
GraBaTs’04 Preliminary Version

GXL to GraphML and Vice Versa with XSLT 1

Ulrik Brandes Jürgen Lerner Christian Pich 2

Department of Computer & Information Science
University of Konstanz

78457 Konstanz, Germany

Abstract

We explore the issues involved in converting graph data stored in GXL or GraphML
into each other. It turns out that XSLT provides a simple, portable, and effective
mechanism for format conversion in either direction. As a by-product, some subtle
differences between the formats become apparent.

Key words: Graph data formats, GraphML, GXL, XSLT

1 Introduction

Over the last years, development of generally applicable formats for represent-
ing graphs as files or streams has concentrated on only a few languages, the
most recent of which are based on XML, thus taking advantage of a great deal
of related standards and tools.

While the Graph Exchange Language (GXL) [4] largely originates in the
field of software engineering, modeling techniques, and corresponding tools,
the Graph Markup Language (GraphML) [1] has its background in the graph
drawing community, and focuses on generality and extensibility.

Often, there is a need for converting graphs from one format to another
with as little structural and syntactical mismatch as possible. We found Ex-
tensible Stylesheet Language Transformations (XSLT) [3] ideal for the speci-
fication of such transforms between XML languages, since the style sheets are
portable, easily customizable, and open to graph format extensions. XSLT
transforms an input XML document tree to an output XML document tree
with a recursive pattern-matching mechanism. Such transforms are easy to
add to existing applications and services as graph format translation filters,
as described e.g. in [2].

1 Research partially supported by DFG under grant Br 2158/1-2 and EU under grant
IST-2001-33555 COSIN.
2 Corresponding author: Christian.Pich@uni-konstanz.de

This is a preliminary version. The final version will be published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

http://www.sciencedirect.com/science/journal/15710661
http://nbn-resolving.de/urn:nbn:de:bsz:352-opus-81185
http://kops.ub.uni-konstanz.de/volltexte/2009/8118/

Brandes, Lerner, Pich

GXL

document

GXL

document

GraphML

document

transform GXL into GraphML

transform GraphML into GXL

Fig. 1. Converting an original GXL file to GraphML and back. Note that the finally
resulting GXL is not necessarily equivalent to the original GXL document because
of the intermediate step via GraphML

We are particularly interested in a scenario in which data represented in
GXL format is converted into a GraphML document that is used as input for
a tool, e.g. a layout service, and finally converted back into a GXL document
while preserving, for instance, custom data labels added by the tool, describing
the layout. See Fig. 1.

This article is organized as follows. In Sect. 2, the two formats are com-
pared in terms of expressivity and compatibility. In Sects. 3 and 4, we outline
XSLT transformations from GXL to GraphML and back, respectively. Finally,
Sect. 5 gives a brief discussion of relations and transformations between the
two formats.

2 Comparison of GraphML and GXL

2.1 Basic Graph Models

Typically, graph description formats have their set of supported graph models
centered around a structural core of basic graph classes common to most
applications, describing a combinatorial structure of nodes (objects) connected
by edges (relations).

In both GraphML and GXL, nodes are represented as an unordered list
of <node> elements, each having an obligatory unique identifier, and edges
between nodes as <edge> elements with references to the corresponding source
and target identifiers. This is so straightforward that the syntax is almost the
same in both formats, aside from some differences in attribute names.

Edges can be explicitly declared as directed or undirected, and directed
and undirected edges may be freely mixed. In addition, both languages offer
an attribute at <graph> level to set a default for all contained edges. Espe-
cially for treating multiedges (i.e. more than one edge between the same pair
of nodes), there is the option to give identifiers to the edges to make them
uniquely accessible.

2

Brandes, Lerner, Pich

GXL supports ordering of incidences with fromorder and toorder at-
tributes, i.e. some or all of the edges connect to a node in a particular order,
for which there is no directly corresponding element or attribute in GraphML.
However, GraphML offers <port>s as specialization of incidence relations.

2.2 Advanced Graph Models

Sometimes conventional graphs are not rich enough to express particular mod-
els. Therefore, GraphML and GXL are aware of hyperedges, which can be seen
as a generalization of conventional edges, and relate an arbitrary number of
nodes, e.g. to model clusters or other distinguished sets of nodes. This concept
is realized in GraphML by element <hyperedge> containing <endpoint>s and
in GXL by <rel> and <relend>s. Both languages allow to mark the endpoints
as a source or a sink in the respective hyperedge.

