {Project }
Tg · Tf

= {Functor }
T(g · f)

= {Project }
π (g · f) .

For general catamorphic queries, the following theorem establishes an
equivalence which serves as the only but effective fusion tool we have to fall
back upon.

 Acid Rain Theorem [112]. The underlying category is Set. In the
category of F-algebras Alg(F), once more let τ:FT → T and α = FA → A
denote the initial and an arbitrary algebra, respectively. Fix a type D. Then
it holds for any function f:∀C.(FC → C) → D → C, that

�α �F · (f τ) = f α . Acid-Rain
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Proof. It is remarkable how parametricity [116], i. e., the polymorphic type
of a function, provides the proof of Acid-Rain for free: the parametricity
theorem for the type of f reads (with α:FA → A, β:FB → B and h:B → A
chosen at will)

h · β = α · Fh ⇒ h · (f β) = f α .

Choosing β = τ and h = �α �F:T → A turns the premise of the state-
ment of the parametricity theorem into the characterizing property for ca-
tamorphisms Cata which, of course, is met by �α �F. As a consequence,
Acid-Rain holds. �

The polymorphic type of f:∀C.(FC → C) → D → C gives insight into
the workings of f : as f is indifferent to the actual choice of C, we can be sure
that f builds its result of type C solely by application of the constructors for
C (which f receives as its first argument).

Law Acid-Rain then validates the intuition that if we manufacture a
value using the constructors of τ (this is what f τ does) and subsequently
replace τ ’s constructors by those of α (this is the action of �α �F), we may
rather directly construct the result by using the constructors of α from the
start. This way we avoid the computation of the intermediate result of type
T—which is what fusion is all about.

 The functional programming community has devised a family of pro-
gram transformation techniques, referred to as deforestation transformations,
which aim to eliminate the production of intermediate (algebraic, and thus
tree-shaped) data structures. Wadler characterized a syntactic program class,
the treeless programs, for which a proof of the guaranteed termination of a un-
fold -fold -based deforestation algorithm could be found [118]. Since then, the
criteria which identify the programs that are subject to deforestation have
been relaxed [82], but the inherent problems of controlling the unfold -fold
steps remain.

On the contrary, Takano and Meijer’s Acid-Rain theorem exploits a
rather fixed producer (f τ) and consumer (�α �F) scenario to establish a
cheap one-step transformation that fuses adjacent consumers and produc-
ers. Acid-Rain constitutes a categorical generalization of earlier work on
the cheap (or shortcut) deforestation of listful programs (in which foldr takes
the role of the list consumer, see Paragraph 28) [50, 51] and the deforestation
of programs over mutually recursive sum-of-product types [37, 74].

 There are three major driving forces behind this chapter.
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(a) In continuation from Paragraph 98, pick up the intriguing idea of
a purely spine transformer-based query engine (which means to essentially
ignore the material on combinator algebras of Chapter 4). Query deforesta-
tion, applied after the syntactic mapping M · Q can thus lead to an (at
least moderately) efficient, purely transformation-based, implementation of
a complex value database engine [59, 60].

(b) We have seen that the combinator pattern matching process of Chap-
ter 4 can fail in that monad comprehension-based parts of a query survive
combinator introduction. Comprehension desugarer M then acts as a fall-
back which emits catamorphisms, i. e., nested loops, for these query parts.
Subsequent deforestation can further optimize these subqueries through re-
duction of the loop nesting depth. In this sense, deforestation may be per-
ceived as an a posteriori execution plan optimization, to be performed after
algebraic query rewriting.

(c) Unlike the query engine level techniques (iterator models, suspended
evaluation of a stream’s tail) which realize streaming dynamically at query
runtime, deforestation derives streaming plans statically, i. e., at query com-
pile time. A deforestation step via law Acid-Rain cancels a spine trans-
former pair so that formerly separate query parts become adjacent. This, in
turn, can reveal previously hidden opportunities for further optimizations.
In this sense, contrary to point (b), we can regard deforestation also as a
combinator level and thus algebraic optimization tool.

