Iterative plug-in algorithms for SEMIFAR models -
definition, convergence and asymptotic properties

Jan Beran and Yüanhua Feng
University of Konstanz

Abstract
In this paper data-driven algorithms for fitting SEMIFAR models (Beran, 1999) are proposed. The algorithms combine the data-driven estimation of the nonparametric trend and maximum likelihood estimation of the parameters. Convergence and asymptotic properties of the proposed algorithms are investigated. A large simulation study illustrates the practical performance of the methods.

Key Words: semiparametric models, long-range dependence, fractional ARIMA, antipersistence, nonparametric regression, bandwidth selection.

1 Introduction

1.1 The SEMIFAR model

The so-called SEMIFAR (semiparametric fractional autoregressive) model, introduced by Beran (1999), provides a unified approach that allows for simultaneous modelling of deterministic trends, stochastic trends and stationary short-memory, long-memory and antipersistent components. In this paper, several data-driven algorithms for estimating the SEMIFAR model are proposed. Asymptotic properties of the methods are derived. The practical performance is investigated in an extended simulation study.

A SEMIFAR model (Beran, 1999) is a Gaussian process \(Y_t \) with an existing smallest integer \(m \in \{0, 1\} \) such that

\[
\phi(B)(1 - B)^\delta \{(1 - B)^m Y_t - g(t_i)\} = \epsilon_i, \tag{1}
\]

where \(t_i = (i/n), \delta \in (-0.5, 0.5), g \) is a smooth function on \([0, 1]\), \(B \) is the backshift operator, \(\phi(x) = 1 - \sum_{j=1}^p \phi_j x^j \) is a polynomial with roots outside the unit circle and \(\epsilon_i \) \((i = ..., -1, 0, 1, 2, ...) \) are iid zero mean normal with \(\text{var}(\epsilon_i) = \sigma_\epsilon^2 \). Where, the fractional difference \((1 - B)^\delta\) introduced by Granger and Joyeux (1980) and Hosking (1981) is defined
by \((1 - B)^\delta = \sum_{k=0}^{\infty} \beta_k(\delta) B^k\) with \(\beta_k(\delta) = (-1)^k \Gamma(\delta + 1)/[\Gamma(k + 1) \Gamma(\delta - k + 1)]\). Model (1) includes stationary \((m = 0)\) and difference-stationary \((m = 1)\) processes with or without deterministic trend, and covers the cases of short-range dependence \((\delta = 0)\), long-range dependence \((\delta > 0)\) and antipersistence \((\delta < 0)\). See Beran (1999) and Beran and Ocker (1999, 2001) for detailed remarks on different special cases of model (1). The spectral density of \(X_i = (1 - B)^m Y_i - g(t_i)\) has the form
\[
f(\lambda) \sim c_f |\lambda|^{-\alpha} \quad \text{(as } \lambda \to 0)\]
(2)
with \(\alpha = 2\delta\), where \(c_f\) is the value of the spectral density of an AR\((p)\) process \(Z_i := (1 - B)^\delta X_i\) at the origin. Hence, \(X_i\) has long-memory if \(\delta > 0\). In this case the autocovariances \(\gamma(k)\) of \(X_i\) are proportional to \(k^{2\delta - 1}\) (as \(k \to \infty\)) and hence are non-summable. If \(\delta = 0\), \(X_i\) has short-memory and spectral density \(f(\lambda)\) converges to a positive constant \(c_f\) at the origin with \(c_f = (2\pi)^{-1} \sum_{k=-\infty}^{\infty} \gamma(k)\). If \(\delta < 0\), then the spectral density \(f(\lambda)\) of \(X_i\) converges to zero at the origin (so-called “antipersistence”). In this case we have \(\sum_{k=-\infty}^{\infty} \gamma(k) = 0\). For details on time series with long-memory see Beran (1994) and references therein. All of the discussions in this paper are valid for the whole range \(\delta \in (-0.5, 0.5)\).

1.2 Estimation

The estimation of SEMIFAR models consists of two parts: nonparametric estimation of the trend \(g\) and estimation of the parameters \(m, \delta, p\) and \(\phi_1, ..., \phi_p\). Note, in particular, that the integer differencing parameter \(m\) is also estimated from the data. In this paper the trend \(g\) is estimated by a kernel method (Hall and Hart, 1990 and Beran, 1999) defined by
\[
\hat{g}(t; h) = \frac{1}{nh} \sum_{i=1}^{n} K \left(\frac{t - t_i}{h} \right) (1 - B)^{\hat{m}} Y_i
\]
(3)
where \(\hat{m}\) is an estimate of \(m\). Throughout the paper, \(K\) will be a symmetric positive second order kernel with compact support. The parameter vector \(\theta = (\sigma^2, \eta)\) with \(\eta_1 = \delta + m\), \(\eta_{j+1} = \phi_j\ (j = 1, ..., p)\) are estimated by maximum likelihood, the order \(p\) being chosen by minimizing the BIC. Since \(\hat{g}\) depends on \(\hat{m}\) and the bandwidth \(h\) and the optimal bandwidth depends on the unknown value of \(\theta\), an iterative procedure is needed that alternates between kernel smoothing and estimation of the parameters.

The algorithms proposed in this paper rely on the following asymptotic expressions for the mean integrated squared error (MISE) and the optimal bandwidth (see Beran 1999;
for $\delta \geq 0$ also see Hall and Hart 1990): Let $\Delta > 0$ be a small positive constant, which is introduced to avoid the so-called boundary effect of the kernel estimator, and define $I(g^n) = \int_{-\Delta}^{\Delta} [g^n(t) - g(t)]^2 dt$ and $I(K) = \int_{-\Delta}^{\Delta} x^2 K(x) dx$. Then, as $n \to \infty$, $h \to 0$, $nh \to \infty$,

$$
\text{MISE} = E \left\{ \int_{-\Delta}^{\Delta} [\hat{g}(t) - g(t)]^2 dt \right\} = \frac{h^4 I(g^n) I^2(K)}{4} + (nh)^{2\delta - 1} V(1 - 2\Delta) + o(\max(h^4, (nh)^{2\delta - 1})) ,
$$

where V is a constant depending on c_I and the kernel function. Formulas for V (with $\delta \in (-0.5, 0.5)$) may be found in Beran and Feng (2001).

For selecting the bandwidth we also need to estimate g''. Let $\hat{g}''(t; h_2)$ be a kernel estimator of g'' with a kernel K_2 and another bandwidth h_2, which is different from the bandwidth h for estimating g. Throughout this paper, K_2 will be a symmetric fourth order kernel for estimating the second derivative with compact support (see e.g. Gasser and Müller, 1984). Assume that g is at least four times continuously differentiable and that $h_2 \to 0$, $(nh_2)^{-2\delta} h_2^{1-2\delta} \to \infty$ as $n \to \infty$. Then we have

$$
\text{MISE}(\hat{g}'') = O(h_2^2) + O((nh_2)^{2\delta - 1} h^{-1}) .
$$

1.3 Aim of the paper

Data-driven bandwidth selection is a crucial problem in the practical use of nonparametric regression. Recent proposals for bandwidth selection in nonparametric regression with independent or short-range dependent data may be found e.g. in Müller (1985), Gasser et al. (1991), Härdle et al. (1992), Herrmann et al. (1992), Fan and Gijbels (1995), Ruppert et al. (1995) and Heiler and Feng (1998).

Data driven bandwidth selection in the presence of long memory or nonstationary errors is even more difficult, since spurious stochastic trends may be confounded with deterministic trends. A bandwidth selector for nonparametric regression with long-range dependence based on the iterative plug-in idea (Gasser et al., 1991) is proposed by Ray and Tsay (1997). The contributions of our paper are:

1. Two new iterative algorithms are proposed in the context of SEMIFAR models, thus in particular including the possibility of stochastic trends (difference stationarity), antipersistence and long memory,
2. Convergence of the algorithms is proved;

3. Asymptotic properties of the estimated bandwidths are derived;

4. In contrast to Gasser et al. and Ray and Tsay, our algorithms use an exponential inflation step, which leads to a better relative rate of convergence of the estimated bandwidth;

5. Finite sample behaviour is studied in a large simulation study.

2 Notation and general considerations

The optimal bandwidth, which minimizes the MISE, will be denoted by h_M. The so-called asymptotically optimal bandwidth, h_A, that minimizes the asymptotic MISE, is given by

$$h_A = C \cdot n^{(2\delta-1)/(5-2\delta)}$$ \hspace{1cm} (6)

with

$$C = \left(\frac{(1 - 2\delta)V(1 - 2\Delta)}{I(g'')I^2(K)} \right)^{1/(5-2\delta)}.$$ \hspace{1cm} (7)

Here it is assumed that $I(g'') > 0$. When the uniform kernel is used, the constant C in (6) has the explicit form

$$C = \left(\frac{9(1 - 2\delta)\nu(\delta)(1 - 2\Delta)c_f}{I(g'')} \right)^{1/(5-2\delta)}$$ \hspace{1cm} (8)

with c_f as defined before and

$$\nu(\delta) = \frac{2^{2\delta}\Gamma(1 - 2\delta)\sin(\pi \delta)}{\delta(2\delta + 1)}$$ \hspace{1cm} (9)

for all $-0.5 < \delta < 0.5$ (see Beran, 1999).

