
A Functional Object Database
Language

Christian Laasch� Marc H� Scholl

Faculty of Computer Science� Databases and Information Systems

University of Ulm� D ����� Ulm� Germany

e�mail	 flaasch� schollg
informatik�uni�ulm�de

In� Proc� �th Int�l Workshop on Database Programming Languages� New York City� Aug ����

Abstract

The language BCOOL is formally de�ned using a denotational seman�
tics approach� BCOOL is a functional object database language with a
very �exible� yet strong and statically checked� type system� Its main
source of �exibility is its support for object evolution� that is� dynamic
type changes of existing objects� Originally� BCOOLwas used as a formal
basis for a more traditional �relational algebra�style	 database language�
COOL� In this paper� though� BCOOL is presented on its own� The
purpose being to compare with other functional languages and discuss
the virtues and limitations that BCOOL and these functional languages
have w�r�t� each other in terms of �i	 the above�mentioned �exibility
in the type system� which we consider essential for objects and �ii	 the
orthogonality of the language�

� Introduction

COOL is an object database query language developed in the COCOON project
���� ���� In a nutshell� COOL is an object	
avored extension of a �nested�
relational algebra� The object
avor is established by the inclusion of con	
cepts such as abstract object types� functions �methods�� type hierarchies� and
classes� The eects of the algebraic query operators are pretty similar to their
relational counterparts� except for the fact that they have to take into account
that they now work with objects with an identity �which led to the notion
of object	preserving queries� and with a much richer type�class system that
requires typing �and classi�cation� of query results� Informal presentations of
COCOON and the COOL language have been given earlier ���� ���� A formal	
ization of COCOON and COOL using BCOOL was developed in �����

In this paper� we discuss the functional object language BCOOL in detail�
We present the formal semantics of query and update operations using a deno	
tational approach� In contrast to ���� and ����� which also propose operations
for object evolution� we also analyze the impact of dynamic type changes on
the type system� Further� we compare our approach with functional database
languages� While these typically oer more
exibility w�r�t� orthogonality and
genericity of the type system� BCOOL provides objects and object evolution
�i�e�� dynamic type changes�� Adding any of these extra capabilities to the
other language� brings them close together� We show how this can be achieved
and what the consequences are�

�

For this purpose� BCOOL serves as a formal basis for the integration of func	
tional �database� languages supporting polymorphism� static type inferencing�
and orthogonality �e�g�� as in Machiavelli ���� or FAD ���� with object	oriented
data models including objects with subtyping and
exible update facilities �e�g��
as in Iris ����� Melampus ����� or COCOON ������ The key objectives are�

� an extension of the relational algebra to an object query language� We
started from relational algebra in order to preserve the potential for and
knowledge on query optimization�

� static type	checking that allows for early error detection and reduction of
run	time eort�

� update operations that allow object evolution such that objects are not
only added to and removed from collections ��classes��� but can also
change their types dynamically�

� extensibility of the set of type constructors such that the model can be
tailored to requirements of new applications�

In this paper� the main focus is on the type system� we de�ne subtyping
and the impact of object evolution on static	type checking� After introducing
the syntax in Section �� we de�ne the semantics of types� the type inference
rules for expressions� and the impact of object evolution operations in Section
�� We formalize the model by using a denotational semantics approach ����� in
which the semantics of language elements �i�e�� types� expressions� and updates�
are de�ned by �denotation functions� that return elements of the �semantic
domain�� In Section � we further analyze the commonalities and dierences
between object database and pure functional languages by discussing extensions
of both that narrow the gap between them� On the one hand� we sketch how to
extend BCOOL to become fully orthogonal and include genericity� on the other
hand� we discuss the integration of objects with their respective operations into
Machiavelli as one well	known functional �database� language�

� BCOOL Model� Concepts and Syntax

Initially� BCOOL was developed as a formal model for the de�nition of COOL�
which has a number of concepts� such as predicative speci�cation of collections
�called classes� that can be derived from more basic constructs provided in
BCOOL� Hereinafter we will focus on the essentials of the formal language
BCOOL and sometimes use the more syntactically sugared COOL syntax for
illustration only�

BCOOL consists of only the few following concepts� which can also be found
in �almost� all object	oriented models�

Types can be basic or constructed� Basic types describe �pairwise� disjoint
sets of instances� Besides concrete �or printable ����� types describing data�
or values� �such as integers� boolean� strings�� there is a basic type denoting
objects� on which object types can be de�ned by subtyping �see below�� Objects
are fully encapsulated� They can be used and manipulated only by means of

�

their interface� a set of functions� Constructed types can be speci�ed using the
build	in type constructors set �f g� and function �����

Types serve several purposes� �i� they represent a �repository� of possible
values �this will be called the domain of the type below� an intensional notion
of type�� �ii� they are used by the compiler for type checking �i�e�� assuring
that only ��type� valid� expressions are ever executed� For example� we would
not allow to compute the square root of a string� Finally� �iii� types are often
also used as containers �collections� for those values of that type� which are
currently �in use� in the database �an extensional notion�� Notice that we do
not use this aspect of types in general� but only for object types �where this
will be called the �active domain� of the type��

Subtyping is used to describe �sub�	sets of objects with common interfaces�
such that type	checking becomes more meaningful� The COOL de�nition of a
subtype consists of three parts� a set of supertypes� a set of local functions�
and �possibly� a type name� Any instance of the subtype is also an instance
of its supertypes �substitutability�� and all functions de�ned on the supertypes
are applicable to the instances of the subtype �inheritance of the interface�� in
addition to the locally de�ned functions�

As a running example let us consider persons and employees de�ned by the
COOL de�nitions�

type Pers isa Object
 name � string�
age � integer�
children � set of Pers�

type Empl isa Pers
 sal � integer�
manager �Mngr�

type Mngr isa Empl
 budget � integer�

The functions name� age� and the set	valued function children are applicable to
instances of Pers� which is a subtype of the prede�ned type Object� which has
no user	de�ned functions� Because Empl is a subtype of Pers� the functions of
Pers are inherited by Empl� such that name� age� children� sal� and manager
can be applied to Empl�s instances� Similarly� the function budget can be applied
to managers �the instances of Mngr� in addition to the Empl�s functions� �

On the �formal� BCOOL level� however� we omit the names of object types�
Instead� object types are identi�ed by the set of applicable functions� Syntac	
tically� Pers is referred to as �name� age� children� and Empl as �name� age�
children� sal�� Thus� the syntax of BCOOL type expressions can be described
by the following list�

�
 � � 	 � � types � �
j �Int � � INTEGER � �
j �Bool � � BOOLEAN � �

���
j �Object � � Objects � �
j �f�� ���� fn � � object types � �
j f � g � � set types � �
j �Object � � � � function types � �

�In Sec� � we discuss how to integrate additional type constructors�
�Range restrictions of functions within subtypes are regarded as di�erent functions by

unique function names that are pre�xed by the COOL type name similar to C���

�

Functions �denoted by the meta	variable f� are described by a unique name
and a signature� We can distinguish retrieval �stored or computed� and update
functions� Generic update operations can only be used for stored retrieval
functions� which are uniform abstractions of �attributes� and �relationships�
of classical data models� Direct updates of computed functions require type	
speci�c methods� whereas indirect updates �i�e�� updates to values used in the
derivation� are automatically propagated�

Because of the desired
exibility �e�g�� in case of projections�� the domain
of a function is not the COOL type on which the function is de�ned� but the
�usually unnamed� object type on whose instances only the function itself is
applicable� For example� the function name might typically be introduced in
a type Pers � �name� age� children�� Formally� however� we use ��name� �
string� as the signature of name� The reason for this is the semantics of
object types� which allows to apply the name function not only to persons� but
also� more generally� to objects that are contained in the active domain of the
type �name�� Thus� it becomes possible that� e�g�� the children function can
be hidden by projecting only the name and age of persons� In other words�
the substitutability of typed expressions is adapted to unnamed typed� such
that not only specializations of types can be created� but also generalizations�
Consequently� object types are arranged into a lattice �see Sec� �����

Variables �denoted by x� are used as temporary names ��handles�� for in	
stances of any type �e�g�� data values� objects� sets� or functions�� They have
to be declared with their type in the database language� for compile	time type
checking�

Query Language� The query language on objects is an extension of a �nested�
relational algebra ���� with object�preserving semantics� It contains a selection
�select �� a projection �project �� and the set operations �� � � �� Instead of
join we use a macro mechanism known from functional languages �let � that
allows to de�ne additional �virtual� functions mapping objects onto their join
partners� An informal presentation and rationale for this query language was
given in ����� Additionally� we provide the following constructors for build	
ing expressions and make use of the standard operations for integers �e�g�� �
and ��� boolean �e�g�� �� �� and ��� and comparisons �e�g�� �� that are not
mentioned here any further�

e
 � e 	 � � expressions � �
j c � � constants � �
j x � � variables � �
j new �	 � � creating objects � �
j adom ��f�� ���� fn	 � � active domains � �
j �x � �� e � � function expression � �
j f �e	 � � function applications � �
j f e g � � sets � �
j pick �e	 � � pick one element of a set � �
j e� � e� � � test for set�membership � �
j e � e � � unions � �
j e � e � � intersections � �
j select ��x�e �e	 � � selections � �
j project �f�� ���� fn �e	 � � projections � �
j let f
 e in e end � � joins � �

�

Update Operations� In order to change the state of a database� assignments
��� and set � are provided to set the values of variables and functions� Addi	
tional operations allow for object evolution� objects can be created� deleted�
and can change their types dynamically�

u
 � u 	 � � updates � �
j x �
 e � � setting variables � �
j set �f �
 e�e	 � � setting function values � �
j new �	 � � creating objects � �
j gain �f�� ���� fn�e	 � � adding functions to objects � �
j lose �f�� ���� fn�e	 � � removing functions from objects � �
j destroy �e	 � � deleting objects � �

The motivation for dynamic type changes is the longevity of objects� In
contrast to programs� where data are valid only until the end of program�
information stored in databases is usually valid over a couple of years� such
that the �role� of objects might change� For example� if an object created with
the type Pers is hired by a company� the type of this object must be changed
to the type Empl in order to make functions sal and manager applicable� while
still talking about the identical object� In case that this employee is �red�
the functions that are applicable to employees� but not to persons� must not
be applied anymore� i�e�� the instance relationship between the object and the
type Empl has to be removed�

However� there is a problem in combining dynamic type changes with �sta	
tic� type	checking� Considering the above example� let us assume that the
variable p of type Pers denotes a person that is to be hired� Of course� us	
ing p in set �sal �� � � ���p� should cause a type error� because the sal function
is not de�ned on the type Pers� Instead� we would use the COOL operation
gain �Empl��p� that makes the person instance of the type Empl such that the
salary can be assigned� Notice� however� that we have to cope with unde�ned
function values� if there is no mechanism for default values associated with type
changes� In this paper� we only point out where and how to integrate such a
mechanism� but leave the actual integration as future work�

As usual in object models� more complex updates can be performed by
methods as combinations of the above operations� Again� we do not propose
a full method language here� but only employ the two most basic constructs�
besides sequencing� the iterator apply to all provides set	oriented application
of update sequences with deterministic semantics �����

u
 u � u � � composition of updates � �
j apply to all �u�e	 � � set�oriented application of updates � �

� Semantics of BCOOL

In the denotational approach� the semantics of a language is de�ned by �higher
order� functions ����� A �semantic domain� represents interpreted constructs
used as the �denotation� �semantics� of syntactic constructs� For each syntactic
construct� such as constants� expressions and statements� a function is given
that maps syntax to semantics� In particular� for updates the target of this
denotation function is again a function �from an old to a new state��

�

� The state function � represents the current database state� It captures
the following information� �i� the current instances for each object type
�the active domains�� �ii� the values of all possible function applications
�F denotes the set of functions de�ned in the schema below�� and �iii�
the values of all variables �X denotes the set of variables de�ned in the
schema� which is a superset of F � because functions are regarded as vari	
ables over function types��

� The typing function A is used to represent the type declarations of vari	
ables and functions� for example� A�x� returns the type expression � for
a variable declaration var x � � �

� The domain function �� �� returns the semantics �the domains� of type
expressions � �see Sec� �����

� The expression function E�� �� returns the value of expressions in the
current state � �see Sec� �����

� The update function U �� �� turns the state functions for update expressions
�see Sec� �����

��� Semantics of Type Expressions� Subtyping

The semantic domain of values is de�ned by the following recursive domain
equations�

V
 BBool � BInt � BString � BObject �F � S
BBool
 f�Bool� true� falseg�
BInt
 f�Int� �� ����� ����g�
BString
 f�String� �a�� �A�� ���g�
BObject contains countably in�nite objects�
F
 BObject �fin V�
S
 Pfin�V	�

Bi are domains of basic values �e�g�� boolean and integer�� F denotes the
domain of �nite mappings from BObject to V � and S all �nite powersets over V �
The type speci�c bottom elements �	i� denote unde�ned values� In order to
improve readability we omit the type information and use 	 instead�

In general� equality must be de�ned for types on which sets are constructed
�e�g�� for testing set	membership�� Because the equality for function types is
undecidable in general� the domains of function types are restricted to objects�
The equality on these restricted functions would be still undecidable� because
the domain BObject is in�nite� However� since all instances of functions that
can ever occur in any database state are restricted to the active domains of the
corresponding object types �which are �nite sets�� all functions can be regarded
as �nite sets of pairs� such that equality is decidable� Hence� we do not need
to separate types with equality from those without equality� which would be
necessary otherwise�

�

����� Basic and Constructed Types

Except for object types� our semantics of types and subtyping is quite usual and
follows ��� �� ���� i�e�� the denotations of basic types are given by the following
equations�

De�nition Semantic Domain�

���i
 Bi� in case that Bi is a summand of V
��f � g
 fx � S j x � ��� g � V
���� � ��
 ff � F j x � ����
	 f�x	 � ���� g � V�

The subtype relationship �
� is based on set inclusion� i�e�� if a type is de�ned
as a subtype of another� then every instance of the subtype is also an instance
of its supertype �which allows substitutability�� ��
 �� �� �� �� �� � �� �� ���
This leads to the following inference rules for constructed types��

De�nition Subtyping�

�SETS
��
 ��

f��g
 f��g
�FUNS

�dom�
 �dom� � �rng
�

 �rng
�

�dom
�

� �rng
�

 �dom
�

� �rng
�

����� Object Types

Let us now focus on the semantics of object types� In Section ��� we argued
to use the basic type BObject as the domain of all functions� such that function
signatures are homogeneous� Then� however� type	checking is less meaningful�
because each function may be applied to any object� The more speci�c function
domains are� the more errors are detected at compile	time� Therefore� we use
subtypes �f�� ���� fn� of BObject� In particular� there is a object type �f�� ���� fn� for
any subset of F that contains the functions de�ned in a database schema� In
order to get concise type inference rules in Section ���� the object types are
arranged to a lattice� Intuitively� applications of the function f on instances of
�f�� ���� fn� pass static type	checking� i f is contained in ff�� ���� fng�

Nonetheless� the semantic domains of all object types are the same� in
order to allow for object evolution� such that objects can gain and lose instance
relationships dynamically�

In contrast to instances of data types like integers� objects can be created
and deleted� That is� it is not possible to refer to arbitrary instances of ob	
ject types� rather only to those that have been created and not yet deleted�
Therefore� the domains of object types �denoted by �� �f�� ���� fn� ��� have to be
distinguished from the active domains �denoted by ���f�� ���� fn��� that contain
the instances of these types in the current state ��

Thus� we use the state function in order to refer to active domains already
in this section� though its de�nition is given in Section ��� by the semantics
of operations that manipulate the active domain� This is done� because the
notion of active domains is not only important for the restriction of function
types �as discussed above�� but also for the de�nition of subtyping on object
types� Notice that only the active domains of the type without functions �� ��
and the types with only one function ��fi�� are explicitly maintained� The other

�The horizontal bar corresponds to logical implication� Notice the antimonotonicity
�contra�variance	 in
FUNS�� which is needed for the set�inclusion semantics of the subtype
relationship�

�

active domains �of types with more functions �fi� fj � � � ��� are derived from the
former according to the type lattice �see below��

There are two requirements for the de�nition of the active domains�

� the active domain has to be a subset of the domain in any state� �

���f�� ���� fn�� �� �f�� ���� fn� ���

� the subtype relationship has to capture the substitutability of objects�
�f�� ���� fn�
 �f �

�
� ���� f �

m� �� ���f�� ���� fn�� � ���f �

�
� ���� f �

m��

The second requirement adapts the usual notion for subtyping to object
types� which implies a subset relationship on the respective domains �see above��
In particular� this adaptation is important� because the domains of object types
have to be the same in order to allow for object evolution�

After this motivation of object types� let us now de�ne the semantic domains
and subtyping for object types�

De�nition Semantic Domains�

�� �f�� ���� fn
 �� �
 BObject� for ff�� ���� fng � F�

The subtype relationship between object types is de�ned on the superset
relationship between their function sets� as follows��

De�nition Subtyping�

�f�� ���� fn
 �f ��� ���� f
�
m �	 ff�� ���� fng � ff ��� ���� f

�
mg�

In order to make type	inference more concise� object types are arranged in
a lattice�

De�nition Object Type Lattice�

The set of object types forms a lattice� where the subtype relationship is the
partial order� The least upper bound �t	� and the greatest lower bound �u	
are de�ned as follows�
�f�� ���� fn t �f ��� ���� f

�
m
 �f ��� � ���� f

��
l �

where ff ��� � ���� f
��
l g
 ff�� ���� fng � ff ��� ���� f

�
mg�

�f�� ���� fn u �f ��� ���� f
�
m
 �f ��� � ���� f

��
l �

where ff ��� � ���� f
��
l g
 ff�� ���� fng � ff ��� ���� f

�
mg�

Finally� let us de�ne the active domains of object types containing more
than one function dependent on the types with exactly one function� �The
active domains of object types with none or one function are de�ned in Section
�����

De�nition Active Domains �f�� � � � � fn �for n ���

���f�� ���� fn	

�

f�ff������fng

���f 	�

Notice that this de�nition guarantees the subset relationship between the
active domains of a subtype and its supertypes �see the second requirement
for active domains above�� because of the superset relationship between their
function sets�

�f�� ���� fn
 �f ��� ���� f
�
m
	 ff�� ���� fng � ff ��� ���� f

�
mg

	 ���f�� ���� fn	 � ���f ��� ���� f
�
m	�

�Because all active domains are �nite sets� the subset relationship is always proper�
�Notice that this de�nition captures inheritance of interfaces in the usual way�

�

��� Semantics of Expressions

In this section� we de�ne the type inference rules and the semantics of ex	
pressions� First� expressions are reduced to syntactically correct ones by type
inference rules� Secondly� the semantics of expressions is de�ned by the de	
notation function E� that returns the value E�� e ���� which is an element of a
component of the semantic domain V � by evaluating the expression e in the
current state ��

In order to improve readability� we often simplify the notation of type infer	
ence rules by omitting the assertions of variable declarations �included in the
typing function A� and subtyping information� which are part of the premisses�
Similarly� we simplify the semantic denotations by leaving out preconditions
and result types that are covered by type inference rules� and omit the current
state � in cases where it is only used as an input parameter of the function E�
Additionally� we use the domains instead of the active domains in the deno	
tations� Notice� however� that the semantics of update operations guarantees
that values are restricted to the active domains��

Constants and Variables�

c �� � E��c
 C� where C is a constant � ��� �

A�x	
 �

x �� �
E��x �
 ��x	 � ��� �

New creates new objects� That is� the application of the operation new yields
an object that does not yet occur in the current state of the database� Formally�
the �invention� of objects is non	deterministic� such that E�� �� is a mapping
rather than a function �as claimed above�� This non	determinism could be
eliminated� for example� by assuming an order on objects �such that new yields
the �smallest� not yet created object�� However� since the object identities
are not visible on the BCOOL level� we do not need to care about dierent
states that are isomorphic up to renaming object identities �see the notion
of O	isomorphisms in ����� Therefore� we take the freedom to allow the non	
deterministic invention of object identities� This is certainly desirable on the
implementation level� furthermore it allows new operations to be executed in
parallel within an apply to all statement �����

new �	 �� �Object E��new �	 �
 o with o � �� � � o �� ��� 	�

Active domains of object types are returned by the operation adom�

�f�� ���� fn
 �Object

adom ��f�� ���� fn	 �� f�f�� ���� fng
E��adom ��f�� ���� fn	 �
 ���f�� ���� fn	�

Lambda abstractions de�ne functions on the active domains of object types�
where �� � �fv�xg denotes the substitution of v for x� i�e�� it is identical to �
except that ���x� � v� This form of abstractions does not cause problems w�r�t�
to the equality test on functions� because the free variable x is restricted to the
active domain of the respective object type� Thus� functions can be regarded as

�In particular� this is also true for values constructed on object types such as sets of
persons�

�

�nite sets of pairs�� The type inference rule means that e �� �� can be inferred
under the assumption that x is a variable of the object type ���

A�x	
 ��� ��
 �Object � e �� ��

�x � ���e �� �� � ��
E���x � ���e �
 fhv�E�� efv�xg i j v � ����	g�

Function applications return the function value if de�ned� Notice that there
is no dierence whether a tuple with the null value �	� as second component
is included in the set of function tuples or not�

f �� �� � ��� e �� ��
f�e	 �� ��

E�� f �e	

�
v if hE�� e � vi � E�� f �

� otherwise�

Sets can be constructed by including an expression in braces�

e �� �

feg �� f�g
E��f e g
 fE�� e g�

Pick is used to deconstruct sets� i�e�� to get rid of the braces in case of singleton
sets� Notice that pick is not deterministic in case of sets with more than
one element� In order to avoid a non	deterministic semantics in case that the
set contains more than one object� we could restrict the applicability �which�
however� can only be checked at run	time� or assume an order on objects �see
above��

e �� f�g

pick �e	 �� �
E��pick �e	

�
v � E��e if E�� e �
 ��

� otherwise�

Set membership can be tested by the predicate ��

e� �� �� e� �� f�g

e� � e� �� bool
E�� e� � e�

�
true if E�� e� � E�� e� �

false otherwise�

Unions of two sets result in a set that is associated to the least upper bound
of the element types�

e� �� f�f�� ���� fng� e� �� f�f
�
�� ���� f

�
mg

e� � e� �� f�f�� ���� fn t �f ��� ���� f
�
mg

E�� e� � e�
 E�� e� � E�� e� �

Intersections of two sets are related to the greatest lower bound of the element
types�

e� �� f�f�� ���� fng� e� �� f�f
�
�� ���� f

�
mg

e�� e� �� f�f�� ���� fn u �f ��� ���� f
�
mg

E�� e� � e�
 E�� e� � E�� e� �

Selections are used to specify subsets of e� according to the predicate �x�e��
Notice that this is a restricted case of lambda abstractions� because the free
variable x� which may occur in e�� ranges over the elements in e��

�

�One might argue that functions are total� because they yield the � value except for a
�nite set of arguments� Notice� however� that there is no means to refer to instances of
�Object that are not contained in the active domain�

�Notice that di�erences between sets can be expressed by a selection predicate that checks
whether an object is not contained in a set�

��

�x � ��e� �� � � bool� e� �� f�g

select��x�e��e�	 �� f�g
E�� select��x�e��e�	
 fv � E��e� jE�� e�fv�xg g�

Projections restrict the interfaces of set elements as in the relational algebra
�see also transformational �lters in ����� In contrast to projections in ��� ��� ���
that generate objects or values� project is de�ned with object preserving
semantics ����� Therefore� it can be used for hiding information� similar to
assignments of instances to variables of a supertype�

e �� f�f ��� ���� f
�
mg� �f ��� ���� f

�
m
 �f�� ���� fn

project �f�� ���� fn �e	 �� f�f�� ���� fng
E��project �f�� ���� fn �e	
 E�� e �

Quali�edExpressions allow for a macro mechanism� such that the expression
e� can be substituted in e� by f � In particular� this macro mechanism can be
used� for example� to express joins by virtual functions�	

e� �� ���A�f	
 �� � e� �� ��
let f
 e� in e� end �� ��

E�� let f
 e� in e� end �
 E��e�fe��fg �

Usually� operations of an algebra are orthogonal to each other� such that
non of them can be de�ned by the others� However� up to now the operation
project can be de�ned by other operations as follows�

project �f�� ���� fn�e	 � select ��x�x � e�adom ��f�� ���� fn		

The reason for this lack of orthogonality is that casting the interface of
objects has been bundled together with set	orientation� The extension of the
relational algebra with object types �that are arranged in a lattice� needs ac	
tive domains� These can be used together with operations like � and � that
are de�ned with respect to the type lattice� Therefore type inference is more
powerful than in relational algebra� in which set operations require the same
schema on the input relations� That is� the problem originates from the exten	
sion of the relational algebra� in which operations are de�ned on sets� because
of the potential for optimization� However� if not only sets but also other type
constructors are integrated into the model� project is decoupled from sets� such
that it only casts the type of a single object �see Sec� �����

Examples� Finally� let us illustrate how joins can be expressed in BCOOL by
the following two examples� In the �rst example� we are looking for employees
that are managed by their parents� In order to improve readability� we use
COOL type names �such as Empl� instead of the respective BCOOL function
sets ��name� age� children� sal�manager��� In the relational algebra this query
would involve the join operation �if the schema ful�lls at least third normal
form�� However� in object algebras composition of functions can be explored�

select ��x�x � children�manager�x		�adom �Empl		�

In the second example we make use of a virtual function for a more complex
join��
 All employees that have the same manager as x are collected in the

	The type inference rule means that e� �� can be inferred under the assumption that f
is a variable of type ���

�
See
��� for a discussion of di�erent alternatives for joins symmetric tuple�object gen�
erating� asymmetric as functions�

��

function colleagues� whose scope is limited by the let operation� If we are
interested in all employees who have at least one colleague� the virtual function
colleagues can be used in the subsequent selection�

let colleagues
 �x � �manager� select ��y� manager�y	
manager�x	 �
x �
 y�adom �Empl		

in select ��x� colleagues�x	 �
 ��adom �Empl		 end �

��� Semantics of Update Operations

Update operations are de�ned by a function U that maps the old state � onto
the new one� U ��upd�op ���� The de�nitions require that certain typing restric	
tions are ful�lled� which are notated as preconditions� Since these preconditions
can be veri�ed by the static type	checker already at compile	time� only update
statements that ful�ll the restrictions are executed� In the COCOON model
the semantics of update operations is de�ned w�r�t� model inherent constraints
�e�g�� sub	�typing� class membership� and class predicates� ����� That is� ap	
plying an update operation to a consistent database state returns a consistent
state� Similarly� the update operations of BCOOL are de�ned w�r�t� typing
and subtyping constraints� For example� if an object is deleted� �dangling
references� are avoided� and removing or adding instance relationships is prop	
agated to subtypes or supertypes� respectively�

Assignment� Variables can be bound to new values by an assignment �����
The new state is the same as the old one for all variables� types� and functions
except for the variable x� The precondition ensures the substitutability of x�s
value �� ranges over variables� functions� and object types��

Precondition� x � X and e �� � and �
 A�x	�

U ��x �
 e ��		

�
E��e � if 	
 x�
��		 otherwise�

Partial Assignments� Function values can be changed by partial assignments
�set� for a single argument�

Precondition� f �� �f � �r and e� �� � � and � �
 �f and e �� � and �
 �r�

U ��set �f �
 e�e�	 ��		

�
f � if 	
 f�
��		 otherwise�

with f ��
	

�
E��e � if

 e��
��f	�
	 otherwise�

The set operation only aects the value of the function f � It is substituted by
a new function value f � that diers from f only for the argument designated
by the expression e�� for which the result is e�

In the following� we de�ne the semantics of update operations that manipulate
the active domains of object types� The existence of objects can be manipulated
by new and destroy � and is captured by the membership in the set ��� ���
which is the active domain of the most general object type� The active domains
of object types including a single function are manipulated by the operations
gain and lose���

��The active domains of types with more than one function have been de�ned in Sec� ����

��

New� The creation of an object by new �� instantiates the top element of the
object type lattice �	Object� with a new object� That is� the active domain of

this type is extended by the object that is the return value of the operation���

U ��new �	 ��		

�
��		 � fE��new �	 �g if 	
 �Object

��		 otherwise�

Gain� An existing object can be made instance of additional object types by
the operation gain �f�� ���� fn��e� that makes each function in �f�� ���� fn� ap	
plicable to the object e���

Precondition� e �� � �and � �
 �Object and ff�� ���� fng � F�

U ��gain �f�� ���� fn�e	 ��		

�
��		 � fE�� e �g if 	
 �f � f � ff�� ���� fng
��		 otherwise�

That is� the object becomes instance of the active domains ���f �� for all f
in ff�� ���� fng� which propagates to object types with more than one function
according to the de�nition in Sec� ���� In other words� if the type �f �

�� ���� f
�

m� has
been the least upper bound of all types the object has been instance of� then
the object becomes instance of �f�� ���� fn� u �f �

�
� ���� f �

m� and all its supertypes�

Example� Let us consider a person object denoted by the variable p that is
of type Pers��� The person p can be made instance of the type Empl by the
following gain operation that makes the functions sal and manager applicable
to p�

gain �sal�manager�p	

Up to now the function values sal�p� and manager�p� are unde�ned �	�� How	
ever� a mechanism for providing default values could be integrated here very
easily by a corresponding extension of syntax� Later on the employee might
become a manager in a similar way�

Lose� In contrast to the gain operation� instance relationships can be deleted
by lose� The eect of lose �f�� ���� fn��e� is that all functions in ff�� ���� fng are
no longer applicable to the object denoted by e�

Precondition� e �� � � and � �
 �Object and �f�� ���� fn
 �Object�

U �� lose �f�� ���� fn�e	 ��		

��
�

��		 n fE�� e �g if 	
 �f � f � ff�� ���� fng

��		 if 	
 �f � f �� ff�� ���� fng

nv���		�A�			 otherwise�

Thus� the state after an operation lose �f�� ���� fn��e� can be derived in two
steps� First� the object denoted by the expression e is excluded from the active

��Notice that E

new�	��� denotes the return value of the operation �which is the newly
created object	 whereas U

new�	��� denotes the intermediate state after the evaluation of
E

new�	��� and before the execution of the statement in which new�	 is used�

��In contrast to new� the operation gain is de�ned as a statement that does not re�
turn a value� However� one can de�ne a macro gain� that returns the input object
with the new type by the following de�nition gain�
f�� ���� fn��e	 � pick �select
�x�x �
e��adom �
f�� ���� fn�			�

��Again we use the COOL type names instead of the respective function sets in order to
improve readability�

��

domains of the types �fi� �i � �� ���� n�� see the �rst case�� This automatically
propagates to the other object types�

The second step of the de�nition refers the occurrences of the object within
values of variables� sets� and functions� Due to strong typing we have� for
example� to exclude that the function fi is applied to the object e� which might
be the value of a variable� In general� this constraint is assured by removing
each occurrence of the object denoted by e from variables� sets and functions�
if these are related to a type that contains at least one function in ff�� ���� fng�
Therefore� the values of all variables �and functions� are recursively derived
from the new active domains by the function nv�

The function nv is applied to an old value v and its type � and returns the
new value nv�v� � �� The new value is dierent form the old one only if the old
one would not ful�ll the type constraints� Therefore� the function is de�ned as
follows�

nv�v� �	

����������
���������

� if �
 �Object

� v �� U �� lose �f�� ���� fn�e	 ���	�
v��v

nv�v�� � �	 if �
 f� �g

fhx� nv�v�� ��	ij hx�v
�i � v � if �
 �� � ��

x � U �� lose �f�� ���� fn�e	 ����	g

v otherwise�

The idea of the derivation is to use the structure of types in order to reduce
the problem of specifying the new value of sets and functions to easier cases�
In the �rst case� the old value� which is not element of the type � anymore�
is replaced by the null value �	�� This case together with the last case� in
which all remains the same� are the anchors of the derivation� If the old value
is a set �the second case�� the derivation is evaluated for each element of this
set recursively� The return value of the set is constructed by the union over
all elements��� Similarly� the value of each function is also checked recursively
�the third case��

Notice that the lose operation and the deletion of objects have a strong
impact on constructed values� Without objects� instances of constructed types
such as sets and functions are regarded as values that can not be created or
deleted ���� However� if object types are used to construct sets of functions� the
constructed domains become dynamic as well� since the existence of constructed
values depends on the active domains of object types�

Example� Assume the variable declarations

p �� Pers�
e �� Empl�
mgr �� Mngr�
jones pers �� fPersg�
jones empls �� fEmplg�

and a state in which an object named �Jones�� which is manager of an employee
denoted by e� After the following assignments� the variables p and mgr denote
the same object Jones� which is also contained in both set variables jones pers
and jones empls�

��The union ignores null values as elements� i�e�� S � f�g � S�

��

jones pers �
 select �name
 �Jones	 �adom �Pers		�
jones empls �
 select �name
 �Jones	 �adom �Empl		�
p �
 manager�e	�
mgr �
 manager�e	�

If Jones retires or is �red� the functions associated to the type Empl and its
subtypes must not applied to him�her anymore� This can be achieved by the
operation

lose �sal�manager� budget�p	

that removes Jones from the respective active domains� The propagation to
variables� sets� and functions leads to the state in which Jones is still con	
tained in jones pers� but is removed from jones empls �because of the type
declaration that would allow to apply e�g�� the sal function to elements of
jones empls�� Similarly� the variable p still denotes Jones� whereas mgr is
unde�ned as well as the function application manager�e��

Destroy� In contrast to lose � the destroy operation has an eect on the
existence of objects� The operation destroy �e� removes e from the active
domains of all object types� which propagates to variables� sets� and functions�

Precondition� e �� � � and � �
 �Object�

U ��destroy �e	 ��		

�
��		 n fE�� e �g if 	
 �f � f � F or 	
 �Object

nv���		�A�			 otherwise�

Notice that the semantics of these operations is de�ned with respect to the
requirements for active domains in Sec� ���� That is� new and gain are de�ned
such that the subset relationship between active domains and their respective
domain is valid� The de�nitions of lose and destroy guarantee that no �dan	
gling references� occur� That is� the procedure nv �removes invalid objects
from values�� Therefore the state only contains objects that are elements in
active domains� Finally� the subset relationship between subtypes and their su	
pertypes is guaranteed by the de�nition of active domains for object types with
more than one function �in Sec� ���� together with the de�nitions in gain and
destroy �

� Relationship to functional models

In this section we discuss the similarities between object algebras �such as
BCOOL� and functional models �such as ML ����� and Machiavelli ��� ����� On
the one hand they have enough in common that a combination of both is possi	
ble� on the other hand the challenge is whether the advantages of either model
can be preserved in the integration� We show �i� how to add full orthogonality
and genericity to BCOOL and �ii� discuss how to extend Machiavelli by the
concept of objects� which is more than just a reference�

��� Extending Object Query Languages by
Orthogonality and Genericity

Up to now most operations of object query algebras �including BCOOL� center
around sets� This has been done in order to take advantage of the optimization

��

capabilities that arise from descriptive set	oriented queries and have already
been used in relational systems� However� since many applications need other
type constructors than sets �such as lists� tuples� and arrays�� these constructors
should also be integrated into object data models� Moreover� instead of a �xed
collection of constructors� the variety of constructors should be extensible�

Therefore� let us discuss as a �rst extension� how BCOOL can be extended
such that type constructors or generic types can be de�ned� That is� in this
paper we omit other extensions of BCOOL� e�g�� extensions of the algebra
towards a programming language by providing operations such as loop and
conditional instruction�

In the previous sections� we have concentrated on sets� Therefore� some of
the proposed query operations are not orthogonal w�r�t� to type constructors
other than sets� That is� operations that work on sets of objects have to be
separated into elementary operations associated to type constructors from op	
erations on objects� for example� This is similar to the separation of update
operations into the apply to all iterator ���� and a few elementary update op	
erations de�ned in the previous section� The iterator is used to apply sequences
of elementary update operations to all elements of a set deterministically�

Consequently� the BCOOL set	oriented query operations project should be
rede�ned to work on single objects �denoted by �� such that they can be used
not only within sets�

e �� �f ��� ���� f
�
m

project� �f�� ���� fn �e	 �� �f�� ���� fn
E��project� �f�� ���� fn �e	
 E�� e

Then� if a set	iterator map is provided �akin to hom in Machiavelli ����
replace ��� or pump in FAD ����� the previous set	oriented operations can� for
example� be derived as ���

project �f�� ���� fn�S	 � map�project� �f�� ���� fn�e	�e � S	�

Now we can easily extend BCOOL to work on lists of objects� After de�ning
the constructors and deconstructors of lists� as well as an iterator on lists �for
example� lmap�� a projection on lists can be de�ned by the combination of
project� and lmap� Similarly we can add subtyping rules for lists �akin to
�SETS� and �FUNS� in Sec� ���� if necessary�

In general� the inclusion of a new type constructor requires the speci�	
cation of subtyping rules and operations on the types� instances �including
constructors and deconstructors�� Notice that there are no update operations
on instances of constructed types� because�as values�they are not created�
updated� or deleted explicitly� but are rather constructed from components�
However� if the type variable of constructors can be instantiated by object
types� a mapping is required how constructed values �including� an object are
mapped onto another value� if this object is deleted �similar to the mapping
for sets and functions in the de�nition of the lose operation in Sec� �����

Notice that the gain of orthogonality does not necessarily decrease perfor	
mance� if we use overriding in the implementations� For example� e�cient
implementations of the relational algebra or any object algebra could be used

��Similarly� select can be de�ned by an iterator such as hom� if an if�then�else construct
is provided in the model�

��

for the all instances of sets of tuples �sets of objects�� respectively� Thus� the
system can still make use of the optimization techniques provided for standard
database models�

Another lack of orthogonality is the restriction that functions can only be de	
�ned on object types� In an orthogonal type system� one would expect that any
type can serve as function domain� This extension� however� causes problems�
since equality of functions is undecidable in general� Then� constructing sets
over function types has to be prohibited� because the test for set	membership
requires the equality test on the elements� A possible solution is the separation
of types with an without equality known from functional languages �e�g�� ML�
Machiavelli�� which could easily be employed in BCOOL�

��� Integrating objects in functional data models

One important objective in functional languages is to be purely descriptive
and avoid imperative statements� Therefore� no explicit update operations are
provided in purely functional languages �e�g�� Miranda ������ Consequently�
sharing is also no important issue� because it becomes relevant only through
updates� Nevertheless� there are also functional languages in which references
are provided in order to express sharing with a rudimentary update capability
�e�g�� ML ���� or its derivative Machiavelli �����

Before discussing the lacks of modeling objects by references� let us brie
y
illustrate the concepts that are essential for this modeling� In Machiavelli� refer	
ences are used as pointers to typed data items with the following three generic
operations� creating new references �new�� de	referencing �� ��� and assign	
ments ������� In contrast to Cardelli and Wegner�s type system� in which
values might be instances of multiple types ���� values in Machiavelli are in	
stances of one unique type� However� kinds are provided to describe sets of
types with common properties� such that type	checking in fact refers to kinds�
That is� all instances of the subtypes of Pers are regarded as instances of a set
of types that is described by the kind that allows the application of the Pers
functions� Therefore� the semantics of subtyping is captured by kinds�

However� because references have not been considered when the type system
has been extended to kinds� the following problems arise� if references are used
to model objects�

� An object might be instance of dierent types �that are usually related by
the subtype relationship�� Therefore� references to the same object with
dierent types must be provided� This can be done either by using the
most speci�c type in the declaration of the referenced type or by using
dierent references for dierent records that describe the properties of the
same object� In the �rst approach� the bottom type of the type lattice is
required in order to allow for object evolution� The second approach is
similar to �object specialization� ����� in which the same real world entity
is represented by several objects� There� the problem is� that the system
has to keep track� which references belong to the same object� If the
real world object is deleted� this has to be propagated to all references�
the substitutability might require that a reference must be mapped onto
another� and equality of references to objects needs more than comparing

��

two object identities� That is� the advantages of objects according to
sharing and substitutability are lost�

� Considering the longevity and dynamics of persistent objects� object evo	
lution becomes necessary� Machiavelli has no explicit means to delete
objects� nor operations to add or remove objects to or from the active
domain of types� Notice� however� that the lack of operations for object
evolution is not particular to functional models� similar de�ciencies are
found in most object	oriented programming languages�

Therefore� let us discuss how objects could be integrated into Machiavelli
akin to BCOOL objects� The general idea is to consider objects as references
to kinded records� The extension of references to kinds of records simpli�es
substitutability and subtyping� The more powerful update facility results from
adjusting Machiavelli�s type constructor ref�

In more detail� the following two kinding rules are added to those in ����
such that the kind assignment K that maps types to kinds can be adapted to
object types and their respective subtyping�

K � t �� ref ���� l� � ��� ���� ln � �n 	
if t � domain�K	�K�t	
 ref ���� l� � ��� ���� ln � �n� ��� 	

K � ref ���l� � ��� ���� ln � �n� ���	 �� ref
���� l� � ��� ���� ln � �n 	

Machiavelli�s type constructor ref can be changed to ref � as follows� the
generic operation new is adopted from BCOOL� such that it returns a newly
created instance of ref ���� ���� The operation for dereferencing is either adopted
from Machiavelli� or dereferencing is done implicitly� if the dot operation is ap	
plied �which corresponds to BCOOL�s function application�� Similarly� assign	
ments can be speci�c to components of objects �such as Machiavelli�s modify�
or common to all designators including variables and functions�

However� a fundamental consequence of using objects or references is that
domains become dynamic� Without objects there is no need to separate the
active domain from the domain� and no instances of any type could be created
or deleted� Further� the domains of types that are constructed using objects
become dynamic as well� However� it is not possible to invent an instance of
a constructed type� That is� the domains of constructed types are static with
respect to the active domains of their component types� Notice� however� that
deletions cause problems� for example� a transformation is needed that maps
a set containing object o to a set without o� if o is deleted� Therefore� we have
to keep track of the active domains� similar to BCOOL� Then we can provide
additional operations for ref � that allow for the evolution of objects�

� The semantics of gain �l � � ��e� is to remove e from its current type
ref ���l� � ��� ���� ln � �n�� and add it to the type ref ���l � �� l� � ��� ���� ln �
�n���

� The semantics of lose �l��e� is de�ned conversely� The object e is removed
from its current type ref ���l � �� l� � ��� ���� ln � �n�� and added to the
�supertype� ref ���l� � ��� ���� ln � �n�� that does not contain the component
l�

��

� Summary

The intended contribution of this paper is twofold� First� we proposed generic
update operations for an object	oriented model that cope with object sharing
and typing constraints of variables and functions� and allow to dynamically
change the types of objects� Secondly� we discussed how functional models and
object models could be combined such that object models gain
exibility by
more orthogonality and functional models are extended by objects and their
corresponding update operations�

Acknowledgements� We thank the referees� especially Limsoon Wong and
Leonid Libkin� for their remarks on an earlier version of this paper�

References

��� S� Abiteboul and C� Beeri� On the power of languages for the manipulation
of complex objects� Technical Report ���� INRIA� Paris� May �����

��� S� Abiteboul and P�C� Kanellakis� Object identity as a query language
primitive� In Proc� ACM SIGMOD Conf� on Management of Data� pages
���!���� Portland� June ����� ACM� New York�

��� H� Balsters and C� C� de Vreeze� A semantic of object	oriented sets� In
Proc� of �rd Intl� Workshop on Database Programming Languages� pages
���!���� Nafplion� Greece� August �����

��� H� Balsters and M� M� Fokkinga� Subtyping can have simple semantics�
Theoretical Computer Science� �����!��� �����

��� F� Bancilhon� T� Briggs� S� Khosha�an� and P� Valduriez� FAD� a pow	
erful and simple database language� In Proc� Int� Conf� on Very Large
Databases� pages ��!���� Brighton� September �����

��� C� Beeri� Formal models for object	oriented databases� In W� Kim� J�	
M� Nicolas� and S� Nishio� editors� Proc� �st Int	l Conf� on Deductive and
Object�Oriented Databases� pages ���!���� Kyoto� December ����� North	
Holland� Revised version appeared in �Data " Knowledge Engineering��
Vol� �� North	Holland�

��� P� Buneman and A� Ohori� Polymorphism and type inference in database
programming� ACM Transactions on Database Systems� ����� to appear�

��� L� Cardelli and P� Wegner� On understanding types� data abstraction� and
polymorphism� ACM Computing Surveys� ���������!���� December �����

��� K�C� Davis and L�M�L� Delcambre� A denotational approach to object	
oriented query language de�nition� In Proc� Int	l� Workshop on Speci�ca�
tions of Database Systems� Glasgow� Scotland� June ����� Workshops in
Computing� Springer�

��

���� D�H� Fishman� J� Annevelink� D� Beech� E� Chow� T� Connors� J�W� Davis�
W� Hasan� C�G� Hoch� W� Kent� S� Leichner� P� Lyngbaek� B� Mahbod�
M�A� Neimat� T� Risch� M�C� Shan� and W�K� Wilkinson� Overview of
the iris dbms� In W� Kim and F�H� Lochovsky� editors� Object�Oriented
Concepts� Databases� and Applications� chapter ��� pages ���!���� ACM
Press� Addison	Wesley� New York� �����

���� R� Hull and R� King� Semantic database modeling� Survey� applications�
and research issues� ACM Computing Surveys� ���������!���� September
�����

���� C� Laasch and M�H� Scholl� Generic update operations keeping object	
oriented databases consistent� In Proc� of �� GI Workshop Information
Systems and Arti�cial Intelligence� pages ��!��� Ulm� Germany� February
����� IFB ���� Springer Verlag� Heidelberg�

���� C� Laasch and M�H� Scholl� Deterministic semantics of set	oriented update
sequences� In Proc� of the IEEE Conf� on Data Engineering� pages �!���
Vienna� Austria� April �����

���� M�V� Mannino� I�J� Choi� and D�S� Batory� The object	oriented functional
data language� IEEE Transactions on Software Engineering� �����������!
����� November �����

���� R� Milner� M� Tofte� and R� Harper� The De�nition of Standard ML� The
MIT Press� Cambridge� Mass� �����

���� A� Ohori� P� Buneman� and B� Breazu	Tannen� Database programming in
Machiavelli a polymorphic language with static type inference� In Proc�
ACM SIGMOD Conf� on Management of Data� pages ��!��� Portland�
OR� May	June �����

���� J� Richardson and P� Schwarz� Aspects� Extending objects to support mul	
tiple� independent roles� In Proc� ACM SIGMOD Conf� on Management
of Data� pages ���!���� Denver� CO� May �����

���� H�	J� Schek and M� H� Scholl� The relational model with relation	valued
attributes� Information Systems� ���������!���� jun �����

���� M� H� Scholl� C� Laasch� and M� Tresch� Updatable views in object	oriented
databases� In C� Delobel� M� Kifer� and Y� Masunaga� editors� Proc� Int�
Conf� on Deductive and Object�Oriented Databases
DOOD�� pages ���!
���� Munich� Germany� December ����� LNCS ���� Springer Verlag� Hei	
delberg�

���� M�H� Scholl� C� Laasch� C� Rich� H�	J� Schek� and M� Tresch� The CO	
COON object model� Technical Report ���� ETH Z#urich� Dept� of Com	
puter Science� �����

���� M�H� Scholl and H�	J� Schek� A relational object model� In S� Abiteboul
and P�C� Kanellakis� editors� ICDT 	� � Proc� Int	l� Conf� on Database
Theory� pages ��!���� Paris� December ����� LNCS ���� Springer Verlag�
Heidelberg�

��

���� E� Sciore� Object specialization� ACM Trans� on Information Systems�
�����!���� April �����

���� G�M� Shaw and S�B� Zdonik� A query algebra for object	oriented data	
bases� In Proc� of the IEEE Conf� on Data Engineering� pages ���!����
Los Angelos� CA� February �����

���� J� E� Stoy� The Scott�Strachey Approach to Programming Language The�
ory� The MIT Press� Cambridge �Mass��� �����

���� D�D� Straube and M�T� #Ozsu� Queries and query processing in object	
oriented databases� ACM Transactions on O�ce Information Systems�
��������!���� October �����

���� D�A� Turner� Miranda� A non	strict functional language with polymorphic
types� In Proc� IFIP Int	l Conf� on Functional Programming Languages
and Computer Architecture� Nancy� France� September ����� LNCS ����
Springer�

���� K� Wilkinson� P� Lyngbaek� and W� Hasan� The Iris architecture and im	
plementation� IEEE Trans� on Knowledge and Data Engineering� �������!
��� March ����� Special Issue on Prototype Systems�

��

	Abstract
	Introduction
	2 BCOOL Model: Concepts and Syntax
	3 Semantics of BCOOL
	3.1 Semantics of Type Expressions Subtyping
	3.2 Semantics of Expressions
	3.3 Semantics of Update Operations

	4 Relationship to functional models
	4.1 Extending Object Query Languages by Orthogonality and Genericity
	4.2 Integrating objects in functional data models

	5 Summary
	References