To enable deforestation as a combinator level optimization, as suggested
in (c), means to allow the optimizer to desugar (selected) combinator defini-
tions (Definition 103) via mapping M in order to unbox their catamorphic
implementations. Deforestation will especially pay off for those combinators
the query engine is likely to implement through simple looping anyway, e. g.,
π and α. Let us close this chapter with two related examples.

 Example. Under the proviso xs:TNum with T �= set, naive evaluation
of the following combinator query obviously wastes work:

((α
sum

K1) · (π g) · (π f)) xs

(note that Q yields the aggregate α
sum

K1:TNum → Num as a translation of
OQL’s count clause). Since the query effectively counts the nodes of xs ’ spine
only, there is no point in mapping g or f over xs at all. The π combinators
could be discarded.

Note that Graefe’s iterator discipline yields a streaming program for the
above query but the resulting plan will nevertheless apply f and g to all
elements that pass the π combinators.
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At query runtime, the suspension model will create the closure
�
g, �f, x�

�

but will not force it provided that combinator Kx has a non-strict implemen-
tation.

Deforestation, however, realizes this optimization statically:

(α
sum

K1) · (π g) · (π f)

= {Aggregate,Project,M }
�0 � (+ · (K1 × id))� · Tg · Tf

= {Type-Functor,Acid-Rain }
�0 � (+ · (K1 × id))� · �([ ]T � T

:) · F(g · f, id)�

= {Acid-Rain }
�(0 � (+ · (K1 × id))) · F(g · f, id)�

= { sum }
�0 � (+ · ((K1 · (g · f)) × id))�

= {Kx · f = Kx }
�0 � (+ · (K1 × id))�

= {Aggregate }
α

sum
(K1) .

The resulting plan does not rely on lazy evaluation semantics at runtime and
may be executed by a strict query engine (which is the common case, as the
typical imperative implementation languages have strict semantics). ♦

 Example. Recall that we have adopted a catamorphic representation
of the sort operator ς (see Sort and Q-Sort). In interaction with defor-
estation this sets the scene to reveal and remove superfluous sorting stages
in a query plan by means of query rewriting. Traditionally, optimizations of
this kind are detected through the inspection of the physical sort order(s)
of a query expression. As sort orders have no algebraic denotation, their in-
spection requires extra code outside the core query rewriting system [53, 55].

The catamorphic encoding, however, provides us with enough clue to
comprehend ς’s action at the algebraic level. Let agg denote the Id-monad
associated with the algebra e�� over carrier E (i. e., � is left-commutative,
cf. Definition 64). With �:E × E → Bool , we then have that

(α
agg

f) · (ς �)

= {Aggregate,Sort }
�e � (� · (f × id))� · �nil

list � ins
list

��
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= {Acid-Rain }
�e � (� · (f × id))�

= {Aggregate }
α

agg
f

(a similar calculation asserts the idempotence of ς: (ς �) · (ς �) = ς �). ♦
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Chapter 7

Finalization

 Datatypes. The consistent comprehension of queries as mappings
between datatypes, i. e., their algebras of value constructors, has been our
guide rail throughout the entire text.

Once this was all set, almost everything else was a consequence of the da-
tatype centric approach: if a query f is a mapping between types A and B,
how can we go about and represent f inside a computer or, more specifically,
a query engine? Under the proviso that A is finite we could exploit a lookup
table to encode f . But what if A is infinite (as are the domains we define
query languages over)? Then, the first thing we need is a finite (recursive)
description F of the elements in A. This is just what the endofunctors encod-
ing the insert representation of objects in category Set did for us. The type
of f will thus actually be f:FA → B. Second, for the encoding of f to be
finite, too, it has to track the description F of A, which is nothing else than
the hand-waving way of stating that f is a homomorphism (or, for initial A,
a catamorphism). This describes the basic understanding of queries in this
text already fairly well.