Plug-in estimators for h_M use formula (6), replacing the unknown constants δ, V as well as $I(g'')$ by some consistent estimators. Note that the estimation of V is equivalent to that of c_f. The quantities δ and V may be estimated root-$n-$consistently by maximum likelihood. Hence the key problem is to estimate $I(g'')$. From here on denote $I(g'')$ by I and let it be estimated as follows

$$\hat{I} = n^{-1} \sum_{i=\lfloor n\Delta \rfloor}^{n-\lfloor n\Delta \rfloor} \{\hat{g}''(t; \hat{h}_2)\}^2.$$ \hspace{1cm} (10)
Properties of \(\hat{I} \) are investigated by Beran and Feng (2001). Under the assumptions of equation \((5)\) we have

\[
E[\hat{I} - I] = h_n^2 \frac{I(K_3)}{12} \int_{\Delta}^{1-\Delta} g''(t)g^{(4)}(t) dt + (nh_n)^{2\delta-1}h_n^{-4}V
\]

and

\[
\text{var}[\hat{I}] = o((nh_n)^{(\delta-2)}h_n^{-8}) + O(n^{2\delta-1}).
\]

The mean squared error (MSE) of \(\hat{I} \) is dominated by the squared bias

\[
\text{MSE}(\hat{I}) = \left\{ h_n^2 \frac{I(K_3)}{12} \int_{\Delta}^{1-\Delta} g''(t)g^{(4)}(t) dt + (nh_n)^{2\delta-1}h_n^{-4}V \right\}^2.
\]

The optimal bandwidth for estimating \(I \) which minimizes MSE \(\{\hat{I}\} \) is \(h_n^{\text{opt}} = O(n^{(2\delta-1)/(7-2\delta)}) \).

Note that the bandwidth which minimizes MISE \(\{\hat{g}''\} \) is however \(h_n^{0} = O(n^{(2\delta-1)/(9-2\delta)}) \).

Following the iterative plug-in idea of Gasser et al. (1991), in the \(j \)-th iteration, \(I \) is estimated with a bandwidth \(h_{2,j} \), which is obtained from the bandwidth for estimating \(g \) in the \(j-1 \)-th iteration, \(h_{j-1} \), say, with a so-called inflation method. This idea can be adapted to data with different dependence structures (see Herrmann et al., 1992, Ray and Tsay, 1997, Beran, 1999 and Beran and Ocker, 2001). An iterative plug-in bandwidth selector is determined by a starting bandwidth \(h_0 \) and the inflation method with an inflation factor \(\alpha \). In general, the process should begin with a very small \(h_0 \). Gasser et al. (1991) proposed the use of \(h_0 = n^{-1} \). For data with long-memory, \(h_0 \) should fulfill the condition \(h_0 \rightarrow 0 \), \(nh_0 \rightarrow \infty \) as \(n \rightarrow \infty \), since we have already to estimate \(\delta \) and \(V \) from the residuals at the first iteration. Hence Ray and Tsay (1997) used an \(h_0 \), which is selected following Herrmann et al. (1992) by assuming short-memory. In this paper we propose the use of \(h_0 = n^{-\beta} \) with \(\frac{1}{3} \leq \beta < 1 \). Such an \(h_0 \) satisfies the above condition and it is at the same time small enough. In fact we have \(h_0 = o(h_n) \) for all \(\delta \in (-0.5, 0.5) \). Here we used \(h_0 = n^{-5/7} \), which is of order \(o(h_n^2) \) for all \(\delta \in (-0.5, 0.5) \).

3 The EIM-bandwidth selector - definition and asymptotic properties

3.1 The MIM and the EIM approaches

There are different ways to obtain \(h_{2,j} \) from \(h_{j-1} \). In Gasser et al. (1991), Herrmann et al. (1992) and Ray and Tsay (1997) the formula \(h_{2,j} = c \cdot h_{j-1} n^\alpha \) is used. This is
called multiplicative inflation method (MIM). Beran (1999) and Beran and Ocker (2001) suggested to use the formula $h_{2,j} = c \cdot (h_{j-1})^\alpha$. We call this exponential inflation method (EIM). For each inflation method one has also to choose the inflation factor α. The iterative plug-in algorithm is motivated by fixed point search. So α and c should be chosen in a way that $c \cdot h_\lambda n^\alpha = h_2^{\text{opt}}$ by the MIM, or $c \cdot (h_\lambda)^\alpha = h_2^{\text{opt}}$ by the EIM, respectively. The optimal choice for α is $\alpha_{\text{opt}} = (2 - 4\delta)/(5 - 2\delta)$ for the MIM (see Herrmann and Gasser, 1994 for the case with $\delta = 0$) and

$$\alpha_{\text{opt}} = (5 - 2\delta)/(7 - 2\delta)$$

for the EIM. The choice of c does not affect the rate of convergence of \hat{h}. We will simply put $c = 1$.

There are two other reasonable choices of α, namely (for the EIM)

$$\alpha_0 = (5 - 2\delta)/(9 - 2\delta) \quad \text{and} \quad \alpha_{\text{var}} = \frac{1}{2}.$$

The choice of α_0 is motivated by the fact that $(h_\lambda)^{\alpha_0} = O(h_2^0)$ which minimizes the MISE(\tilde{g}'') in (5). The choice of α_{var} is motivated by balancing the terms that are due to the variance. More specifically, using α_{var} the square of the second term on the right hand side of (11) is of the same order $O(n^{2\delta - 1})$ as the second term in (12).

Since α_{opt} leads to a bandwidth h_2 that minimizes the MSE(\hat{I}), the rate of convergence of the resulting \hat{h} is optimal. Using α_0, the rate of convergence of \hat{h} lies between the two rates for α_{opt} and α_{var}. Note that the $O(n^{2\delta - 1})$ term in (12) provides a lower bound for the error in \hat{I}. Hence choosing α smaller than α_{var} does not improve the order of the variance of \hat{I} anymore, whereas it increases the order of the bias. Thus $\alpha_{\text{var}} = \frac{1}{2}$ is the smallest reasonable choice of α for EIM. In the procedure defined in section 3.2 we use the EIM with $\alpha \geq \frac{1}{2}$. In Ray and Tsay (1997) the MIM with an $\alpha = (1 - 2\delta)/(10 - 4\delta)$ is used. Note that their choice of α is α_{var} for MIM.

3.2 Definition of the EIM bandwidth selector

Given m (or a consistent estimate of m), we propose the following bandwidth selector (after taking the mth difference of the data):

1) Start with the bandwidth $h_0 = n^{-\beta}$ with $\frac{1}{3} \leq \beta < 1$ and set $j = 1$.

6
ii) Estimate g using h_{j-1} and let $\bar{X}_i = Y_i - \hat{g}(t_i)$. Estimate δ and V from \bar{X}_i by maximum likelihood.

iii) Set $h_{2j} = (h_{j-1})^\alpha$ with $\frac{1}{2} \leq \alpha < 1$ and improve h_{j-1} by

$$
\hat{h}_j = \left(\frac{1 - 2\hat{\delta}}{I^2(K)} \frac{(1 - 2\Delta)\hat{V}}{I(g(1; h_{2j})))} \right)^{1/(5 - 2\hat{\delta})} \cdot n^{(2\hat{\delta} - 1)/(5 - 2\hat{\delta})}.
$$

(13)

vi) Increase j by 1 and repeat steps ii) and iii) until convergence is reached or until a given number of iterations has been done. And set $\hat{h} = h_j$.

The required number of iterations for obtaining a satisfactory bandwidth selector depends on δ, h_0, the inflation method and α. See Herrmann and Gasser (1994), Ray and Tsay, (1997) and Beran and Feng (2001) for the idea to calculate it. In particular, the MIM requires considering more iterations than the EIM (see Beran and Feng, 2001).