Nested graphs, i.e. graphs with nodes that contain other graphs, can be
expressed in both languages, as well. This is especially useful when a com-
plex graph integrates various abstraction levels. Syntactically, this is done by
<node>s recursively containing another <graph>, where GraphML and GXL
both offer an element <locator> to link to internal or external graphs.

2.3 Additional Data

Usually, applications need to enrich nodes and edges with further additional
information, such as edge weights, layout attributes, or labels for names. In
GXL, graph elements can be attributed with <attr> children containing addi-
tional data; their content can be a scalar type enclosed by <string>, <int>,
<float>, or <bool>, or a built-in composite type, i.e. an (un-)ordered se-
quence of scalar or composite types, such as <seq> sequences or <tup> tuples.
The obligatory name attribute serves to indicate <attr> elements of the same
purpose.

Likewise, GraphML allows <data> labels to be associated with graph ele-
ments, together with unique names. However, it does not require the type to
be contained as a markup element in each corresponding <data>; rather, the
key attribute refers to a valid identifier of a <key> element that is in scope for
the current <graph>. Thus, the type of that attribute and further information
(e.g., whether the key is valid for edges, nodes, etc., or all graph elements)
can be globally defined for the whole document at only one place.

Moreover, GraphML allows <key> definitions to include a <default> el-
ement that contains a default value for graph elements for which no corre-
sponding <data> is present.

2.4 Other Concepts

Both GraphML and GXL offer means to distribute graphs and data over
more than one document. While a GraphML <locator> serves to replace

3

Brandes, Lerner, Pich

GXL Comment GraphML

<gxl> Substitutable. Both allow an arbitrary number of
<graph>s per document.

<graphml>

<graph> Substitutable. In GraphML, all <data> elements
of the same kind are declared at this level using a
<key>.

<graph>

<node> Substitutable. May contain <port>s in GraphML. <node>

<edge> Substitutable. GXL incidences may be ordered,
while GraphML edges may connect to <port>s de-
fined in the corresponding <node>s.

<edge>

<attr> In GXL, content must be enclosed by a tag lo-
cally indicating its type, (scalar such as <string>,
or composite such as <set> or <tup>), while
GraphML requires a reference to a global decla-
ration using <key>.

<data>

– Must be created when converting from GXL to
GraphML.

<key>

– Must be resolved when converting from GraphML
to GXL.

<default>

<rel> Substitutable. Both connect to <node>s via di-
rected or undirected incidence.

<hyperedge>

<relend> Substitutable. GraphML incidences are un-
ordered; an ordering can be simulated using num-
bered ports.

<endpoint>

– Partitioning of incidences; more general than the
ordering of incidences in GXL.

<port>

<type> Can be expressed with a designated <data> ele-
ment in GraphML.

–

<locator> Different. A reference to an arbitrary external
data object in GXL, but a reference to a <graph>
or <node> object stored in a different location (in
the same or another document) in GraphML.

<locator>

– Textual descriptions must be represented in
GXL with <attr> labels or as XML comments
<!-- -->.

<desc>

Fig. 2. Element-level comparison of GXL and GraphML

4

Brandes, Lerner, Pich

<xsl:template match="graph">

<graph id="{@id}">

<xsl:attribute name="edgedefault">

<xsl:if test="contains(@edgemode,’un’)">un</xsl:if>

<xsl:text>directed</xsl:text>

</xsl:attribute>

<!-- generate a key (at the first appearance of an attr-name) -->

<xsl:for-each select=".//attr[not(@name=../preceding-sibling::*/attr/@name)]">

<key id="{@name}">

<xsl:variable name="name" select="@name"/>

<xsl:attribute name="for"> <!-- determine "minimal" domain -->

<xsl:choose>

<xsl:when test="not(@name=../../*[name()!=’node’]/attr/@name)">node</xsl:when>

<xsl:when test="not(@name=../../*[name()!=’edge’]/attr/@name)">edge</xsl:when>

<xsl:when test="not(@name=../../*[name()!=’rel’]/attr/@name)">hyperedge</xsl:when>

<xsl:when test="not(@name=../../*[name()!=’graph’]/attr/@name)">graph</xsl:when>

<xsl:when test="not(@name=../../*[name()!=’relend’]/attr/@name)">endpoint</xsl:when>

<xsl:otherwise>all</xsl:otherwise>

</xsl:choose>

</xsl:attribute>

</key>

</xsl:for-each>

<xsl:apply-templates select="*"/>

</graph>

</xsl:template>

Fig. 3. GraphML to GXL: A template for a graph. A key corresponds to the first
occurrence of an attribute name in the GXL source document; the domain of a key
is determined by checking in which types of graph element it is used.