 Catamorphisms. Much of the conciseness and elegance of this treat-
ment of queries was drawn on the uniform encoding F, the insert representa-
tion, of bulk values as well as aggregates and quantifiers. This made level to
represent a diversity of query constructs, from parallel application via type
functors to sorting (ς), using a single program form, namely the catamor-
phism combinator � ·�.

The sorting combinator ς provides a canonical example of our intention
behind this approach: at the time of its introduction as a catamorphic inser-
tion sort this may have appeared intriguing or interesting at best, but a weird
thing to do in practice (sorting in the context of very large databases calls
for external sorting techniques that operate on secondary storage). This,
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however, was not the point at that time. Rather, we could benefit from this
encoding as it characterized the act of sorting on the algebraic level. Sorting,
being just another spine transformer, thus became accessible to algebraic
program transformation which is a big win for a query optimizer since it fa-
cilitates purely algebraic—i. e., calculational—query rewriting (maintenance
of an extra sortedness attribute is superfluous in such a setup).

Last but not least, catamorphisms are a deeply understood program form
in the theory of Constructive Algorithmics. With the three fusion laws,
notably law Acid-Rain, the work of this community provided input that
proved to be most useful in many places.

 Monads and the Monad Comprehension Calculus. In some sense,
this text used monads in the role that sets play in the relational calculus.
We consider it a feature not a bug of the monad notion that it comes with
just enough internal structure that is needed to interpret a query calculus.
The resulting monad comprehension calculus is poor with respect to the
variety of syntactic forms it offers but this ultimately led to a discipline in
query compilation that extracted the core structure inherent to a query. No
obfuscation caused by syntactic sugar (of which approaches that rewrite user
level syntax, e. g., OQL or SQL, suffer) remained.

Being completely parametric in the monad an expression of the calculus
is evaluated in, the number of different query forms we encountered was sig-
nificantly reduced: the T-monad comprehension � f x[]x ← xs 	

T
can describe

parallel application of f , duplicate elimination, aggregation, or a quantifier
ranging over xs , dependent on the actual choice of monad T. This uniformity
enabled us to spot useful and sometimes unexpected dualities between query
constructs, e. g., the close connection of the class of flat join queries and
the queries evaluated in the exists monad (e. g., existential quantification) in
Section 3.2.

The terseness of the calculus additionally had a positive impact on the size
of the rule sets necessary to express complex query rewrites. Rewriting rules
could be established by appealing to the abstract monad notion in general
and then used in many instantiations.

We have found this comprehension of queries based on catamorphisms
and monads to cover, simplify, and generalize many of the proposed views
of database queries. Even better, however, it enabled us to offer a terse and
thus elegant account of issues in query optimization that were cumbersome
or impossible to express in a way that is effectively accessible for a query
optimizer.
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 We have no doubt that one can and should further travel down this
road.

(a) The catamorphic spine transformers have turned out to be expressive
enough to grasp modern declarative user query languages. We could, how-
ever, push the limits of expressiveness of this approach through substitution
of catamorphisms by paramorphisms [83]. Paramorphisms provide a signif-
icant generalization of the catamorphism notion: any function definable on
an initial datatype has a paramorphic equivalent. Let τ:FT → T denote
the initial algebra for functor F. Any function f:T → A can be computed
by the paramorphism outl · �α � (τ · Foutr)� for a suitably chosen F-algebra
α:F(A× T ) → A. As paramorphisms are particular tupling catamorphisms
they enjoy calculational properties similar to those of catamorphisms, e. g.,
a variant of law Cata-Fusion can be established for paramorphisms, too.
Paramorphisms thus provide full expressiveness and effective control over
program form. This could lay a foundation of the comprehension of full-
fledged database programming languages and their optimization.