3.3 Asymptotic properties

In this paper, \hat{V} and $\hat{\delta}$ will be assumed to be both \sqrt{n}-consistent. \sqrt{n}-consistent estimates of \hat{V} and $\hat{\delta}$ may be obtained e.g. following the maximum likelihood approach proposed by Beran (1999). The difference between the asymptotically optimal bandwidth h_A and the optimal bandwidth h_M provides a natural lower bound for the rate of convergence of a plug-in bandwidth selector. Results on $h_A - h_M$ in the case of nonparametric regression with short memory (i.e. $\delta = 0$) may be found e.g. in Gasser et al. (1991), Herrmann et al. (1992), Herrmann and Gasser (1994). In the following, unified results will be given for all $\delta \in (-0.5, 0.5)$ under regularity conditions, which extends the results in Proposition 1 in Herrmann and Gasser (1994), where only the case of iid errors is considered.

Proposition 1 Assume that g is at least four times continuously differentiable and that $h \to 0$, $nh \to \infty$ as $n \to \infty$. Then we have, for all $\delta \in (-0.5, 0.5)$,

$$(h_A - h_M)/h_M = O(h_M^2).$$

(14)

The proof of Proposition 1 is given in the appendix.

Observe that $\hat{I} - I$ is at least of the order $O_p\{(h_M^{\text{opt}})^2\}$ and $h_M = o(h_M^{\text{opt}})$ so that $(h_A - h_M)/h_M = o_p(\hat{I} - I)$ for all $\delta \in (-0.5, 0.5)$. This implies that the rate of convergence of \hat{h} depends only on the error in \hat{I} (see the appendix). The following lemma gives the rates of convergence of \hat{h} under different choices of α.

7
Lemma 1 Assume that \(g \) is at least four times continuously differentiable and that \(\hat{\delta} \) and \(\hat{V} \) are both \(\sqrt{n} \)-consistent. Then we have

i) For \(\alpha = \alpha_{\text{car}} = \frac{1}{2} \)

\[
\hat{h} = h_M \left\{ 1 + O(n^{(2\delta - 1)/(5 - 2\delta)}) + O_p(n^{(2\delta - 1)/2}) + O_p(n^{-1/2}) \right\}.
\]

(15)

ii) For \(\alpha = \alpha_0 = (5 - 2\delta)/(9 - 2\delta) \)

\[
\hat{h} = h_M \left\{ 1 + O(n^{2(2\delta - 1)/(9 - 2\delta)}) + O_p(n^{4(2\delta - 1)/(9 - 2\delta)}) + O_p(n^{-1/2}) \right\}.
\]

(16)

iii) For \(\alpha = \alpha_{\text{opt}} = (5 - 2\delta)/(7 - 2\delta) \)

\[
\hat{h} = h_M \left\{ 1 + O(n^{2(2\delta - 1)/(7 - 2\delta)}) + O_p(n^{2(2\delta - 1)/(7 - 2\delta)}) + O_p(n^{-1/2}) \right\}.
\]

(17)

The proof of Lemma 1 is given in the appendix. The following remarks clarify the results of this Lemma.

Remark 1. The \(O_p(n^{-1/2}) \) term in (15) to (17) is due to the error in \(\hat{V} \) and \(\hat{\delta} \).

Remark 2. The proposal in Ray and Tsay (1997) has the same asymptotic behaviour as given in (15). The variance term \(O(n^{(2\delta - 1)/2}) \) is in comparison with the \(O(n^{(2\delta - 1)/(5 - 2\delta)}) \) term, which is due to the bias, asymptotically negligible.

Remark 3. Note that the order of the variance term in (15) reaches the lower bound \(O_p(n^{6\delta - 1}) \), whereas the corresponding term in (16) and (17) are of a larger order. On the other hand the bias term in (15) is of a larger order than in (16) and (17). The overall rate of convergence is faster in (16) and (17) but (15) is more stable in the sense of having the smallest variance. The best overall rate is achieved in (17).

Remark 4. For \(\delta = 0 \), the rate in (17) is \(n^{-2/7} \). This is the same as obtained by Ruppert et al. (1995) for iid data. For positive \(\delta \), the rate is slower than \(n^{-2/7} \) and for negative \(\delta \) faster than \(n^{-2/7} \). Moreover, it tends to (but is always slower than) \(n^{-1/2} \) as \(\delta \to -0.5 \). The \(O_p(n^{-1/2}) \) term in (15) through (17) is asymptotically negligible.

Remark 5. Equations (16) and (17) give the rates of convergence for the bandwidth selectors used in Algorithms A and B proposed in the next section respectively.
4 Data-driven algorithms

This section deals with data-driven algorithms for estimating the SEMIFAR models. Convergence and asymptotic properties of three algorithms are obtained. The first algorithm (Algorithm A, or Alg A) relies on a full search with respect to d, and was originally proposed (in a slightly different version) in Beran (1999) and Beran and Ocker (2001). No theoretical results were derived there however. Algorithms B and C are two new algorithms that run much faster than Algorithm A, since no full search is needed. In the following the true unknown parameter vector will be denoted by $\theta^0 = (\sigma^2_{\epsilon,0}, \delta^0 + m^0, \phi^0_1, \ldots, \phi^0_{p^0})$.

4.1 Algorithm A

AlgA is an adaptation of the procedure Beran (1995), by replacing $\hat{\mu}$ by the kernel estimator \hat{g}. It makes use of the fact that d is the only additional parameter, besides the autoregressive parameters, so that a systematic search with respect to d can be made. Let Δ_0 be a small positive number and $\alpha = \alpha_0$. Then the procedure is defined as follows:

Algorithm A:

Step 1: Define $L = \text{maximal order of } \phi(B) \text{ that will be tried, and a sufficiently fine grid } G \in (-0.5, 1.5) \setminus \{0.5\}$. Then, for each $p \in \{0, 1, \ldots, L\}$, carry out steps 2 through 4.

Step 2: For each $d \in G$, set $m = \lfloor d + 0.5 \rfloor$, $\delta = d - m$, and $U_i(m) = (1 - B)^m Y_i$, and carry out step 3.

Step 3: Carry out the following iteration:

Step 3a: Let $h_0 = \Delta_0 \min(n^{(2d-1)/(5-2\delta)}, 0.5)$ and set $j = 1$.

Step 3b: Calculate $\hat{g}(t_i; m)$ using the bandwidth h_{j-1}. Set $\hat{X}_i = U_i(m) - \hat{g}(t_i; m)$.

Step 3c: Set $\hat{e}(d) = \sum_{j=0}^{j-1} \beta_j \delta_j \hat{X}_{i-j}$, where the coefficients β_j are defined before.

Step 3d: Estimate the autoregressive parameters ϕ_1, \ldots, ϕ_p from $\hat{e}(d)$ and obtain the estimates $\hat{\sigma}^2 = \hat{\sigma}^2(d; j)$ and $\hat{e}_f = \hat{e}_f(j)$. Estimation of the parameters can be done, for instance, by using the S-PLUS function `ar.burg` or `arima.mle`. If $p = 0$, set $\hat{\sigma}^2$ equal to $n^{-1} \sum \hat{e}_i^2(d)$ and \hat{e}_f equal to $\hat{\sigma}^2/2\pi$.

Step 3e: Set $h_{2,j} = (h_{j-1})^\alpha$ with $\alpha = \alpha_0 = (5 - 2\delta)/(9 - 2\delta)$, improve h_{j-1} by

$$h_j = \left(1 - 2\delta \frac{1 - 2\Delta}{F(K) F(g^0(t; h_{2,j}))}\right)^{1/(5-2\delta)} \cdot n^{(2d-1)/(5-2\delta)}.$$ (18)
Step 3f: Increase j by one and repeat steps 3b to 3e until convergence is reached or until a given number of iterations has been done. This yields for each $d \in G$ separately, the ultimate value of $\hat{\sigma}^2_d(d)$, as a function of d.

Step 4: Define \hat{d} to be the value of d for which $\hat{\sigma}^2_d(d)$ is minimal. This together with the corresponding estimates of the AR parameters, yields an information criterion, e.g. $\text{BIC}(p) = n \log \hat{\sigma}^2_n(p) + p \log n$, as a function of p and the corresponding values of $\hat{\theta}$ and \hat{g} for the given order p.

Step 5: Select the order p that minimizes BIC(p). This yields the final estimates of θ^0 and g.