<graph>s or <data> in the same or another document, the GXL <locator>

is another scalar data type whose content is an XLink reference to arbitrary
URIs. Comments on the graph, i.e. textual descriptions for particular ele-
ments, are represented in GraphML as <desc> children, while in GXL they
must be an <attr> child, or an XML comment enclosed by <!-- -->.

One of the most prominent design goals for GraphML and GXL is open-
ness to application-specific extensions; their DTD or XML Schema definition
may be redefined and extended by custom elements and attributes, which is
especially interesting and useful when applications need to use complex XML
subtrees as content instead of only scalar values.

Figure 2 summarizes the comparison of the core elements of both lan-
guages, together with a short comment on how they are interpreted and trans-
lated to an equivalent counterpart. The next two sections outline the main
issues we had to face when converting from one graph format to the other
with XSLT, trying to keep the structural mismatch minimal. Complete style
sheets are given in Appendix A.

3 Transforming GXL into GraphML

Translating a GXL document to GraphML is best done with a pattern-oriented
style sheet because the general structure of the two languages is very similar.
Mapping the basic <gxl>, <graph>, <node>, and <edge> elements is done with
respective templates that recursively initiate the pattern matching process

5

Brandes, Lerner, Pich

<xsl:attribute name="edgemode">

<xsl:choose>

<xsl:when test="@edgedefault=’undirected’">

<xsl:choose> <!-- are there directed edges overriding default? -->

<xsl:when test="edge[@directed=’true’]">defaultundirected</xsl:when>

<xsl:otherwise>undirected</xsl:otherwise>

</xsl:choose>

</xsl:when>

<xsl:otherwise>

<xsl:choose> <!-- are there undirected edges overriding default? -->

<xsl:when test="edge[@directed=’false’]">defaultdirected</xsl:when>

<xsl:otherwise>directed</xsl:otherwise>

</xsl:choose>

</xsl:otherwise>

</xsl:choose>

</xsl:attribute>

Fig. 4. Determining the edge mode attribute of a GXL graph.

for child elements with <xsl:appl-templates/>. This mechanism is already
powerful enough to cover nested graphs.

When transforming additional data from GXL’s <attr> to GraphML’s
<data> element, only scalar content is taken into account, i.e. when the content
is enclosed by a single <string>, <int>, etc., and does not include any of the
GXL elements for structured content, such as <seq>, <set>, etc., or other
custom XML elements for nested content. However, additional treatment of
complex data requires only local template modifications.

Since GraphML data tags refer to keys, each occurring name attribute
of an <attr> element must be represented as a <key> at graph level. The
construction of the keys is shown in Fig. 3, which contains the template for
mapping a GXL <graph> to its GraphML counterpart.

The ordering of incidences, which is indicated in GXL by the fromorder

and toorder attributes of <edges>, is transferred to the GraphML result by
using <port>s. If there are <edge>s that connect to a given <node> with an
ordering attribute, a <port> having the ordinal number as its name (negative
if the edge is outgoing) is added to that <node> in the GraphML output,
together with corresponding port references at the output GraphML <edge>s.

Since <rel> elements as n-ary relations or simply sets of <relend> objects
are the same as <hyperedge>s in GraphML with their <endpoint>s, trans-
lating them from one language to another is mainly copying the elements
after renaming some of their names and attributes. For the sake of simplicity,
our style sheet ignores the ordering of incidences in hyperedges, as well as
<locator>s, <type>s, and attributes role and kind.

4 Transforming GraphML into GXL

Style sheets transforming GraphML documents (back) to the GXL format are
typically pattern-oriented, as well; converting elements <graphml>, <graph>,
<node>, and <edge> to their GXL counterparts is straightforward and requires
only very simple templates.

6

Brandes, Lerner, Pich

<xsl:template match="node">

<node id="{@id}">

<xsl:call-template name="resolve-default"/>

<xsl:apply-templates/>

</node>

</xsl:template>

<xsl:template name="resolve-default">

<xsl:variable name="this" select="."/>

<xsl:for-each select="ancestor-or-self::*/key[@for=name($this) or @for=’all’]

[not(@id=$this/data[@key])]/default">

<attr name="{../@id}">

<string><xsl:apply-templates/></string>

</attr>

</xsl:for-each>

</xsl:template>

Fig. 5. Template inserting default values, and another one calling it.