(b) The monads we have encountered in this text have been induced by
the type system and the constructs of the user query language. Of course,
this is not principle to the method. We envision a query engine in which
further aspects, especially implementation level issues, of query processing
are encoded in the monad framework and thus become subject to analysis
and transformation just like queries. This could spawn research heading into
several directions. As already pointed out in the closing paragraph of Chap-
ter 2, the referentially transparent treatment of stateful computation in the
state monad can lead to an optimizable model of database updates and trans-
actions. Certain tree-shaped datatypes are open to a monadic interpretation
as well. It is conceivable to develop a deeper understanding of lookups in
tree-shaped index structures (think of B-trees) and how these lookups could
be efficiently interleaved with query execution. Monadic tree datatypes also
make level for a comprehension of queries over semi-structured data in the
spirit of [17].

(c) Different levels of sophistication are equally expressible in this frame-
work because the query translation process itself is completely compositional.
A query compiler can be rapidly prototyped and look as simple as the compo-
sition M ·Q. Throughout this text, however, we have repeatedly observed our
model to assimilate other advanced approaches to query optimization with
relative ease. Its abstract foundation, catamorphisms and monads, make this
understanding of queries a lowest common denominator of these approaches,
in a sense. This provides an ideal playground in which the interaction of
a diversity of optimization techniques may be studied, much like we did in
Chapter 5. There have been other optimization techniques knocking on the
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door in the course of Chapter 5 and we are positive that we can further
improve our comprehension of queries if we let them in.
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abstract datatype, 17
Acid-Rain, 132
aggregate (α), 99, 134, 135
aggregation operator, 46, 114, 118

decomposable, 118, 120
Alg (category of algebras and

homomorphisms), 15
algebra, 6

carrier of an, 14
categorical, 14
collection, 37
combinator, 98
free, 32
initial, 16, 17
logical (query), 96
non-collection, 46
polymorphic, 24

all, 46
all (OQL), 75
and (OQL), 70
antijoin (��), 92, 99
AQUA, 122
array, 79

shape of an, 79
array, 79
array (OQL), 79
arrow, see morphism
avg (OQL), 77

bag, 38
bag (OQL), 69
banana brackets � ·�, 17
Banana-Split, 78

bifunctor, 12
bind (

), 56
bintree, 26
black box, 80
Bool , 22
bottom (⊥), 79

calculation, 7
calculus

monad comprehension, 39
monoid comprehension, 57
query, 6
relational (tuple), 47, 97

cancellation, 10
carrier, 14, 24
Cat (category of functors and

morphisms), 9
Cata, 17
Cata-Comm, 33
Cata-Fusion, 29
Cata-Idem, 33
Cata-Ins-Rep, 20
Cata-Map-Fusion, 29
Cata-Reflect, 21
Cata-Union-Rep, 53
catamorphism, 3, 6, 17, 20, 131

� ·�, 17
tupling, 77, 139

category, 8
Alg, 15
Cat, 9
default, 8
product, 12
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Set, 9
theory, 6, 7

category theory, 3
closed expression (in the

λ-calculus), 96
closure, 8, see suspension
codomain, 9
coercion, 49
collection monad, 45
combinator, 38, 96, 128
commutative diagram, 8, 18
composition, 8, 9

functional, 28
comprehension

endo-monadic, 48
monad, 6, 39, 46

desugaring (M ), 49
filters in a, 41, 48
generators in a, 48
normal form of a, 39
normalization, 90, 125
normalization rules, 86
qualifiers in a, 48
syntax, 47, 83
unnesting, 85, 86

monoid, 57
multi-monad, 7, 48, 49
object, 56

confusion, 16, 17, 32
cons (:), 1, 13
Constructive Algorithmics, 3, 7
constructor, 1, 5, 16, 133