Note that a “small” constant Δ_0 is used in order that the starting bandwidth is not too large. In our implementation we used $\Delta = 0.1$ and $\Delta_0 = 0.2$. This means that, in the first iteration, at most 20% of the observations are used for estimating g at each point and $t_i \in [\Delta, 1 - \Delta]$ are all interior points. Note that in step 3, the (trial) values of δ and m are fixed. Note also that, if $\delta = \delta^0$, then h_0 in step 3 is of the optimal order so that h_1 is already consistent. In the second iteration the effect of h_0 will be clearly reduced. Further iterations improve the finite sample properties of \hat{h}. If $\delta \neq \delta^0$, the selected bandwidth in any iteration is not optimal in general.

The following lemma is needed to prove i) in Theorem 1. Denote by $\hat{h}(\delta)$ the bandwidth selected by AlgA for a given trial value δ in the case of $m = m^0$. Lemma 2 shows that $\hat{h}(\delta) \to 0$, $n \hat{h}(\delta) \to \infty$ in probability as $n \to \infty$.

Lemma 2 Assume that the trial value of m (in AlgA) is equal to m^0 and that the conditions of Lemma 1 hold. Then for each trial value δ there exists an order α_δ such that $(1 - 2\delta)/(5 - 2\delta) \leq \alpha_\delta < \frac{5}{9}$ and $\hat{h}(\delta) = O_p(n^{-\alpha_\delta})$.

The proof of Lemma 2 is given in the appendix.

Under the conditions of Lemma 1 the following results for AlgA hold:

Theorem 1 Let \hat{h}, \hat{g} and $\hat{\theta}$ be obtained by AlgA with $L \geq p^0$, and let $0 < \Delta < 1/2$. Then

i) $\sqrt{n}(\hat{\theta} - \theta^0)$ converges in distribution to a zero mean normal random variable with a covariance matrix equal to the inverse Fisher information matrix;
ii)
\[\hat{h} = h_M \{1 + O_p(n^{2(3\theta^0 - 1)/(9-2\theta^0)})\}. \]
(19)

The rate of convergence of the selected bandwidth given in (19) follows from (16). A sketched proof of Theorem 1 is given in the appendix.

4.2 Algorithm B

The computing time for AlgA is very long, since the iterative procedure has to be carried out for each trial value \(d \in G \). In the following we propose a much faster Algorithm B (AlgB), where all parameters, except for \(p \) and \(m \), are estimated directly from the residuals by maximizing the likelihood function. In our implementation, the S-PLUS function \texttt{arima.fracdiff} was used.

The steps of AlgB are defined as follows:

Algorithm B:

Step 1: Obtain a bandwidth for estimating \(m \):

Step 1a: Set \(m = 1 \). Calculate \(U_i(m) \). Estimate \(\hat{g} \) from \(U_i(m) \) with the starting bandwidth \(h_0 = n^{-1/3} \). Calculate the residuals.

Step 1b: For each \(p = 0, 1, \ldots, L \), where \(L \) is as defined in AlgA, fit a FARIMA model to the residuals using the S-PLUS function \texttt{arima.fracdiff}, where the order of the MA component is set equal to zero.

Step 1c: Select the best AR order \(p \) following the BIC. Now we obtain estimates of all parameters except \(m^0 \).

Step 1d: Calculate the bandwidth \(h_1 \) following the procedure in section 3 with \(\alpha = \hat{\alpha}_{\text{opt}} = (5 - 2\hat{\delta})/(7 - 2\hat{\delta}) \).

Step 1e: Set \(L' = \hat{p}_0 \).

Step 2: Estimate \(m^0 \).

Step 2a: Carry out steps 1a to 1c with \(h_1 \) for \(m = 0 \) and \(m = 1 \) separately.

Step 2b: Select the best pair of \(m \) and \(p \) following the BIC. Now we obtain an estimate of all parameters, including \(m^0 \).
Step 2c: Set \(\hat{m} = \hat{m}^0 \).

Step 3: Further iterations: Carry out further iterations with \(L \) being replaced by \(L' \), \(m = \hat{m}^0 \) and a new starting bandwidth \(h_2 := n^{-5/7} \) until convergence is reached or a given number of iterations has been done.

Here \(m = 1 \) is used at the first iteration in order that the input of the S-PLUS function \texttt{arima.fracdiff} is stationary. \(m^0 \) is selected at the second iteration. Afterwards, \(\hat{m}^0 \) is used. The estimate \(\hat{m}^0 \) is consistent, since \(\hat{h}_1 \to 0, n\hat{h}_1 \to \infty \) as \(n \to \infty \). For \(\hat{p}_0 \) selected at the first iteration in step 1 we have \(\hat{p}_0 \to p_0 \) in probability, if \(m^0 = 1 \). If \(m^0 = 0 \), then \(\hat{p}_0 \) tends to the maximal order \(L \) in probability, since now the error process is an ARMA\((p, 1)\), i.e. an AR\((\infty)\) model. By selecting \(m^0 \) just one time and by setting \(L' = \hat{p}_0 \) at the end of step 1 much computing time can be saved. For AlgB we have

Theorem 2 Let \(\hat{h}, \hat{g} \) and \(\hat{\theta} \) be obtained by AlgB with \(L \geq p^0 \), and let \(0 < \Delta < 1/2 \). Then the same results as given in Theorem 1 hold, except that now

\[
\hat{h} = h_M \{1 + O_p(n^{2(2\delta^0-1)/(7-2\delta^0)})\},
\]

(20)

The proof of Theorem 2 is straightforward and is hence omitted. The rate of convergence of \(\hat{h} \) obtained by AlgB is given by (17), which is faster than for AlgA, since \(2(2\delta-1)/(9-2\delta) > 2(2\delta - 1)/(7 - 2\delta) \) for all \(\delta \in (-0.5, 0.5) \).

4.3 Algorithm C

The iteration at step 1 is carried out so that \(h_1 \) adapts automatically to the structure of \(g \) and the variation in the data. However, this starting bandwidth is quite large, which will sometimes result in \(\hat{m}^0 = 0 \) in the case when \(m^0 = 1 \). This motivates us to propose the following algorithm by using a smaller \(h_0 \) at the beginning and carrying out more iterations at step 1:

Algorithm C.

Let \(h_0 = n^{-1/3} \) at step 1 of AlgB be replaced by \(h_0 = n^{-5/7} \). Carry out similarly the iteration six times using \(m = 1 \). The bandwidth \(h_6 \) is then used at step 2 to select \(m^0 \). Carry out step 3 as in AlgB with \(h_7 \) selected at step 2, if \(\hat{m}^0 = 1 \), or with \(h_7 = n^{-5/7} \) otherwise.
The basic idea behind Algorithm C (AlgC) is as follows. If $m^0 = 1$, then h_6 obtained at the end of step 1 is already a good estimate of h_M. The estimation of m using h_6 will have high accuracy. In the case $m^0 = 0$, h_6 will be a bandwidth adapted to the structure of g and the variation in the data. So that it can be used for selecting m^0. The computing time of AlgC is slightly longer than for AlgB. It is clear that the estimates obtained by these two algorithms have the same asymptotic properties.

5 Simulation

5.1 Description of the simulation study

To show the practical performance of the data-driven SEMIFAR models, a large simulation has been done. The following three trend functions are used:

\[
\begin{align*}
g_1(t) &= 2 \tanh(5(t - 0.5)), \\
g_2(t) &= 4 \sin^2((t - 0.5)\pi) \text{ and} \\
g_3(t) &= 2 \sin(5(t - 0.5)\pi)
\end{align*}
\]

for $t \in [0, 1]$ (see Figures 1f through 3f). The range of these trends is kept the same. These trends are chosen as different as possible so that the practical performance of the proposed algorithms in different cases may be studied. The case without trend ($g_0 \equiv 0$) is also included as a comparison.

Fifty parameter combinations with $m^0 \in \{0, 1\}$, $\delta^0 \in \{-0.4, -0.2, 0, 0.2, 0.4\}$, $\phi^0_1 \in \{-0.7, -0.3, 0, 0.3, 0.7\}$ were selected for the simulation. Here we have $p_0 = 0$ for $\phi^0_1 = 0$ and $p_0 = 1$ otherwise. The error process is standardized so that $\text{var}(X_t) = 1$ in all cases. 200 replications were done for each parameter combination with two sample sizes $n = 500$ and $n = 1000$. The simulations were carried out using AlgB and AlgC, separately. The maximal number of iterations was set equal to 20. Simulation using AlgA has not been done due to long computing time.