The edgemode attribute of a GXL <graph> is slightly more expressive than
GraphML’s edgedefault because it can be used to state whether <edge>s
are allowed to override the given default value, default(un)directed, or not,
(un)directed. It is determined by checking in the GraphML <graph> if there
are edges contradictory to the edgedefault value. See Fig. 4 for the code.

GraphML <port>s are converted to GXL fromorder and toorder at-
tributes if they contain a positive or negative number (interpreted as ports
for incoming or outgoing edges), and ignored otherwise. If it is essential in
the particular use case to preserve ports and references, they could also be
realized as special GXL <attr> elements within the connecting <edge>s, or
as special <node>s that are adjacent only to the “owner” of the ports.

When converting the GraphML <data> elements to GXL <attr> elements,
again some special issues have to be taken care of. Since the core elements
of GraphML do not carry any meta-information on the type of the content
within their <data> elements, we converted everything to a <string>. Fur-
thermore, any occurrence of structured data is ignored in either direction of
our transformations, which is also customizable when necessary.

If there are any <default> values present in <key>s, they must be resolved
in such a way that whenever there is an element whithin the for-domain of
that key that does not have a corresponding <data> element, it is attributed
with the content of the <default> element. Since this is a situation that can
reoccur with more than one graph element type, we call a reusable named
template as shown in Fig. 5.

Since the meaning of <locator> elements differs in GXL and GraphML,
they cannot be mapped directly, and our style sheet ignores them. Alterna-
tively, they can be resolved by physically including the referenced contents,
i.e. copying referenced GraphML <node> or <edge> into the output document.

Finally, the <desc> element in GraphML is transformed to an XML com-
ment, since there is no designated element in GXL for representing textual
descriptions or comments. Alternatively, comments may be represented as
<attr> children with a special name.

7

Brandes, Lerner, Pich

5 Discussion

Transforming between GXL and GraphML is best and most efficiently done
with a transformation driven by pattern matching. In both directions, trans-
forming within the structural layer is simple and direct, whereas converting
additional data requires some carefulness. Moreover, it depends on the par-
ticular use case and application area whether and how data labels from the
input should be preserved in the output.

Compatibility and interchangeability can be improved by extending both
formats with tailor-made extension modules, so that format-specific informa-
tion like attribute types is preserved when a graph is to be transformed into
the other format, and later retransformed back to the original format.

References

[1] U. Brandes, M. Eiglsperger, I. Herman, M. Himsolt, and M. S. Marshall.
GraphML progress report: Structural layer proposal. Proc. 9th Intl. Symp. Graph
Drawing (GD ’01), Lecture Notes in Computer Scienec 2265:501–512. Springer,
2002.

[2] S. Bridgeman. GraphEx: An improved graph translation service. Proc. 11th Intl.
Symp. Graph Drawing (GD ’03), Lecture Notes in Computer Sciene 2912:307–
313. Springer, 2004.

[3] W3C. XSL Transformations. http://www.w3.org/TR/xslt/.

[4] A. Winter. Exchanging Graphs with GXL. Proc. 9th Intl. Symp. Graph Drawing
(GD ’01), Lecture Notes in Computer Sciene 2265:485–500. Springer, 2002.

8

Brandes, Lerner, Pich

A XSLT Examples

For the sake of simplicity, XML namespaces are not considered in the fol-
lowing style sheets. To make them work correctly with GraphML and GXL
documents containing namespaces, it is necessary to either add the names-
paces to the patterns in the style sheets, or remove the namespace nodes in
the document through a preprocessing step, typically with another (simple)
style sheet.

A.1 GXL to GraphML

The following style sheet transforms a GXL input document into a GraphML
output document as described in Sect. 3.
<xsl:stylesheet version="2.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

<xsl:output method="xml" indent="yes" encoding="iso-8859-1"/>

<xsl:strip-space elements="*"/>

<xsl:template match="gxl">

<xsl:comment>

This GraphML document was generated from GXL by

a GXL-to-GraphML conversion style sheet.