collection type, 13
polymorphic, 24

:, 13
datatype, 9
[ ], 13

control structure, 1, 130
coproduct, see sum
count (OQL), 77
cross (
), 99

database engine, see query engine
datatype, 5

abstract, 17
equation for a, 32, 35
former, 16

polymorphic, 24
decomposition (of an aggregate),

118
deforestation, 31, 133, 135

cheap, 32, 133
Descope, 108
descoping, 107
destructor, 18
diagram, 8

commutative, 18
pasting, 18

Dist, 107
distinct (OQL), 78

delay of, 84
domain, 9
duplicate removal, 84

delay of, 84

element, 14
element (OQL), 79

pushdown of, 80
element type, 13
empty set (∅), 9
empty tuple (), 65, 124
endofunctor, 9

fixpoint of, 19
Eq-Comm, 35
Eq-Comm-Idem, 38
Eq-Idem, 35
equality type, 65
equation, 6, 32, 35
equational reasoning, 7
Eureka step, 2, 31, 104
except (OQL), 74
exists, 46
exists (OQL), 76
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exists-in (OQL), 75
ext , 56
extensionality, 7

F-algebra, 14
polymorphic, 24

F-catamorphism, 17
F-homomorphism, 15
filter, see comprehension
filter , 22
first (OQL), 79

pushdown of, 80
flatten, 45
flatten (OQL), 78
fold step, 130, 131
foldr , 21
forall-in (OQL), 75
FQL, 129
free theorem, 40, 133
functional programming

lazy evaluation in, 129
monads in, 59

Functor, 9
functor, 9

all, 46
array, 79
bag, 38
bintree, 26
composition, 9, 12
constant (K), 12
exists, 46
identity (Id), 9, 12
list, 26, 38
max, 46
maybe, 27, 59
min, 46
polynomial, 12
prod, 46
set, 38
state, 60
sum, 46

type, 25, 116
Functor-M -Fusion, 88
fusion, 28, 130, 132

group query, 114

Haskell, 59
hd , 73
Hom, 15
hom, 57
homomorphism, 2, 15, 118

monoid, 57

Id, 9, 12
id , 8
in (OQL), 75
incremental update, 118
infix conditional (?), 23
initial algebra, 16
initial type, 26
initiality, 9, 17
injection, 10

left (inl), 10
right (inr), 10

inl , 10
inr , 10
insert representation, 12, 120

aggregation in, 46
collection type in, 37
quantifier in, 46

insertion sort, 73
intersect (OQL), 74
isomorphism, 9
iterator, 115, 128

join, 40
join (✶), 95, 99
junc (�), 10
junk, 16, 17

K, 22, 124
K, 12
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Kleisli triple, 56
KOLA, 122

Lambek’s Lemma, 18, 32
lazy evaluation, 76, 129, 135
least fixpoint semantics, 19
left-commutative, 14, 33
left-idempotent, 14, 33
length, 22, 30
let (local binding), 51
list, 10, 26, 38
list (functor), 9
list (OQL), 69
listtoset (OQL), 78

delay of, 84

M , 49
M -Norm-1, 87
M -Norm-2, 87
M -Norm-3, 87
M -Norm-4, 87
M -Norm-5, 87
map, 9, 25, 30
map functor, see type functor
max, 46
max (OQL), 78
maybe, 27, 59
min, 46
min (OQL), 78
ML, 65
monad, 40

all, 46
bag, 45


, 56
collection, 45
commutative, 42
++ , 42
exception, 59
exists, 46
idempotent, 42
identity (Id), 46

join, 40
Kleisli, 56
list, 45
map, 40
max, 46
maybe, 59
min, 46
prod, 46
set, 45
state, 60
state transformer, 59
sum, 46
unit , 40
zero, 41

monad comprehension, see
comprehension

monad morphism, 57, 81, 83
Monad-1, 40
Monad-2, 40
Monad-3, 40
Monad-4, 41
Monad-5, 41
Monad-Morph-1, 81
Monad-Morph-2, 81
Monad-Morph-3, 81
Monad-Morph-4, 81
Monad-Morph-5, 83
monoid, 53, 57
morphism, 8