5.2 Summary of results

In the following a brief summary of the simulations with $n = 500$ using AlgB will be given. The results for $n = 1000$ and for AlgC are similar and are hence omitted to save place.
Detailed simulation results are reported in Beran and Feng (2000) as supplement of the current paper. Tables 1 and 2 give frequencies (in 200 replications) of correctly estimating m^0 and p_0 respectively, for $m^0 = 0$ and $m^0 = 1$ separately. Here the results for g_0 are also given, since \hat{m}^0 and \hat{p}_0 are still root n consistent for the case without trend. Tables 3 and 4 give the mean and standard deviation of \hat{h} for $m^0 = 0$ and $m^0 = 1$, separately, together with h_A calculated from (6). Note that h_A does not depend on m^0. These results are only given for g_1 through g_3, since \hat{h} is not consistent for g_0.

The short-memory component of the SEMIFAR model depends on the selection of m^0 and p_0. The selection of m^0 plays a more important role than that of p_0, since it determines, whether the first difference should be used in the further calculation. From Tables 1 and 2 we see that m^0 is easy to select. In most cases, \hat{m}^0 is always (or almost always) correct. Estimation of m^0 appears difficult for $m^0 = 0$ with $\delta = -0.2$ and $\phi_0^0 = 0.7$ and for g_0 with $m^0 = 1$. This means that in these cases it is difficult to decide, if Y_t is stationary or not. In these cases AlgC turned out to perform better than AlgB (see Beran and Feng, 2000).

The order p_0 is more difficult to select than m^0. There are mainly two reasons for this. Firstly, different autoregressive models may have quite similar finite sample paths. Secondly, in some cases, it is difficult to separate autocorrelation from a complex trend like g_3, when n is not large enough. Hence, \hat{p}_0 works worst for g_3. The rate of correctly estimated p_0 may be very low, even when \hat{m}^0 is correct. Note that model (b) in Beran et al. (1998) is the same as the case without trend used in this paper. Comparing the results here and those in Table 1 in Beran et al. (1998), we can find that the rate of correctly estimated p_0 is similar. In our case, however, estimation of p_0 is more difficult, because knowledge of a constant trend is not assumed.

Results in Tables 3 and 4 show that the proposed bandwidth selector works well in all cases, although m^0 and p_0 have also to be estimated simultaneously. The rate of convergence of \hat{h} depends only on δ not on ϕ_1^0. However, the finite sample performance of \hat{h} strongly depends on both parameters. In general, the larger ϕ_0^0 and/or δ the larger is the variation in \hat{h}. The performance of \hat{h} also depends on the trend function. The selection of the bandwidth in the case of trend function g_1 is more difficult than for g_2 or g_3. Estimation of m^0 and p_0 also affects the accuracy of \hat{h}. For instance, if $m^0 = 0$ and $\hat{m}^0 = 1$, \hat{h} is clearly larger than the optimal bandwidth (see the case with $\delta^0 = -0.2$ and $\phi_1^0 = 0.7$ in Table 3). In the case $m^0 = 1$ with $\hat{m}^0 = 0$, \hat{h} is practically zero, when there is
a trend in the data (see Beran and Feng, 2000). Note also that \(\hat{h} \) performs quite the same way for \(m^0 = 0 \) and \(m^0 = 1 \). Figures 1 through 3 show the estimated kernel densities of \(\log(h/h_A) \) from the 200 replications for each case with \(m^0 = 0 \), where densities for the same \(\phi_i \) with different \(\delta \)'s are overlaid in the same plot. The same results for cases with \(m^0 = 1 \) are shown in Figures 4 to 6.

6 Final remarks

In this paper three data-driven algorithms for fitting SEMIFAR models are investigated. The asymptotic behaviour of the algorithms and the selected bandwidths is derived. In particular, it is shown theoretically that the new algorithms, AlgB and AlgC, perform better than AlgA (see Theorems 1 and 2). Simulations confirm the good performance of AlgB and AlgC and the potential usefulness of the SEMIFAR models for estimating and distinguishing deterministic trends and a stochastic component. The detailed simulation results in Beran and Feng (2000) also indicated that in general, AlgB works better for \(m^0 = 0 \), while AlgC works better for \(m^0 = 1 \). The difference between AlgB and AlgC however also depends on the trend. For \(g_1 \) and \(g_2 \), their performance is almost the same. The simulation results also show that the estimates of the short- and long-memory parameters depend on each other. When the long-memory parameter is overestimated, the short-memory parameter will often be underestimated, and vice versa.

Acknowledgements

This paper was supported in part by the Center of Finance and Econometrics at the University of Konstanz, Germany and by an NSF (SBIR, phase 2) grant to MathSoft, Inc.

Appendix: Proofs

Proof of Proposition 1: Denote the MISE by \(M \). A well known approximation of \(M \) is the sum of the first two terms on the right-hand side of (4) under the assumption that \(g \) is at least twice continuously differentiable. Denote this sum by \(M_2 \), we have \(M_2 = O(h^4) + O((nh)^{2d-1}) \). Now, \(h_A \) is the minimizer of \(M_2 \). Note that \(M_2 \) is obtained
based on the second order approximation of the bias $B_2 = O(h^2) + o(h^2)$. If $g^{(4)}$ is continuous then the bias may be approximated by $B_4 = O(h^4) + O(h^4) + o(h^4)$. We obtain a more accurate approximation of M, namely, $M_4 = O(h^4) + O(h^4) + O\{(nh)^{2\delta-1}\}$, due to the fact that the second term in the variance part is asymptotically negligible in the neighborhood of h_M. Hence we have

$$M(h_M) - M_2(h_M) \approx M_1(h_M) - M_2(h_M) = O(h^6).$$

Following the idea in Härdle et al. (1992) and Feng (1999), it can be shown that

$$h_A - h_M \approx -[M_2'(h_M) - M'(h_M)]/M''(h_M)$$

$$= -[M_2'(h_M) - M'(h_M)]/M''(h_M).$$

Note that $M''(h_M) = O(h_M^2)$, we have $h_A - h_M = O(h_M^3)$ and $(h_A - h_M)/h_M = O(h_M^2)$. □

Proof of Lemma 1: In the following proof the unknown parameters δ and ν instead of their estimates will be used. The error caused by doing this is quantified by the $O_p(n^{-1/2})$ term given in (15) to (17). By the iterative plug-in algorithm a bandwidth of order $O_p(h_M)$ plays the key role. Note that \hat{g}'' (and hence \hat{I}) using a bandwidth of order $O_p(h_M)$ will be of order $O_p(1)$ but not consistent (see (5)). Assuming that $h_0 = o(h_M)$ (e.g. $O(n^{-5/7})$) is used at the beginning as proposed in this paper, an iterative plug-in bandwidth selection procedure may be divided into the following three steps according to the relationship between $h_{2,j}$ and h_M.

Step 1. When $h_{2,j} = o_p(h_M)$, the bias of \hat{I} is of the order $O_p(n^{\delta-1/2}h_{2,j}^{\delta-5/2}) \to \infty$ as $n \to \infty$ (see (5)). In this case one obtains $h_j = O_p(h_{2,j})$ (see (13)). This implies that $h_{j-1} = o(h_j)$, i.e. the bandwidth is inflated of a larger order. This step will be iteratively carried out till Step 2 or Step 3 is reached.

Step 2. When $h_{2,j} = O_p(h_M)$, $\hat{I} = O_p(1)$. Now, $h_j = O_p(h_M)$. But, in general, the constant is not consistent. Now we also have $h_{j-1} = o(h_j)$. Step 2 consists of only one iteration, if it occurs.

Step 3. When $h_M = o_p(h_{2,j})$, \hat{I} is consistent and then h_j will be a consistent estimate of h_A (and h_M).

