
Visualizing Large-Scale Telecommunication
Networks and Services

James Abello
Emden R. Gansner

Daniel Keim
Eleftherios Koutsofios

Stephen C. North
Russ Truscott

Network Services Research Lab
fabello,erg,keim,ek,north,truscottg@research.att.com

http://infolab.research.att.com

September 15, 1999

1 Introduction

Global telecommunication networks and services are
among the enterprises having the highest volumes
of real-time data. A voice network may complete
more than 250 million calls per day. Each is de-
scribed by one or more events, yielding a total of tens
of gigabytes of data daily. Wireless, Asynchronous
Transfer Mode (ATM), frame relay, Internet Protocol
(IP) networks and higher-level services on them also
are described by massive data sets, and can present
additional problems in reconstructing an end-to-end
view of user activity. Understanding this data at
full scale is crucial for managing networks and im-
proving their performance and reliability from a cus-
tomer’s viewpoint. Visualization techniques have be-
come increasingly important to achieving this goal.

In the AT&T Infolab, we have developed a new visu-
alization platform for the interactive data exploration
of large networks. The platform incorporates inter-

active 3D maps and diagrams, statistical displays,
network topology diagrams, and pixel-oriented dis-
plays, while supporting a variety of display technol-
ogy, including a wall-sized screen.

Its applications include monitoring and analyzing ac-
tivities at the network element, network-wide, cus-
tomer and service levels. These activities may
be network generated (e.g., exploration of network
events and alarms or customer generated (e.g., usage
anomalies such as fraud). End uses of the analysis
would likely include improvement of service to cus-
tomers, market analysis and gaining an understand-
ing of previously hidden relationships between and
within data segments.

In this paper, after an initial description of the types
of applications the platform is aimed at, we con-
centrate on three novel aspects of the system. We
describe our use of large displays as one approach
to handling large data sets. We then describe the

1

http://www.ub.uni-konstanz.de/kops/volltexte/2008/7032/
http://nbn-resolving.de/urn:nbn:de:bsz:352-opus-70320


SWIFT-3D network viewer, which provides the main
software base for the platform. Finally, we consider
a new visual metaphor for viewing large networks.

2 Telecommunication Applications

The goal of this work is to support interactive vi-
sual exploration of databases that describe full-scale
commercial telecommunication networks, and to si-
multaneously raise the level of abstraction in visu-
alization, for example showing layered services or
network performance from an individual customer’s
viewpoint. Derived from this goal is the ability to
move from data to business decision within minutes.

Many data analysis tasks that are tractable on small
or medium-sized data sets can be difficult at greater
scale. When practitioners refer to terabyte databases,
they sometimes mean databases of image, sound or
video data. In contrast, our application involves
working with many small records describing trans-
actions and network status events. The data process-
ing involved is different in terms of the number of
records and data items to be interpreted. In voice
networks, the detail record for each call conforms to
an industry standard format (Automatic Message Ac-
counting, or AMA) that has about 50 attributes such
as originating and terminating phone numbers, date,
time and duration of the call. In our application this
information is stored for each of the hundreds of mil-
lions of calls made daily, yielding about 15 GByte
of data uncompressed. In addition, data is collected
from the other networks previously mentioned. Un-
derstanding the relationships between them is in-
creasingly important, e.g. to manage integrated com-
munication services for global enterprises, but the
data management problems that result are even more
challenging than for a single service.

More than just scale is involved: our goal is also to
raise the level of abstraction in network visualiza-
tion, and to improve the real-time response of our
analyses. This can help network managers and busi-
ness decision makers to recognize and respond to
changing conditions quickly; within minutes when
possible. A scalable research prototype for visually
exploring full-scale network traffic must therefore

provide good interactive response, avoid instance-
specific processing, and be flexible enough to sup-
port experiments in both back-end queries and the
user interface. In our initial experiments, we found
that commercial database systems either couldn’t
handle such large volumes or consumed far too
many resources. Another problem with commercial
databases is that the administrative effort was too
high to support experimental research. Databases,
however, have many useful features, such as data
independence, and a standard query language. The
tools we have built have some of these features. A
main difference in our approach is the emphasis on
data streaming, in comparison to a query/response
methodology employed by formal databases.

3 Large Displays

One approach to the scale problem is to use a phys-
ically large display. Figure 1 shows our display
wall, inspired by projects such as the CAVE[7] and
Powerwall[8].