composition, 8
identity (id), 8
type of a, 8

mutator, 5

natural transformation (→̇), 40
Naturality, 40
naturality, 40
Nest-Ex, 107
nested loops, 102, 103, 134
nestjoin (�), 91, 99, 104, 114, 121
nil ([ ]), 13
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normal form, 39
weak head, 76, 129

normalization, 63
KOLA, 123, 124
monad comprehension, 86, 90,

125
rules for, 86

Num, 22

Obj , 65
object, 8

element of an, 14
initial (1 ), 9
product (×), 10
source (src), 8
sum (+), 10
target (tgt), 8

object identity, 60, 64
OQL, 64, 68

arrays in, 79
variables in, 66

or (OQL), 70
orthogonality, 28
outl , 10
outr , 10

parallel application, 115, 116
parametricity, 40, 133
paramorphism, 139
parser, 18
Partition, 116
partition, 116
partitioning, 115, 116
pattern

combinator, 97
partial, 100, 103

pipelining, see streaming
point-free, 7
point-wise, 7
polymorphism, 6, 24, 40, 98, 133

free theorem and, 40

naturality and parametric, 41
parametricity and, 3, 40

polynomial functor, 12
primitive recursive function, 21
prod, 46
product, 10

cartesian, 11
nested, 65, 122, 124
×, 10
�, 10

project (π), 99, 116, 128–130, 132
projection, 10, 123

left (outl), 10
right (outr), 10

Q, 63, 68
Qual-Ex, 106
qualifier, see comprehension
quantifier, 46

existential, 51
universal, 50, 110

query
nesting in a, 38
unnesting of a, 39

query engine
monolithic, 127
spine transformer-based, 95,

134
query former, 64
quotient algebra, 36

record, 65
tag, 65

recursion
primitive, 21
structural, 2, 18, 21

sri, 21
sru, 54

referential transparency, 5
relational algebra, 21

nested, 21
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relational calculus, 47, 97
rewrite, 7
ringad, 55

select (σ), 96, 99
select-distinct-from-where

(OQL), 70
select-from-where (OQL), 70
select-from-where-group by

(OQL), 71
select-from-where-group by-

having (OQL),
72

select-from-where-order by

(OQL), 72
semijoin (�), 93, 99, 106, 109
set, 38
Set (category of sets and total

functions), 9
set (OQL), 69
shortcut deforestation, see

deforestation
signature, 6, 34
some (OQL), 75
sort (ς), 99, 135
source, see object
spine, 13, 20

transformation of a, 20, 25,
127, 132

walk of a, 18, 28, 30, 132
spine transformer, 20, 127, 132
split (�), 10
Squiggol, 7, 17
src, 8
state, 60
streaming, 28, 76, 127, 128
String , 61
struct (OQL), 68
structural recursion, 18, 54
sum, 10

disjoint, 11

�, 10
+, 10

sum, 46
sum (OQL), 77
suspension (�f, x�), 129

T-monad, 40
tag (of a disjoint sum), 11
tag (of a record field), 65
target, see object
tgt , 8
�-table, 118
tl , 73
Transformer, 34
transformer, 33
tree transformation, 20
tupling, 77, 105, 106
type

equality, 65
initial, 26
polymorphic, 133
record, 65
unit , 14

type constructor, 12
type environment (Γ), 67
type functor, 25, 116
type judgment, 66
Type-Functor, 26
typing rule, 67

union (OQL), 74
union representation, 52, 118
unique, 76
unit type, 14
unit (monadic injection), 40
unnest (µ), 99
unnesting, 39, 63, 90

monad comprehension, 85, 86,
90, 102

SQL query, 92

variable, 6, 33, 38
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free, 66, 96, 110
interdependency, 106
scope of a, 122

variable environment, 122

weak head normal form, 76, 129

zero, 41
ZF-expression, see comprehension
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