After Step 3 we have $h_{2,j} = o_p(n^{(2\delta-1)/(10-4\delta)}) = O_p(h_{2,j}^{\text{var}})$, $h_{2,j}^0 = O_p(n^{(2\delta-1)/(9-2\delta)}) = O_p(h_2^0)$ and $h_{2,j}^{\text{opt}} = O_p(n^{(2\delta-1)/(17-2\delta)}) = O_p(h_{2,j}^{\text{opt}})$ for $\alpha = \alpha_{\text{var}}$, α_0 and α_{opt}, respectively.
The corresponding rates of convergence in these three cases may be calculated as follows:

Taylor expansion gives

\[\hat{h} - h_A = - \frac{1}{5 - 2\delta} h_A I^{-1}(\hat{I} - I). \]

It follows that

\[(\hat{h} - h_A)/h_A = - \frac{1}{5 - 2\delta} I^{-1}(\hat{I} - I). \]

It is obvious that \((\hat{h} - h_M)/h_M = (\hat{h} - h_A)/h_A\). Observe that \((h_A - h_M)/h_M = o_p(\hat{I} - I)\) we have \((\hat{h} - h_M)/h_A = (\hat{h} - h_A)/h_A = - \frac{1}{5 - 2\delta} I^{-1}(\hat{I} - I)\). Inserting \(h_2^\text{dr}, h_2^\text{dr} \) and \(h_2^\text{opt} \) into the right-hand side of (11), and observing that the second term is negligible for case ii) and the two terms are of the same order for case iii), we obtain the rates of convergence in the three cases, respectively.

\[\square \]

Proof of Lemma 2: In the following we will call \(\alpha_\delta\) a stable order. Define \(\delta_1 = \max\{2\delta^0 - 1/2, -0.5\}\). It is clear that \(\delta_1 < \delta^0\). For a trial value \(\delta_1 < \delta < 0.5\), we have \(h_{2,1} = h_0^{(5-2\delta)/(\delta^2 - \delta)} = O(n^{-\tilde{\alpha}})\) with \(0 < \tilde{\alpha} < (1 - 2\delta^0)/(5 - 2\delta^0)\). This means that \(\hat{I}(h_{2,1})\) is consistent and \(h_1 = O(h_0)\). For \(j \geq 2\) we have \(h_j = h_{j-1}(1 + o_p(1))\). In this case \(\hat{h}(\delta) = O_p(n^{-\alpha_\delta})\) with the stable order \(\alpha_\delta = (1 - 2\delta)/(5 - 2\delta)\) and a convergent constant part, whose limit depending on \(\delta\).

The case \(\delta < \delta_1\) can only occur if \(\delta_1 > -0.5\) (i.e. \(\delta_0 > 0\)). Thus suppose that \(\delta_1 > -0.5\).

In the case \(\delta = \delta_1\) we also have \(\alpha_\delta = (1 - 2\delta)/(5 - 2\delta)\). But now, \(\hat{I} = O_p(1)\) is not consistent.

This results in \(\hat{h}(\delta) = O_p(n^{-\alpha_\delta})\) with a divergent constant part.

For \(-0.5 < \delta < \delta_1\) it can be shown that the stable order is \(\alpha_\delta = 2(\delta^0 - \delta)(9 - 2\delta)/(12 - 2\delta^0 - 2\delta)\). Now the constant part is also divergent. In this case \(\alpha_\delta > (1 - 2\delta)/(5 - 2\delta), \) i.e. the stable bandwidth is now of a smaller order than \(n^{(2\delta - 1)/(5 - 2\delta)}\). Now, \(\alpha_\delta\) is monotonically increasing in \(\delta^0\) and monotonically decreasing in \(\delta\) with the upper bound \(\tilde{\delta}_0 = \tilde{\delta}_0\).

\[\square \]

A sketched proof of Theorem 1:

Part i): To show the asymptotic normality of \(\sqrt{n}(\hat{\theta} - \theta^0)\) we have at first to show that \(\hat{h}(\delta)\), the bandwidth selected at the end of AlgA for each trial value, satisfies

a) for \(m = m^0, \hat{h}(\delta) \rightarrow 0, n\hat{h}(\delta) \rightarrow \infty\)

b) for \(m \neq m^0, n\hat{h}(\delta) \rightarrow \infty\)
in probability as $n \to \infty$. For $m \neq m^0$, the condition $h(\delta) \to 0$ in probability as $n \to \infty$ is unnecessary, although it can be shown that it holds. The validity of a) and b) can be seen as follows:

Condition a) follows directly from Lemma 2.

For condition b) we have two cases. In the case $m^0 = 1$ with $m = 0$ we have $\hat{I} = O_p(n^2)$ and hence, for each j, $h_j \geq O_p(n^{-2/(5-2\delta)}) = O_p(n^{-2/(5-2\delta)})$. In the case $m^0 = 0$ with $m = 1$, \hat{I} will be asymptotically dominated by the second term on the right-hand side of (11), which is of order $O((nh_{2,j})^{2\delta-1}h_{2,j})$. Hence we have $h_j = O_p(h_{2,j})$ in any iteration. In both cases we have $n\hat{h}(\delta) \to \infty$.

Further proof of part i) follows from the proof of Theorem 2 in Beran (1999).

Part ii): Since \hat{m} is consistent, we only need to consider the rate of convergence of \hat{h} in the case when $\hat{m} = m^0$. Now, the rate of convergence of \hat{h} by AlgA follows from Case ii) in Lemma 1.

\[\square\]

REFERENCES

Table 1: Frequencies (in 200 replications) of estimating m^0 and p_0 correctly (for simulation
using AlgB with $n = 500$ and $m^0 = 0$).

<table>
<thead>
<tr>
<th>d^0</th>
<th>p^0</th>
<th>g_0</th>
<th>g_0</th>
<th>g_0</th>
<th>g_0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>m_0</td>
<td>p_0</td>
<td>m_0</td>
<td>p_0</td>
</tr>
<tr>
<td>-0.4</td>
<td>-0.7</td>
<td>200</td>
<td>194</td>
<td>200</td>
<td>184</td>
</tr>
<tr>
<td>-0.4</td>
<td>-0.3</td>
<td>200</td>
<td>194</td>
<td>200</td>
<td>188</td>
</tr>
<tr>
<td>-0.4</td>
<td>0</td>
<td>200</td>
<td>197</td>
<td>200</td>
<td>199</td>
</tr>
<tr>
<td>-0.4</td>
<td>0.3</td>
<td>200</td>
<td>170</td>
<td>200</td>
<td>141</td>
</tr>
<tr>
<td>-0.4</td>
<td>0.7</td>
<td>200</td>
<td>101</td>
<td>200</td>
<td>101</td>
</tr>
<tr>
<td>-0.2</td>
<td>-0.7</td>
<td>200</td>
<td>190</td>
<td>200</td>
<td>196</td>
</tr>
<tr>
<td>-0.2</td>
<td>-0.3</td>
<td>200</td>
<td>160</td>
<td>200</td>
<td>181</td>
</tr>
<tr>
<td>-0.2</td>
<td>0</td>
<td>200</td>
<td>179</td>
<td>200</td>
<td>187</td>
</tr>
<tr>
<td>-0.2</td>
<td>0.3</td>
<td>200</td>
<td>185</td>
<td>200</td>
<td>175</td>
</tr>
<tr>
<td>-0.2</td>
<td>0.7</td>
<td>102</td>
<td>19</td>
<td>110</td>
<td>14</td>
</tr>
<tr>
<td>0</td>
<td>-0.7</td>
<td>200</td>
<td>159</td>
<td>200</td>
<td>180</td>
</tr>
<tr>
<td>0</td>
<td>-0.3</td>
<td>200</td>
<td>111</td>
<td>200</td>
<td>120</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>200</td>
<td>169</td>
<td>200</td>
<td>186</td>
</tr>
<tr>
<td>0</td>
<td>0.3</td>
<td>200</td>
<td>155</td>
<td>200</td>
<td>138</td>
</tr>
<tr>
<td>0</td>
<td>0.7</td>
<td>192</td>
<td>191</td>
<td>182</td>
<td>180</td>
</tr>
<tr>
<td>0.2</td>
<td>-0.7</td>
<td>200</td>
<td>166</td>
<td>200</td>
<td>172</td>
</tr>
<tr>
<td>0.2</td>
<td>-0.3</td>
<td>200</td>
<td>131</td>
<td>200</td>
<td>129</td>
</tr>
<tr>
<td>0.2</td>
<td>0</td>
<td>200</td>
<td>172</td>
<td>200</td>
<td>180</td>
</tr>
<tr>
<td>0.2</td>
<td>0.3</td>
<td>158</td>
<td>19</td>
<td>159</td>
<td>22</td>
</tr>
<tr>
<td>0.2</td>
<td>0.7</td>
<td>197</td>
<td>195</td>
<td>199</td>
<td>198</td>
</tr>
<tr>
<td>0.4</td>
<td>-0.7</td>
<td>196</td>
<td>195</td>
<td>196</td>
<td>196</td>
</tr>
<tr>
<td>0.4</td>
<td>-0.3</td>
<td>185</td>
<td>148</td>
<td>193</td>
<td>127</td>
</tr>
<tr>
<td>0.4</td>
<td>0</td>
<td>196</td>
<td>199</td>
<td>197</td>
<td>198</td>
</tr>
<tr>
<td>0.4</td>
<td>0.3</td>
<td>150</td>
<td>150</td>
<td>152</td>
<td>151</td>
</tr>
<tr>
<td>0.4</td>
<td>0.7</td>
<td>187</td>
<td>199</td>
<td>184</td>
<td>195</td>
</tr>
</tbody>
</table>
Table 2: Frequencies (in 200 replications) of estimating m^o and p_0 correctly (for simulation using AlgB with $n = 500$ and $m^o = 1$).

<table>
<thead>
<tr>
<th>d^o</th>
<th>ϕ^o</th>
<th>g_1</th>
<th>g_2</th>
<th>g_3</th>
<th>g_0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>m^o</td>
<td>p_0</td>
<td>m^o</td>
<td>p_0</td>
<td>m^o</td>
</tr>
<tr>
<td>0.6</td>
<td>-0.7</td>
<td>200</td>
<td>193</td>
<td>200</td>
<td>187</td>
</tr>
<tr>
<td>0.6</td>
<td>-0.3</td>
<td>200</td>
<td>195</td>
<td>200</td>
<td>196</td>
</tr>
<tr>
<td>0.6</td>
<td>0</td>
<td>200</td>
<td>199</td>
<td>200</td>
<td>198</td>
</tr>
<tr>
<td>0.6</td>
<td>0.3</td>
<td>200</td>
<td>59</td>
<td>200</td>
<td>6</td>
</tr>
<tr>
<td>0.6</td>
<td>0.7</td>
<td>200</td>
<td>188</td>
<td>200</td>
<td>179</td>
</tr>
<tr>
<td>0.8</td>
<td>-0.7</td>
<td>200</td>
<td>199</td>
<td>200</td>
<td>194</td>
</tr>
<tr>
<td>0.8</td>
<td>-0.3</td>
<td>199</td>
<td>163</td>
<td>200</td>
<td>186</td>
</tr>
<tr>
<td>0.8</td>
<td>0</td>
<td>200</td>
<td>197</td>
<td>200</td>
<td>200</td>
</tr>
<tr>
<td>0.8</td>
<td>0.3</td>
<td>197</td>
<td>160</td>
<td>200</td>
<td>34</td>
</tr>
<tr>
<td>0.8</td>
<td>0.7</td>
<td>199</td>
<td>189</td>
<td>200</td>
<td>194</td>
</tr>
<tr>
<td>1</td>
<td>-0.7</td>
<td>200</td>
<td>196</td>
<td>200</td>
<td>192</td>
</tr>
<tr>
<td>1</td>
<td>-0.3</td>
<td>200</td>
<td>129</td>
<td>200</td>
<td>135</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>200</td>
<td>193</td>
<td>200</td>
<td>199</td>
</tr>
<tr>
<td>1</td>
<td>0.3</td>
<td>199</td>
<td>167</td>
<td>200</td>
<td>149</td>
</tr>
<tr>
<td>1</td>
<td>0.7</td>
<td>200</td>
<td>171</td>
<td>200</td>
<td>197</td>
</tr>
<tr>
<td>1.2</td>
<td>-0.7</td>
<td>200</td>
<td>180</td>
<td>200</td>
<td>196</td>
</tr>
<tr>
<td>1.2</td>
<td>-0.3</td>
<td>200</td>
<td>123</td>
<td>200</td>
<td>107</td>
</tr>
<tr>
<td>1.2</td>
<td>0</td>
<td>200</td>
<td>185</td>
<td>200</td>
<td>198</td>
</tr>
<tr>
<td>1.2</td>
<td>0.3</td>
<td>200</td>
<td>184</td>
<td>200</td>
<td>182</td>
</tr>
<tr>
<td>1.2</td>
<td>0.7</td>
<td>200</td>
<td>156</td>
<td>200</td>
<td>167</td>
</tr>
<tr>
<td>1.4</td>
<td>-0.7</td>
<td>200</td>
<td>158</td>
<td>200</td>
<td>190</td>
</tr>
<tr>
<td>1.4</td>
<td>-0.3</td>
<td>200</td>
<td>108</td>
<td>200</td>
<td>109</td>
</tr>
<tr>
<td>1.4</td>
<td>0</td>
<td>200</td>
<td>178</td>
<td>200</td>
<td>187</td>
</tr>
<tr>
<td>1.4</td>
<td>0.3</td>
<td>200</td>
<td>190</td>
<td>200</td>
<td>195</td>
</tr>
<tr>
<td>1.4</td>
<td>0.7</td>
<td>200</td>
<td>140</td>
<td>200</td>
<td>138</td>
</tr>
</tbody>
</table>
Table 3: Mean and standard deviation of \(\hat{h} \) (using AlgB with \(n = 500, m^0 = 0 \)).

<table>
<thead>
<tr>
<th>(d^0)</th>
<th>(\phi^0)</th>
<th>(g_1)</th>
<th>(g_2)</th>
<th>(g_3)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>(h_A) Mean SD</td>
<td>(h_A) Mean SD</td>
<td>(h_A) Mean SD</td>
</tr>
<tr>
<td>-0.4</td>
<td>-0.7</td>
<td>0.053 0.050 0.0039</td>
<td>0.039 0.040 0.0015</td>
<td>0.021 0.021 0.0009</td>
</tr>
<tr>
<td>-0.4</td>
<td>-0.3</td>
<td>0.065 0.061 0.0048</td>
<td>0.048 0.051 0.0013</td>
<td>0.026 0.027 0.0008</td>
</tr>
<tr>
<td>-0.4</td>
<td>0</td>
<td>0.075 0.068 0.0059</td>
<td>0.055 0.058 0.0017</td>
<td>0.029 0.031 0.0007</td>
</tr>
<tr>
<td>-0.4</td>
<td>0.3</td>
<td>0.086 0.081 0.0094</td>
<td>0.063 0.066 0.0036</td>
<td>0.034 0.035 0.0014</td>
</tr>
<tr>
<td>-0.4</td>
<td>0.7</td>
<td>0.114 0.139 0.0563</td>
<td>0.084 0.106 0.0214</td>
<td>0.045 0.055 0.0063</td>
</tr>
<tr>
<td>-0.2</td>
<td>-0.7</td>
<td>0.059 0.054 0.0046</td>
<td>0.043 0.044 0.0018</td>
<td>0.022 0.022 0.0009</td>
</tr>
<tr>
<td>-0.2</td>
<td>-0.3</td>
<td>0.074 0.066 0.0074</td>
<td>0.053 0.055 0.0023</td>
<td>0.027 0.028 0.0011</td>
</tr>
<tr>
<td>-0.2</td>
<td>0</td>
<td>0.084 0.072 0.0080</td>
<td>0.061 0.062 0.0038</td>
<td>0.031 0.032 0.0010</td>
</tr>
<tr>
<td>-0.2</td>
<td>0.3</td>
<td>0.097 0.089 0.0145</td>
<td>0.070 0.073 0.0064</td>
<td>0.035 0.039 0.0023</td>
</tr>
<tr>
<td>-0.2</td>
<td>0.7</td>
<td>0.125 0.176 0.1076</td>
<td>0.090 0.131 0.0365</td>
<td>0.046 0.082 0.0210</td>
</tr>
<tr>
<td>0</td>
<td>-0.7</td>
<td>0.075 0.066 0.0083</td>
<td>0.053 0.054 0.0037</td>
<td>0.025 0.025 0.0013</td>
</tr>
<tr>
<td>0</td>
<td>-0.3</td>
<td>0.094 0.079 0.0126</td>
<td>0.066 0.065 0.0076</td>
<td>0.032 0.032 0.0016</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0.106 0.091 0.0144</td>
<td>0.075 0.076 0.0089</td>
<td>0.036 0.038 0.0029</td>
</tr>
<tr>
<td>0</td>
<td>0.3</td>
<td>0.120 0.120 0.0493</td>
<td>0.084 0.095 0.0208</td>
<td>0.041 0.050 0.0080</td>
</tr>
<tr>
<td>0</td>
<td>0.7</td>
<td>0.150 0.128 0.0267</td>
<td>0.106 0.105 0.0147</td>
<td>0.051 0.061 0.0113</td>
</tr>
<tr>
<td>0.2</td>
<td>-0.7</td>
<td>0.102 0.086 0.0164</td>
<td>0.069 0.068 0.0089</td>
<td>0.031 0.036 0.0039</td>
</tr>
<tr>
<td>0.2</td>
<td>-0.3</td>
<td>0.126 0.104 0.0226</td>
<td>0.086 0.083 0.0139</td>
<td>0.039 0.042 0.0258</td>
</tr>
<tr>
<td>0.2</td>
<td>0</td>
<td>0.140 0.125 0.0385</td>
<td>0.095 0.096 0.0137</td>
<td>0.043 0.047 0.0056</td>
</tr>
<tr>
<td>0.2</td>
<td>0.3</td>
<td>0.154 0.208 0.1157</td>
<td>0.105 0.134 0.0311</td>
<td>0.047 0.074 0.0184</td>
</tr>
<tr>
<td>0.2</td>
<td>0.7</td>
<td>0.180 0.179 0.0757</td>
<td>0.123 0.125 0.0193</td>
<td>0.055 0.065 0.0101</td>
</tr>
<tr>
<td>0.4</td>
<td>-0.7</td>
<td>0.141 0.118 0.0423</td>
<td>0.093 0.090 0.0141</td>
<td>0.039 0.066 0.0042</td>
</tr>
<tr>
<td>0.4</td>
<td>-0.3</td>
<td>0.164 0.139 0.0666</td>
<td>0.107 0.100 0.0222</td>
<td>0.045 0.066 0.1029</td>
</tr>
<tr>
<td>0.4</td>
<td>0</td>
<td>0.173 0.185 0.0913</td>
<td>0.114 0.122 0.0200</td>
<td>0.048 0.057 0.0453</td>
</tr>
<tr>
<td>0.4</td>
<td>0.3</td>
<td>0.181 0.105 0.0293</td>
<td>0.119 0.092 0.0157</td>
<td>0.050 0.069 0.0341</td>
</tr>
<tr>
<td>0.4</td>
<td>0.7</td>
<td>0.193 0.197 0.0923</td>
<td>0.126 0.133 0.0250</td>
<td>0.053 0.064 0.0140</td>
</tr>
</tbody>
</table>
Table 4: Mean and standard deviation of \(\hat{h} \) (using AlgB with \(n = 500, m^0 = 1 \)).

<table>
<thead>
<tr>
<th>(d^0)</th>
<th>(\phi^0)</th>
<th>(g_1)</th>
<th>(g_2)</th>
<th>(g_3)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>(h_A) Mean SD</td>
<td>(h_A) Mean SD</td>
<td>(h_A) Mean SD</td>
</tr>
<tr>
<td>0.6</td>
<td>-0.7</td>
<td>0.053 0.050 0.0036</td>
<td>0.039 0.041 0.0013</td>
<td>0.021 0.021 0.0008</td>
</tr>
<tr>
<td>0.6</td>
<td>-0.3</td>
<td>0.065 0.062 0.0060</td>
<td>0.048 0.051 0.0013</td>
<td>0.026 0.027 0.0007</td>
</tr>
<tr>
<td>0.6</td>
<td>0</td>
<td>0.075 0.068 0.0057</td>
<td>0.055 0.058 0.0019</td>
<td>0.029 0.031 0.0005</td>
</tr>
<tr>
<td>0.6</td>
<td>0.3</td>
<td>0.086 0.079 0.0106</td>
<td>0.063 0.065 0.0045</td>
<td>0.034 0.035 0.0013</td>
</tr>
<tr>
<td>0.6</td>
<td>0.7</td>
<td>0.114 0.108 0.0221</td>
<td>0.084 0.092 0.0159</td>
<td>0.045 0.055 0.0054</td>
</tr>
<tr>
<td>0.8</td>
<td>-0.7</td>
<td>0.059 0.053 0.0042</td>
<td>0.043 0.044 0.0019</td>
<td>0.022 0.023 0.0009</td>
</tr>
<tr>
<td>0.8</td>
<td>-0.3</td>
<td>0.074 0.065 0.0066</td>
<td>0.053 0.055 0.0023</td>
<td>0.027 0.029 0.0009</td>
</tr>
<tr>
<td>0.8</td>
<td>0</td>
<td>0.084 0.070 0.0073</td>
<td>0.061 0.061 0.0033</td>
<td>0.031 0.032 0.0008</td>
</tr>
<tr>
<td>0.8</td>
<td>0.3</td>
<td>0.097 0.091 0.0139</td>
<td>0.070 0.077 0.0078</td>
<td>0.035 0.040 0.0025</td>
</tr>
<tr>
<td>0.8</td>
<td>0.7</td>
<td>0.125 0.109 0.0215</td>
<td>0.090 0.095 0.0142</td>
<td>0.046 0.064 0.0140</td>
</tr>
<tr>
<td>1</td>
<td>-0.7</td>
<td>0.075 0.061 0.0064</td>
<td>0.053 0.052 0.0029</td>
<td>0.025 0.025 0.0010</td>
</tr>
<tr>
<td>1</td>
<td>-0.3</td>
<td>0.094 0.073 0.0112</td>
<td>0.066 0.062 0.0060</td>
<td>0.032 0.031 0.0012</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0.106 0.084 0.0124</td>
<td>0.075 0.073 0.0069</td>
<td>0.036 0.037 0.0021</td>
</tr>
<tr>
<td>1</td>
<td>0.3</td>
<td>0.120 0.110 0.0268</td>
<td>0.084 0.092 0.0186</td>
<td>0.041 0.051 0.0047</td>
</tr>
<tr>
<td>1</td>
<td>0.7</td>
<td>0.150 0.136 0.0355</td>
<td>0.106 0.107 0.0162</td>
<td>0.051 0.063 0.0102</td>
</tr>
<tr>
<td>1.2</td>
<td>-0.7</td>
<td>0.102 0.082 0.0167</td>
<td>0.069 0.066 0.0075</td>
<td>0.031 0.029 0.0020</td>
</tr>
<tr>
<td>1.2</td>
<td>-0.3</td>
<td>0.126 0.100 0.0470</td>
<td>0.086 0.076 0.0121</td>
<td>0.039 0.035 0.0031</td>
</tr>
<tr>
<td>1.2</td>
<td>0</td>
<td>0.140 0.123 0.0323</td>
<td>0.095 0.094 0.0121</td>
<td>0.043 0.045 0.0036</td>
</tr>
<tr>
<td>1.2</td>
<td>0.3</td>
<td>0.154 0.124 0.0547</td>
<td>0.105 0.099 0.0238</td>
<td>0.047 0.063 0.0107</td>
</tr>
<tr>
<td>1.2</td>
<td>0.7</td>
<td>0.180 0.193 0.0883</td>
<td>0.123 0.140 0.0633</td>
<td>0.055 0.063 0.0067</td>
</tr>
<tr>
<td>1.4</td>
<td>-0.7</td>
<td>0.141 0.133 0.0707</td>
<td>0.093 0.088 0.0140</td>
<td>0.039 0.038 0.0041</td>
</tr>
<tr>
<td>1.4</td>
<td>-0.3</td>
<td>0.164 0.150 0.0820</td>
<td>0.107 0.108 0.0063</td>
<td>0.045 0.039 0.0058</td>
</tr>
<tr>
<td>1.4</td>
<td>0</td>
<td>0.173 0.196 0.1036</td>
<td>0.114 0.124 0.0508</td>
<td>0.048 0.051 0.0063</td>
</tr>
<tr>
<td>1.4</td>
<td>0.3</td>
<td>0.181 0.120 0.0562</td>
<td>0.119 0.096 0.0439</td>
<td>0.050 0.062 0.0054</td>
</tr>
<tr>
<td>1.4</td>
<td>0.7</td>
<td>0.193 0.230 0.1311</td>
<td>0.126 0.155 0.0949</td>
<td>0.053 0.059 0.0095</td>
</tr>
</tbody>
</table>
Figure 1: Kernel densities of $\log(\hat{h}/h_A)$ selected by AlgB for g_1 with $m^0 = 0$, $n = 500$. Lines in Figures 1a through 1e are for $\phi_1^0 = -0.7$ to $\phi_1^0 = 0.7$ with all δ^0s (solid line: $\delta^0 = -0.4$; points: $\delta^0 = -0.2$; short dashes: $\delta^0 = 0$; middle dashes: $\delta^0 = 0.2$ and long dashes: $\delta^0 = 0.4$). The trend function g_1 is shown in Figure 1f.
Figure 2: The same results as given in Figure 1 but for the trend function g_2.
Figure 3: The same results as given in Figure 1 but for the trend function g_3.
Figure 4: The same results as given in Figures 1a through 1e but for $m^0 = 1$.
Figure 5: The same results as given in Figures 2a through 2e but for $m^0 = 1$.
Figure 6: The same results as given in Figures 3a through 3e but for $m^0 = 1$.