Figure 1: The Infolab Wall

Our main display wall (60
� 15

0) is driven by 8 LCD
projectors. These are connected through a software-
controlled video switch, usually to display the out-
put of two graphics pipes of an SGI Onyx. The same
Onyx can drive a smaller (70

� 9
0) 4-projector wall

elsewhere in the same building, using its third pipe.
Other compute and disk servers for network data
analysis projects are connected on an 800-megabit

2



High Performance Parallel Interface (HIPPI) net-
work, providing 10 terabytes of on-line storage and
another 20 terabytes of tape under hierarchical stor-
age management.

4 Visualization in SWIFT-3D

The principal application that runs on the display
wall is SWIFT-3D, an interactive, large-scale net-
work viewer [10]. The SWIFT-3D system inte-
grates a collection of relevant visualization tech-
niques ranging from familiar statistical displays, to
pixel-oriented overviews with interactive 3D-maps
and drag+drop query tools. It provides comprehen-
sive support for data exploration, integrating large
scale data visualization with querying, browsing and
statistical evaluation (see [3, 4, 5, 11] for examples
of previous related work). The visualization compo-
nent maps the data to a set of linked 2D and 3D views
[6, 12] created by different visualization techniques:

� Statistical 2D Visualizations (line graphs, his-
tograms, etc.) - used as overview displays and
for interactive data selection

� Pixel-oriented 2D Visualizations - intended as
bird’s-eye overviews and for navigation in 3D
displays

� Dynamic 3D Visualizations - used for an inter-
active detailed viewing of the data from differ-
ent perspectives.

In addition, the system provides tightly integrated
browsing and querying tools to select the data to be
displayed and to drill-down for details if some inter-
esting pattern has been found.

A screenshot of the overall system is given in Fig-
ure 2. The upper left window shows a time line visu-
alization of voice network volume in 10-minute in-
tervals. This plot shows the volume for different ser-
vices (e.g. residential, business, and 1+ dial-around
service, software-defined networks, and aggregate
volume). The window below the time line allows
the user to select data for display by date, time or

type of service. The large window shows a three-
dimensional display of the data using a histogram
spike for each location to display a value (typically,
level of activity) corresponding to the cursor position
in the time line window (11:00). The user can inter-
actively navigate in the 3D display, zoom in at inter-
esting locations, or view the map from arbitrary per-
spectives. An automated path-planning module has
also been designed to determine a natural, context-
preserving path from one viewpoint to another. The
mapping between the data and display objects is set
in an auxiliary file that contains geometric informa-
tion about points, lines, polygons, and triangles, and
coloring. Various color maps may be defined to high-
light interesting properties of data. The mapping file
may contain multiple levels of detail; for example,
a data set representing the United States may be di-
vided according to state, county, and telephone ex-
change, census block and 9-digit postal zip code out-
lines. Also, multiple data value sets can be mapped
to the same geometry. For example, we can map state
population to the state outline level and county pop-
ulation to the county level. As the view of a state en-
larges, the displays can shift from showing a single
value for state population to showing one per county.
The user may also play through an adjustable inter-
val in the time line window to get an animated time-
sequence display (see video). If the user sees an in-
teresting pattern in the visualization window, a drag-
and-drop interface is available to drill-down to get
details, explore context and take actions if necessary.
This provides an intuitive way of converting spatial
information into detailed information such as the top
originating or top dialed numbers.

An additional 2D overview window is provided,
showing call volume for each location by one col-
ored pixel (cf. lower left corner of Figure 2). The
technique behind the pixel-oriented 2D overviews is
an adaptation of the Gridfit approach used in the Vi-
sualPoints system [9]. Gridfit places data points on
a pixelated display, so that points having coordinates
that would normally map to the same display pixel
are represented by other pixels that would otherwise
be unoccupied. Its algorithm is based on hierarchi-
cal partitioning of the data space, using a top-down
reallocation of the screen space according to the re-
quirements of subregions. Gridfit allows an efficient

3



and effective repositioningof the pixels on the screen
such that the (absolute and relative) position of the
data points and their distance is preserved as much
as possible. The color is chosen such that high call
volumes are mapped to dark colors and low call vol-
umes are mapped to bright colors.

Figure 2: SWIFT Overview Screen

Figure 3: SWIFT Time Series

4.1 Implementation Architecture

SWIFT-3D consists of three modules: data collec-
tor, aggregator, and visualization interface. These
communicate using self-describing data-independent
binary formats consisting of a header that defines
record size, type, and data context, followed by the
actual data. This is necessary since SWIFT-3D is
designed to work in real-time: the data processing
modules can work incrementally and the visualiza-

tion tools can safely access the data files while they
are being updated.