</xsl:comment>

<graphml><xsl:apply-templates/></graphml>

</xsl:template>

<xsl:template match="graph">

<graph id="{@id}">

<xsl:attribute name="edgedefault">

<xsl:if test="contains(@edgemode,’un’)">un</xsl:if>

<xsl:text>directed</xsl:text>

</xsl:attribute>

<!-- generate a key (at the first appearance of an attr-name) -->

<xsl:for-each select=".//attr[not(@name=../preceding-sibling::*/attr/@name)]">

<key id="{@name}">

<xsl:variable name="name" select="@name"/>

<xsl:attribute name="for"> <!-- determine "minimal" domain -->

<xsl:choose>

<xsl:when test="not(@name=../../*[name()!=’node’]/attr/@name)">node</xsl:when>

<xsl:when test="not(@name=../../*[name()!=’edge’]/attr/@name)">edge</xsl:when>

<xsl:when test="not(@name=../../*[name()!=’rel’]/attr/@name)">hyperedge</xsl:when>

<xsl:when test="not(@name=../../*[name()!=’graph’]/attr/@name)">graph</xsl:when>

<xsl:when test="not(@name=../../*[name()!=’relend’]/attr/@name)">endpoint</xsl:when>

<xsl:otherwise>all</xsl:otherwise>

</xsl:choose>

</xsl:attribute>

</key>

</xsl:for-each>

<xsl:apply-templates select="*"/>

</graph>

</xsl:template>

<xsl:template match="node">

<xsl:variable name="id" select="@id"/>

<node id="{$id}">

<xsl:for-each select="../edge[@from=$id]/@toorder">

<port name="{-1*number(.)}"/>

</xsl:for-each>

<xsl:for-each select="../edge[@to=$id]/@fromorder">

<port name="{.}"/>

</xsl:for-each>

<xsl:apply-templates/>

9

Brandes, Lerner, Pich

</node>

</xsl:template>

<xsl:template match="edge">

<edge source="{@from}" target="{@to}">

<xsl:copy-of select="@id"/>

<xsl:if test="@isdirected">

<xsl:attribute name="directed">

<xsl:value-of select="@isdirected"/>

</xsl:attribute>

</xsl:if>

<xsl:if test="@fromorder">

<xsl:attribute name="sourceport"><xsl:value-of select="-1*number(.)"/></xsl:attribute>

</xsl:if>

<xsl:if test="@toorder">

<xsl:attribute name="targetport"><xsl:value-of select="."/></xsl:attribute>

</xsl:if>

<xsl:apply-templates/>

</edge>

</xsl:template>

<!-- process only scalar data -->

<xsl:template match="attr">

<xsl:if test="count(*)=1">

<data key="{@name}">

<xsl:copy-of select="@id"/>

<xsl:value-of select="*[1]"/>

</data>

</xsl:if>

</xsl:template>

<xsl:template match="rel">

<hyperedge>

<xsl:copy-of select="@id"/>

<xsl:apply-templates/>

</hyperedge>

</xsl:template>

<xsl:template match="relend">

<endpoint node="{@target}">

<xsl:attribute name="type">

<xsl:choose>

<xsl:when test="@direction=’in’">in</xsl:when>

<xsl:when test="@direction=’out’">out</xsl:when>

<xsl:otherwise>undir</xsl:otherwise>

</xsl:choose>

</xsl:attribute>

<xsl:apply-templates/>

</endpoint>

</xsl:template>

<xsl:template match="locator"/>

<xsl:template match="type"/>

<xsl:template match="seq|tup|bag|set"/>

</xsl:stylesheet>

10

Brandes, Lerner, Pich

A.2 GraphML to GXL

This style sheet transforms a GraphML document (back) to GXL as described
in Sect. 4).
<xsl:stylesheet version="2.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

<xsl:output method="xml" indent="yes" encoding="iso-8859-1"/>

<xsl:strip-space elements="*"/>

<xsl:template match="key|default|port"/>

<xsl:template match="graphml">

<xsl:comment>

This GXL document was generated from GraphML by

a GraphML-to-GXL conversion style sheet.