To achieve good performance, SWIFT-3D uses vari-
ous techniques that minimize processing delays and
the use of system resources. Such techniques include
processing pipelines, direct IO, memory mapping,
and dynamic linking of on-the-fly generated code.

4.1.1 Data Collection and Storage

SWIFT-3D must collect data from many differ-
ent sources having their own specialized formats.
SWIFT-3D includes tools to convert such data to its
internal self-describing format. When data is already
in a fixed format, all that needed is to associate a
data record schema with the file. In most cases, stan-
dard tools suffice for data conversion, but some types
of data need more intricate pre-processing. For ex-
ample, the voice network generates records in the
previously-mentioned AMA format. This format has
many sub-record types that can be combined to de-
scribe a call. Extracting information from AMA files
is further complicated because, depending on the
type of call, a value can be stored in different sub-
records. For example, the dialed number is kept in
different places in domestic and international calls.
Such idiosyncratic processing is performed by cus-
tom tools to load into SWIFT-3D format.

4.1.2 Data Processing

Initial processing of a data feed usually involves
reading in records and computing basic statistics.
SWIFT-3D relies on a stream pipeline model. Ac-
cessing large-scale data on disk can be expensive,
so instead of storing the output of each processing
step to disk, the stream processors are implemented
as concurrent processes that exchange data. SWIFT-
3D extends the UNIX pipe model of single writer and
single reader to that of single writer and many read-
ers to minimize data copying. For example, we might
need to process a day’s worth of telephony data and
compute: (1) how many calls there were per area
code and exchange (NPA/NXX), (2) how many calls
did not complete and separate these by failure type.
This could be implemented by a single process that

4



reads data from disk and feeds two other processes
to count.

SWIFT-3D provides several tools to be used in such
pipelines. These include tools to filter records (e.g.
remove calls that did not complete), count based on
attributes (e.g. count number of incomplete calls
by NPA/NXX), split a single file into several based
again on some combination of attributes (e.g. sepa-
rate calls into a file per type of service such as toll
free calls, operator calls, collect calls, etc.).

The expressions used for filtering, counting, and
splitting are specified as C-style expressions. For ex-
ample, the expression

if (tos == TOLLFREE && iscomplete) KEEP;
else DROP;

filters out calls that are not toll free (1-800, 1-888, 1-
877) or not complete. These expressions are turned
into C code that is compiled into shared objects on
the fly and are then dynamically linked in and exe-
cuted. This approach combines the speed of com-
piled code with the flexibility of tools such as AWK.
C and AWK seem to be the tools of choice for most
of our statisticians and analysts.

4.1.3 Data Visualization

SWIFT-3D’s visualization tools allow users to ex-
plore data filtered by the stream processors. They
are designed to be interactive in the sense that the
user can view some data set, focus on a specific sub-
set, query the system for the raw data that gener-
ated this subset, re-aggregate and view the new re-
sult. SWIFT-3D enables this by keeping enough in-
formation to link raw data, aggregate data and visual
objects. This link to visual objects is implemented
by generating geometric data sets that contain infor-
mation about the items they represent. For exam-
ple, an NPA/NXX may be represented by a point,
bar, or polygon of its geographic area. In all cases,
the geometry file contains information to link the
NPA/NXX to the point, line, or polygon. Besides
answering user queries, this facility is also used to
alter the geometry based on data values. For exam-
ple, if NPA/NXXs are shown as polygons and busy

NPA/NXXs need to be colored red, the system uses
this mapping to determine red polygons.

For reading records off disks, SWIFT-3D uses
Direct-IO if available. Direct-IO bypasses kernel
buffer copying from disk, and can be twice as fast
as normal IO. (Normal IO can be faster for data that
was recently read and is still in cache, but given the
size of our datasets, this is rarely the case).

The format of the counts files is also self-describing.
Such files implement a type of two dimensional array
of values (integers, floats, etc.). One dimension (the
‘frame’) corresponds to time buckets while the other
(the ‘item’) corresponds to the aggregation type. The
second dimension can be accessed using a dictionary
that maps item ids to item positions. For example,
the second dimension in the scenario above may have
an entry per NPA/NXX observed, and the dictionary
might indicate that data for NPA/NXX 973-360 is in
position #0.

These files are designed to be accessed and changed
incrementally: when new data arrives, these files are
opened and the various counts are increased in place
(using some buffering to minimize accesses to the
files). The actual updating of the files is done us-
ing memory mapping, due to the random access na-
ture of the updating. File locking is used to protect
against accessing such a file in the middle of an up-
date. Also, each update increments a count stored in
the file. This allows the visualization tools to effi-
ciently check if the file has been modified.

4.2 SWIFT-3D Applications

SWIFT-3D has been applied to several different
problems in network visualization. These include the
ability to provide an abstraction that permits visual-
ization of the data across the information strata of
network element, network, services and customers;
the ability to view cross network interactions and
their impact upon a service and/or customer; the ca-
pabilities to discern impact on one or more customers
when there is a network event.

An interesting example is the examination of calls
that cannot be completed due to congestion at the

5



customer premise. Keeping this number low is im-
portant due to the resources consumed. It is impor-
tant both to the customers (who need reliable service
for telemarketing sales and customer support) and
to AT&T from a financial standpoint (because unan-
swered calls consume network resources and may in-
cur cross-carrier settlement charges without creating
revenue). In visually exploring voice network events,
we noticed that on several days within an interval of
several weeks, many unanswered calls originated in
a certain metropolitan area (cf. Figure 4). The events
always occurred at bottom of the hour (:30) for sev-
eral hours in the evening. By interactive querying
we found that most of the calls were directed at one
800 number, and that the number belonged to a radio
station. By tuning in, we discovered that the station
was giving out free tickets for an upcoming concert.
The winner was the tenth caller at the bottom of each
hour.

Another application concerns analysis of an Inter-
net service. There is considerable motivation for
understanding relationships between usage of mul-
tiple services, both from a single service provider,
and between competitors. AT&T wanted to know
how much coverage an Internet access service had.
The coverage is measured by the number of the area
code and exchanges (and ultimately households or
customers) where connecting to the Internet is a lo-
cal call (usually without per-minute charges). We
contracted two companies that claimed to have such
data. We gave them the locations of the modem
pools and asked them to tell us what codes and ex-
changes were covered. We received two very differ-
ent answers. To understand the differences we used
SWIFT-3D: areas claimed to be covered in the an-
swer of company A were colored blue, those claimed
to be covered in the answer of Company B were col-
ored green, where both companies agreed, the map
was colored gray. We noticed widespread differ-
ences in many states, while a few states had good
matches. In order to decide which company’s answer
was more correct, we superimposed our customer us-
age data on the map. In the generated visualizations
(cf. Figure 5), we saw that there was a lot of us-
age in gray and blue areas, but very little usage in
green (and almost none in black areas). Our conclu-
sion was that the answer by company A was more

correct. It further became clear that individual cus-
tomers are very aware of local calling areas, and are
not willing to use an ISP when theaccess would be
too expensive. A side effect of our findings was that
the business decided to not even advertise this ser-
vice in areas not covered by local access.

A third application involves recognizing the charac-
teristics of virtual private networks (VPNs) provi-
sioned by customers on a large packet network, and
their relationships to physical network facilities. Fig-
ure 6 shows the peak volume of Permanent Virtual
Circuit (PVC) traffic, by VPN, for the whole network
in one 5-minute period. The display highlights the
PVCs having the greatest load. The eventual goal
of this study is to understand customer-focused, near
real-time management of packet networks.

Figure 4: Network event analysis

It should be noted that, even with the disparityamong
these application domains, it was not difficult to tai-
lor SWIFT-3D to each. In large measure, this is due
to the similarity of the visual models, and to the high-
level descriptions used to specify much of the analy-
sis and display. Probably the most difficult aspect in
modifying SWIFT-3D for an application is construc-
tion of tools to massage the application’s data into a
format suitable for SWIFT.

6



Figure 5: Geographic coverage analysis

Figure 6: Packet traffic analysis

5 Graph Surfaces

As the size of the data sets increases, the optimiza-
tions within SWIFT-3D and the use of large displays
become inadequate. What is needed is a new way
to visualize aggregated data. One approach is to
use graph surfaces[1], which provide a new visual
metaphor for large networks. They provide a col-
lection of natural operations for browsing at differ-
ent levels of detail, and fit well in the context of
large networks, allowing convenient incremental up-
date and navigation of external memory graphs (cf.
[2]) whose vertex sets are hierarchically labeled, as
is typical with call detail and Internet data.

The main idea is to view a network as a discretiza-
tion of a 2D surface in 3-space. For a fixed ordering
of the network components, a rectangular domain is
triangulated and each point is lifted to a height cor-
responding to aggregated attribute of the underlying
network. This provides a piecewise linear continuous
function forming a polyhedral terrain. The terrain is
used as an approximation to a surface representing
the communication network. An example is shown
in Figure 7.

Figure 7: A graph surface

In order to handle very large communication net-
works, a hierarchy of surfaces is constructed. Each
represents an aggregate view of the network at a
lower level. Operations are provided that allow the
user to navigate the surfaces.

7



5.1 Constructing and navigating a graph
surface

A network, during some interval of time, can be
viewed as a collection of vertices, a collection of
edges connecting the vertices, and weights on the
edges, measuring some attribute of an edge. For ex-
ample, in the case of call detail data, the vertices cor-
respond to phone numbers.

An important aspect of these networks is that the ver-
tices can be viewed as having an underlying hierar-
chical structure. This induces a hierarchical structure
on the edges. At the lowest level, one has the orig-
inal network. Subsequent levels are obtained by co-
alescing disjoint sets of vertices at a previous level
and aggregating their corresponding weighted edges.
Each level in the hierarchy can be represented as a
surface and the hierarchy can be used as a road map
to move from surface to surface. By collapsing sur-
faces into edges and expanding edges into surfaces,
one gets zoom in and zoom out operations, as ex-
hibited in Figure 8. An important point, for large
networks, is that the hierarchy can be constructed ef-
ficiently. (See [1] for details.)

Figure 8: Graph surface navigation

5.2 Implementation

To handle large networks effectively, there are three
cases to consider:

� The hierarchy fits in main memory

� The hierarchy does not fit but the vertex set does

� The vertex set does not fit

In the first case, the edges are read in blocks and each
one is filtered up, through the levels of the hierarchy,
until it lands in its final level. This can be achieved
with one pass over the data. The second and third
case are handled by setting up a multilevel external
memory index to represent the hierarchy. Filtering
the edges requires now several passes over the data.
The I/O performance depends strictly on the I/O ef-
ficiency of the access structure.

The visualization of a data set that is several orders of
magnitude more than the available screen resolution
calls for some form of hierarchical graph decompo-
sition. Graph surfaces by definition provide a geo-
metric view of a very large graph in a manner that
is amenable to hierarchical browsing via the zoom in
and zoom out operations. This makes it feasible to
explore deeper hierarchy elements at a finer level of
detail. Also, a graph surface provides both a uniform
local and global view.

The graphical engine generates polyhedral terrains
that correspond to individual edges in hierarchy. Ini-
tially, a suitable level in the hierarchy is chosen as
the root, depending of the available screen resolu-
tion. The polyhedral terrains are generated with a tri-
angulation algorithm and are displayed using several
visual cues and dynamically generated labels. The
graphical engine is implemented in C++ and uses the
OpenGL standard library for the rendering portion.
Currently, a mouse/keyboard interface is used. The
use of joysticks and gestures to navigate the environ-
ment is currently under consideration.

5.3 Applications

Currently, graph surfaces are being used experimen-
tally for the analysis of several large multi-digraphs

8



arising from the AT&T network. These graphs
are collected incrementally. For example, in the
call-detail multi-graph, vertices correspond to phone
numbers and edges represent a call from one number
to another. The graph grows by daily increments of
about 300 million edges, defined on a vertex set on
the order of 300 million vertices. The aim is to pro-
cess and visualize this type of multi-digraph at a rate
of at least a million “edges” per second.

Internet data is another prime example of a hierar-
chically labeled multi-digraph that fits the graph sur-
faces metaphor quite naturally. Eachi-slice repre-
sents traffic among the aggregate elements that lie at
the i

th level of the hierarchy. The navigation opera-
tions can be enhanced to perform a variety of statis-
tical computations in an incremental manner. These
in turn can be used to animate the traffic behavior
through time.

When the vertices of the multi-digraph have an un-
derlying geographical location, they can be mapped
into a linear order using, for example, Peano-Hilbert
curves, in order to maintain some degree of geo-
graphical proximity. In this way, the constructed sur-
face maintains a certain degree of correlation with
the underlying geography.

6 Conclusions

The Infolab work, with its heterogeneous displays,
its flexible and powerful software base, and its new
visual metaphors, has proved successful in giving its
users a new way of viewing AT&T networks, and
serves as a starting point for much future work.

At the simplest level, the system needs to be pack-
aged so that it can be used on a daily basis by net-
work analysts and administrators. The system should
be configured so that a user can easily modify it for
specialized display and analysis needs. This work is
already underway for applications in NOC-2000 and
the AT&T frame relay network. In addition, the sys-
tem needs to be available on the desktop. To address
this last point, we have a prototype implementation
in Java and Java-3d, where the user interfaces runs
on a PC and more powerful servers handle data pro-
cessing.

Another avenue of work is to enhance the system to
better handle the heterogeneity of AT&T’s networks
and workplace. It should be possible for employees,
at different locations with different display environ-
ments, to visually share network information. At the
same time, the many types of networks could be log-
ically integrated into a single network.

Our display wall has proven itself. However, its cur-
rent set of input devices (mouse and keyboard) seems
inadequate. We would like to explore new sources of
input, such as wands, gesture recognition and palm
computers.

Many of the views in the system are, at present, based
on the underlying geography. This is a significant
limitation for network visualization. Often, many
endpoints are located in a few dense metropolitan
areas, with large ‘deserts’ in between, so maps do
not use the available pixels efficiently. Also, maps
work well for displays of endpoints (vertices) but
not so well for edges (vertex pairs), let alone groups
of more complex structures such as routes, flows,
or subgraphs representing virtual networks. With
IP networks, geographic coordinates are not always
even available. One can move to more abstract topo-
logical representations, but the standard visualiza-
tion techniques rapidly become unusable as the data
grows, even though a megapixel display delays this
somewhat. There is need for additional work in dis-
play metaphors and interaction techniques for large
graphs. Graph surfaces, described above, area one
approach, but additional new ways of “looking” at
networks and network data are called for.

7 Acknowledgements

For collaboration on experiments and support of
technology transfer, the authors thank Ed Berberich,
Chee Ching and John Ennis from NOC-2000, and
Arvind Chakravarti, Ram Chelluri, Quynh Nguyen
and John Medamana from the AT&T Frame Relay
Network lab.

9



References

[1] J. Abello and S. Krishnan. Graph Surfaces. In
Int. Conf. Industrial and Applied Math., July
1999.

[2] J. Abello and J. Vitter, editors.External Mem-
ory Algorithms. AMS-DIMACS, 1999.

[3] C. Ahlberg and E. Wistrand. IVEE: An En-
vironment for Automatic Creation of Dynamic
Queries Applications. InProc. ACM CHI Conf.
on Human Factors in Computing (CHI95),
1995.

[4] C. Ahlberg and E. Wistrand. IVEE: An Infor-
mation Visualization and Exploration Environ-
ment. InProc. IEEE Int. Symp. on Information
Visualization, pages 66–73, 1995.

[5] Richard A. Becker, Stephen G. Eick, and Al-
lan R. Wilks. Visualizing network data.IEEE
Transactions on Visualization and Computer
Graphics, 1(1):16–28, March 1995.

[6] A. Buja, J.A. McDonald, J. Michalak, and
W. Stuetzle. Interactive Data Visualization Us-
ing Focusing and Linking. InProc. IEEE Visu-
alization, pages 156–163, 1991.

[7] C. Cruz-Neira, D. Sandin, and T. DeFanti.
Surround-Screen Projection-Based Virtual Re-
ality: The Design and Implementation of the
CAVE. In Siggraph 1993 Conference Proceed-
ings, pages 35–142, 1993.

[8] Paul Woodward et al. University of Minnesota
PowerWall, 1998. http://www.lcse.umn.edu-
/research/powerwall/powerwall.html.

[9] Daniel A. Keim and Annemarie Herrmann. The
Gridfit Algorithm: An Efficient and Effective
Algorithm for Visualizing Large Amounts of
Spatial Data. InProc. IEEE Visualization,
pages 181–188, 1998.

[10] Eleftherios E. Koutsofios, Stephen C. North,
and Daniel A. Keim. Visual exploration of large
telecommunication data sets.IEEE Computer
Graphics and Applications, 19(3):16–19, May
1999.

[11] S. F. Roth, P. Lucas, and C. C. Gomberg. Vis-
age: Dynamic Information Exploration. In
Proc. ACM CHI Conf. on Human Factors in
Computing (CHI96), April 1996.

[12] M. O. Ward. XmdvTool: Integrating Multi-
ple Methods for Visualizing Multivariate Data.
In Proc. IEEE Visualization, pages 326–336,
1994.

10


	Text5: First publ. in: Proc. AT&T Software Symposium, 1999
	Text6: 
	Text7: Konstanzer Online-Publikations-System (KOPS)URL: http://www.ub.uni-konstanz.de/kops/volltexte/2008/7032/URN: http://nbn-resolving.de/urn:nbn:de:bsz:352-opus-70320