</xsl:comment>

<gxl><xsl:apply-templates/></gxl>

</xsl:template>

<xsl:template match="graph">

<graph edgeids="{not(edge[not(@id)])}" hypergraph="{boolean(hyperedge)}">

<xsl:attribute name="id">

<xsl:choose> <!-- copy ID if present, otherwise create one -->

<xsl:when test="@id"><xsl:value-of select="@id"/></xsl:when>

<xsl:otherwise><xsl:value-of select="generate-id()"/></xsl:otherwise>

</xsl:choose>

</xsl:attribute>

<xsl:attribute name="edgemode">

<xsl:choose>

<xsl:when test="@edgedefault=’undirected’">

<xsl:choose> <!-- are there directed edges overriding default? -->

<xsl:when test="edge[@directed=’true’]">defaultundirected</xsl:when>

<xsl:otherwise>undirected</xsl:otherwise>

</xsl:choose>

</xsl:when>

<xsl:otherwise>

<xsl:choose> <!-- are there undirected edges overriding default? -->

<xsl:when test="edge[@directed=’false’]">defaultdirected</xsl:when>

<xsl:otherwise>directed</xsl:otherwise>

</xsl:choose>

</xsl:otherwise>

</xsl:choose>

</xsl:attribute>

<xsl:apply-templates/>

</graph>

</xsl:template>

<xsl:template match="node">

<node id="{@id}">

<xsl:call-template name="resolve-default"/>

<xsl:apply-templates/>

</node>

</xsl:template>

<xsl:template match="edge">

<edge from="{@source}" to="{@target}">

<xsl:copy-of select="@id"/>

<xsl:if test="@directed">

<xsl:attribute name="isdirected">

<xsl:value-of select="@directed"/>

</xsl:attribute>

</xsl:if>

<xsl:if test="@sourceport[string(number(.))!=’NaN’]">

<xsl:attribute name="fromorder">

<xsl:value-of select="-1*number(@sourceport)"/>

</xsl:attribute>

</xsl:if>

11

Brandes, Lerner, Pich

<xsl:if test="@targetport[string(number(.))!=’NaN’]">

<xsl:attribute name="toorder">

<xsl:value-of select="@targetport"/>

</xsl:attribute>

</xsl:if>

<xsl:call-template name="resolve-default"/>

<xsl:apply-templates/>

</edge>

</xsl:template>

<!-- data labels with scalar content -->

<xsl:template match="data[count(node()) = count(text())]">

<attr name="{@key}">

<xsl:copy-of select="@id"/>

<string>

<xsl:apply-templates/>

</string>

</attr>

</xsl:template>

<!-- ignore data labels with complex content -->

<xsl:template match="data[count(node()) != count(text())]"/>

<xsl:template match="hyperedge">

<rel isdirected="{boolean(endpoint[@type != ’undir’])}">

<xsl:copy-of select="@id"/>

<xsl:call-template name="resolve-default"/>

<xsl:apply-templates/>

</rel>

</xsl:template>

<xsl:template match="endpoint">

<relend target="{@node}">

<xsl:if test="@type">

<xsl:attribute name="direction">

<xsl:choose>

<xsl:when test="@type=’in’">in</xsl:when>

<xsl:when test="@type=’out’">out</xsl:when>

<xsl:otherwise>none</xsl:otherwise>

</xsl:choose>

</xsl:attribute>

</xsl:if>

<xsl:call-template name="resolve-default"/>

<xsl:apply-templates/>

</relend>

</xsl:template>

<xsl:template match="desc">

<xsl:comment>GraphML desc: <xsl:value-of select="."/></xsl:comment>

</xsl:template>

<!-- named template to insert default values when no data tag is present

for a key having a default value -->

<xsl:template name="resolve-default">

<xsl:variable name="this" select="."/>

<xsl:for-each select="ancestor-or-self::*/key[@for=name($this) or @for=’all’]

[not(@id=$this/data[@key])]/default">

<attr name="{../@id}">

<string><xsl:apply-templates/></string>

</attr>

</xsl:for-each>

</xsl:template>

<xsl:template match="locator"/>

</xsl:stylesheet>

12

	Introduction
	Comparison of GraphML and GXL
	Basic Graph Models
	Advanced Graph Models
	Additional Data
	Other Concepts

	Transforming GXL into GraphML
	Transforming GraphML into GXL
	Discussion
	References
	XSLT Examples
	GXL to GraphML
	GraphML to GXL

	Text23: First publ. in: Proceedings of the 2nd Intern. Workshop Graph-Based Tools (GraBaTs ´04) / ENTCS 127 (2005), 1, pp. 113-125
	Text24:
	Text25: Konstanzer Online-Publikations-System (KOPS)URN: http://nbn-resolving.de/urn:nbn:de:bsz:352-opus-81185URL: http://kops.ub.uni-konstanz.de/volltexte/2009/8118/
	Text26:
	Text27:
	Text28:
	Text29:
	Text30:
	Text31:
	Text32:
	Text33:
	Text34:
	Text35:
	Text36:

