
Positive Polynomials,

Sums of Squares

and the Moment Problem

Dissertation zur Erlangung des akademischen Grades Doktor
der Naturwissenschaften am Fachbereich Mathematik und
Statistik der Universität Konstanz

Tim Netzer
Fachbereich Mathematik und Statistik
Universität Konstanz
78457 Konstanz

Konstanz, July 2008.

Datum der mündlichen Prüfung: 27.10.2008
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4 INTRODUCTION

Introduction

Real polynomials f1, . . . , ft in n variables X1, . . . , Xn define a
subset S of Rn by

S := {x ∈ Rn | f1(x) ≥ 0, . . . , ft(x) ≥ 0}.
One is interested in finding an algebraic characterization of

Pos(S) = {f ∈ R[X1, . . . , Xn] | f ≥ 0 on S},
the set of all polynomials that are nonnegative on S. Obviously,
any sum of squares of polynomials and all the fi are nonnegative
on S, and adding and multiplying nonnegative polynomials gives
a nonnegative polynomial again. The set of all polynomials we
obtain in this way is called the preordering generated by the fi.
An important question is how this preordering relates to Pos(S).
In general, the preordering is smaller. For example, already in
the case n = 2, t = 1 and f1 = 1 (so S = R2) equality fails;
this is the fact that not every globally nonnegative polynomial
in two variables is a sum of squares of polynomials.
However, in the case that S is compact, the preordering gener-

ated by the fi at least contains every polynomial which is strictly
positive on S. This is Schmüdgen’s famous theorem from 1991.
On the other hand, Scheiderer has proved that for any set S, if

its dimension is at least three, then there are always nonnegative
polynomials that do not belong to the preordering.
In the two-dimensional case, there are preorderings that con-

tain all nonnegative polynomials. This follows from different
local-global principles developed by Scheiderer. Most of them
only involve compact semi-algebraic sets. In the non-compact
two-dimensional case, there is a surprising lack of examples of
preorderings that contain all nonnegative polynomials. Only
recently, Marshall was able to show that a strip in the plane
can be described by a preordering that contains all nonnegative
polynomials.
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Another question arising in this context concerns the moment
problem. One wants to characterize the linear functionals on
R[X1, . . . , Xn] that are integration on S. By Haviland’s The-
orem, these are precisely the functionals that are nonnegative
on Pos(S). Now one can ask if being nonnegative on the pre-
ordering is sufficient for a functional to be integration. That
translates to the problem of determining the closure of the pre-
ordering with respect to a suitable topology on the polynomial
ring (the finest locally convex topology). If this closure equals
Pos(S), then indeed all functionals nonnegative on the preorder-
ing have an integral representation. The moment problem for S
is then said to be solved by the preordering. Schmüdgen’s The-
orem from 2003 gives a useful method to determine the closure
of a preordering. One can often reduce the question to fibre
preorderings that describe lower dimensional sets. A general-
ized and more elementary proof of his result is the content of
Chapter 2 of this work.

Instead of looking at the closure of a preordering, one can con-
sider the sequential closure only. A polynomial f belongs to it if
and only if f + εq belongs to the preordering for a fixed polyno-
mial q and all ε > 0. The notion was introduced and developed
by Kuhlmann, Marshall and Schwartz. It helps dealing with the
moment problem and allows to represent certain nonnegative
polynomials in terms of the preordering. For different sorts of
sets S, it is known that every nonnegative polynomial belongs
to the sequential closure of the preordering.

It was an open problem whether the closure and the sequential
closure of a preordering always coincide, or at least in the case
that the closure equals Pos(S). We solve this problem to the
negative in Chapter 4. We also provide a theorem that allows,
in the spirit of Schmüdgen’s Fibre Theorem, to use a dimension
reduction when dealing with the sequential closure.

A large class of preorderings that almost never solve the mo-
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ment problem is given by stable preorderings. The notion stems
from [PSc]. Roughly spoken, a stable preordering admits a
bound on the degree of the sum of squares used in the repre-
sentation of a polynomial. Stable preorderings are often closed
and do not solve the moment problem. So stability is a useful
property when examining preorderings. In Chapter 3 we de-
velop a method to prove stability for preorderings under certain
conditions. The conditions are either of geometric nature (as
for example also in [PSc]) or of more combinatorial one. This
in particular allows applications where the geometric criterion
of [PSc] does not apply. In addition, all of the conditions, also
the geometric ones, are very easy to check.
We conclude the work with a collection of explicit examples in

Chapter 5.
Of course one can ask all the above questions in the more gen-

eral context of a finitely generated R-algebra instead of the poly-
nomial ring. Even for arbitrary commutative R-algebras this
makes sense. And instead of the preordering generated by the
elements fi, one can consider the quadratic module defined by
them. This quadratic module is much smaller in general. We
try to prove all results in this more general context, whenever
possible.
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1 Preliminaries

In this chapter we introduce basic terminology to set the stage
for the rest of this work. We begin with real vector spaces
and proceed to commutative R-algebras. Most of the results are
commonly known and we only give some proofs for completeness.
We agree on N = {0, 1, . . .} for the whole work. Also, if we use

the word positive, we always mean strictly positive - we will say
nonnegative if we allow for zero.

1.1 Real Vector Spaces

For the whole section we refer to [Schae] for exact and detailed
proofs.
Let E be a real vector space. A vector space topology is a

topology on E making the addition of vectors

E × E → E

and the scalar multiplication

R× E → E

continuous. Such a topology is already uniquely defined by its
neighborhoods of zero. A system U of subsets of E is a neigh-
borhood base of zero of a vector space topology, if it fulfills the
following conditions:

(i) For all U, V ∈ U there is some W ∈ U with W ⊆ U ∩ V

(ii) For every U ∈ U there is some V ∈ U with V + V ⊆ U

(iii) All sets in U are absorbing and circled

Here, a set U ⊆ E is called absorbing, if for every x ∈ E there
exists λ0 ≥ 0, such that x ∈ λU for all λ ≥ λ0; it is called circled
if λU ⊆ U whenever |λ| ≤ 1. Each vector space topology has a
neighborhood base U of zero, fulfilling (i)-(iii).
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A vector space topology is called locally convex, if it has a zero
neighborhood base of convex sets, fulfilling (i)-(iii). Alterna-
tively, if the topology is defined by a family of semi-norms, i.e.
if the topology is the coarsest vector space topology making a
given family of semi-norms continuous.
The collection of all convex, absorbing and circled subsets of

E obviously fulfills the above conditions (i)-(iii) and is therefore
a zero neighborhood base of a locally convex topology, called
the finest locally convex topology on E. Alternatively, it is the
coarsest vector space topology making all semi-norms on E con-
tinuous. Each linear functional on E is then continuous. Even
more, any linear mapping to any vector space endowed with a
locally convex topology is continuous. Every subspace of E is
closed, and every finite dimensional subspace of E inherits the
canonical topology. E is Hausdorff. From now on let E carry
the finest locally convex topology.
Fix an algebraic basis (ei)i∈I of E, i.e. I is a suitable index

set and E =
⊕

i∈I Rei. For a family ε = (εi)i∈I of positive real
numbers define the set

Uε :=

{
x ∈ E | x =

∑
finite

λiei, |λi| ≤ εi

}
.

Each such set Uε is convex, absorbing and circled, and therefore
a neighborhood of zero. The following result is Exercise 7(b) in
[Schae], Chapter II:

Lemma 1.1. A sequence in E converges if and only if it lies in
a finite dimensional subspace and converges there.

Proof. The ”if”-part if clear. Now let (xj)j∈N be a sequence,
converging to zero without loss of generality. We have to show
that it lies in a finite dimensional subspace of E. Write

xj =
∑

i∈Ij

λ
(j)
i ei,
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where Ij is a finite subset of I and all λ
(j)
i 6= 0. Suppose

⋃
j∈N Ij

is not finite. By induction on j ∈ N define for i ∈ Ij \
⋃

k<j Ik

εi :=
|λ(j)

i |
2

.

Complete these numbers to a positive family ε = (εi)i∈I . As the
union of all the Ij is not finite, there are arbitrary big indices j

such that xj does not belong to Uε. This is a contradiction.

So the sequential closure of some B ⊆ E consists of all finite
dimensional closures. We will denote this sequential closure by
B‡, i.e. we have

B‡ =
⋃

W

B ∩W,

where the union runs over all finite dimensional subspaces W of
E. We denote by B the closure of B and observe

B ⊆ B‡ ⊆ B.

Now assume that E is countable dimensional, i.e. we can choose
I = N. In this case, the family of all Uε defined above is a basis
for the neighborhoods of zero. Indeed, any convex, absorbing
and circled set U in E contains some Uε. To see this, define

p(x) := inf {λ ≥ 0 | x ∈ λU} ,

the so called gauge or Minkowski functional of U . It is a semi-
norm on E. Now choose a positive sequence ε = (εi)i∈N such

that εi · p(ei) <
(1

2

)i+1
. If x ∈ Uε, say x =

∑
λiei, |λi| ≤ εi and

the sum is finite, then

p(x) ≤
∑

|λi|p(ei) ≤
∑

εip(ei) < 1.

This shows x ∈ U .
The next result says, that the finest locally convex topology

on a countable dimensional space coincides with the topology
of finitely open sets. A weaker version of it is Exercise 7(c) in
[Schae], and it can also be found in [Bi].
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Proposition 1.2. If E has countable dimension, then a set in
E is closed if and only if its intersection with every finite di-
mensional subspace is closed.

Proof. Denote the set by B. The ”only if”-part is clear. For the
”if”-part define Wn =

⊕n
i=0Rei. Then the increasing sequence

of the finite dimensional subspaces Wn exhausts E. Now suppose
x /∈ B. Then x ∈ Wn \ (B ∩Wn) for big enough n. As B ∩Wn

is closed in Wn, we can find a cube

C = [−ε0, ε0]× · · · × [−εn, εn] ⊆ Wn,

all εi > 0, such that x + C does not meet B ∩ Wn. Then
(x+C)×{0} does not meet the closed set B∩Wn+1 in Wn+1. Due
to compactness we find εn+1 > 0, such that x+(C × [−εn+1, εn+1])
does not meet B ∩Wn+1 in Wn+1. So inductively we find a pos-
itive sequence ε = (εi)i∈N such that (x + Uε) ∩ B = ∅. So B is
closed.

This last result is not true without the assumption on the di-
mension, see [Bi] or [CMN] for examples.

Proposition 1.2 seems to suggest, that the closure of a set in
E equals the union over the closures in all finite dimensional
subspaces, i.e. the sequential closure. However, this is not true,
as we will see later. But by Lemma 1.1 and Proposition 1.2, a set
B in E is closed if and only if B = B‡ holds. So the (transfinite)
sequence of iterated sequential closures of B terminates exactly
at B (all in the case that E has countable dimension). It is an
interesting question to determine when this sequence terminates.
We will address this question for convex cones later in more
detail.

We now drop the assumption on the dimension, i.e. we con-
sider arbitrary real vector spaces E again. Let C be a a convex
cone (or just cone for short) in E, i.e. a subset of E which is
convex and closed under multiplication with nonnegative reals.
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Alternatively, C is closed under addition and under multiplica-
tion with nonnegative reals. For such a convex cone let C∨ be
the dual cone, i.e. the set of all linear functionals on E which
are nonnegative on C. Then

C∨∨ := {x ∈ E | L(x) ≥ 0 for all L ∈ C∨}
is called the double dual cone of C. The following result can be
found in [CMN]:

Proposition 1.3. For convex cones C in E we have

C = C∨∨

and
C‡ = {x ∈ E | ∃q ∈ E ∀ε > 0 x + εq ∈ C} .

Proof. C ⊆ C∨∨ holds, as all functionals are continuous. The
other inclusion comes from the Hahn-Banach Theorem, see
[Schae], Chapter II, Section 9.
If x + εq ∈ C for all ε > 0, then x lies in the sequential closure

of C. So suppose conversely there is a sequence (xi)i of elements
from C, converging to x. By Lemma 1.1, the elements xi span
a finite dimensional subspace of E, so let y1, . . . , yN ∈ C be
an algebraic basis of this subspace. Write xi =

∑N
j=1 rijyj and

x =
∑N

j=1 rjyj with real numbers rj, rij. Then limi→∞ rij = rj.

Define q =
∑N

j=1 yj. For any ε > 0 we have rij ≤ rj + ε for large
enough i and all j. So

x + εq =
∑

j

(rj + ε)yj

=
∑

j

rijyj +
∑

j

(rj + ε− rij)yj

= xi +
∑

j

(rj + ε− rij)yj ∈ C.
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The proof shows that the element q can always be picked from
C. It is also clear that C as well as C‡ are again convex cones.
We will later be interested in quadratic modules or preorderings
in R-algebras. These are in particular convex cones, and we
consider their closures and sequential closures. It turns out that
these closures are again quadratic modules or preorderings.

1.2 R-Algebras

Most of the following notions and results are standard knowledge
from Real Algebra and Real Algebraic Geometry. We refer to
[BCR, M1, PD] for details and omitted proofs.

When we talk about an R-algebra (or simply an algebra) A in
this work, we always mean a commutative R-algebra with unit 1.
Morphisms between algebras are always assumed to be unitary,
i.e. to map 1 to 1. We will always equip A with the finest locally
convex topology, and the topological notions and result from the
previous section apply. In case A is finitely generated as an R-
algebra, it is countable dimensional as a vector space. Indeed,
if x1, . . . , xn generate A as an R-algebra, then the countably
many elements xα := xα1

1 · · · xαn
n , with α ∈ Nn, generate A as a

vector space. However, A can be countable dimensional without
being finitely generated. In general we will not assume that A

is finitely generated or countable dimensional, neither that A is
reduced or even a domain. We will state additional assumptions
on A whenever needed. The following easy result will be used
throughout this work.

Lemma 1.4. Let L : A → R be a linear functional such that
L(a2) ≥ 0 for all a ∈ A. Then for all a, b ∈ A

L(ab)2 ≤ L(a2)L(b2).

In particular, if L(1) = 0, then L ≡ 0.
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Proof. For all r ∈ R we have

0 ≤ L
(
(a + rb)2) = L(a2) + 2rL(ab) + r2L(b2).

From this we get

4L(ab)2 − 4L(a2)L(b2) ≤ 0,

which implies L(ab)2 ≤ L(a2)L(b2).
If L(1) = 0 then for all a

L(a)2 ≤ L(1)L(a2) = 0,

so L(a) = 0.

To A there corresponds a variety VA (or just V), defined as
the set of all R-algebra homomorphisms from A to C. Its set
of real points, denoted by VA(R) (or just V(R)), are the homo-
morphisms to R. We will mostly be using the set of real points
V(R).
Elements from A can be used as functions on V and V(R) by

â(α) := α(a),

for a ∈ A and α ∈ V . We equip V(R) with with the coarsest
topology making all the elements from A continuous functions
on V(R). We call this topology the strong topology. We have an
algebra homomorphism

:̂ A → C(V(R),R); a 7→ â.

The elements â separate points of V(R), i.e. for two distinct
points in V(R) there is some a ∈ A, such that â takes different
values in these two points. In particular, V(R) is hausdorff.
If A is finitely generated as an R-algebra, and one chooses a set

of generators x1, . . . , xn, the variety can be embedded into affine
space. Indeed, look at the algebra homomorphism

R[X1, . . . , Xn] ³ A
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from the polynomial ring in n variables to A, which sends Xi to
xi. Denote its kernel by I. I is an ideal and

R[X1, . . . , Xn]/I ∼= A.

V can then be identified with the zero set of I in Cn by

α 7→ (α(x1), . . . , α(xn)) .

V(R) is identified with the zero set of I in Rn under this map-
ping. The use of elements from A as polynomial functions on
these embedded varieties coincides with the above defined use
as functions. The topology on V(R) is exactly the topology in-
herited from the canonical topology on Rn. However, we will
often not choose generators of A and view elements from V as
algebra homomorphisms instead.

Sometimes we also equip V with the Zariski topology defined
by A. This is the topology having the sets

Z(J) := {α ∈ V | α(J) = {0}}

for ideals J of A as its closed sets. The same definition applies
to V(R). We can restrict ourself to real radical ideals J when
defining the topology on V(R). However, we will not use this
topology much, and state it explicitly whenever we do. So unless
otherwise mentioned, the varieties are always equipped with the
strong topology defined above. All notions as closed, compact,
continuous... refer to it.

A quadratic module of an R-algebra A is a subset M of A such
that

M + M ⊆ M,
∑

A2 ·M ⊆ M and 1 ∈ M.

Here,
∑

A2 denotes the set of sums of squares in A. Note
that any quadratic module in A is a convex cone, so the re-
sults and notions for cones from the previous section apply.
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For a1, . . . , at ∈ A, the smallest quadratic module containing
a1, . . . , at consists of all elements of the form

σ0 + σ1a1 + · · ·+ σsat,

where σi ∈
∑

A2. It is called the quadratic module generated
by a1, . . . , at and most often denoted by QM(a1, . . . , at). A
quadratic module is called finitely generated, if it is of such a
form. For any quadratic module M , M ∩ −M is called the
support of M , also denoted by supp(M). It is an ideal of A.
A preordering is a quadratic module which is closed under mul-

tiplication. We will denote preorderings by P , whenever pos-
sible. For finitely many elements a1, . . . , at ∈ A, the smallest
preordering containing a1, . . . , at is the quadratic module gener-
ated by the 2t products

ae := ae1

1 · · · aet
t ; e ∈ {0, 1}t.

It is called the preordering generated by a1, . . . , at and denoted
by PO(a1, . . . , at). A preordering is called finitely generated if it
is of such a form.
An ordering of A is a preordering P , such that P ∩ −P is a

prime ideal and P ∪ −P = A holds. The set of all orderings is
denoted by Sper(A), and for a quadratic module M , the set of
all orderings containing M by XM . Elements α ∈ V(R) define
orderings

Pα := {a ∈ A | â(α) ≥ 0} = α−1([0,∞))

on A, but in general not all orderings are of this form.
Subsets M of A (in particular quadratic modules) define closed

subsets of V(R) by

S(M) : = {α ∈ V(R) | m̂(α) ≥ 0 for all m ∈ M}
= {α ∈ V(R) | α(M) ⊆ [0,∞)}
= {α ∈ V(R) | M ⊆ Pα} .
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So for α ∈ S(M), Pα belongs to XM . If M is a finitely generated
quadratic module, generated by a1, . . . , at, then

S(M) = {α ∈ V(R) | â1(α) ≥ 0, . . . , ât(α) ≥ 0}
is called basic closed semi-algebraic.
Conversely, subsets S of V(R) define preorderings of A by

Pos(S) = {a ∈ A | â ≥ 0 on S} =
⋂

α∈S

Pα.

For a quadratic module M of A we call

M sat := Pos(S(M))

the saturation of M , i.e. the saturation of M consists of all
elements of A which are nonnegative as functions on S(M). The
relation between M and M sat is an important object of study in
Real Algebra and Real Algebraic Geometry.
If both A and M are finitely generated, an important result

from Real Algebra, based on the Tarski-Seidenberg Transfer-
Principle, says

M sat =
⋂

P∈XM

P. (1)

To avoid confusion, note that the saturation of a quadratic mod-
ule is often defined in terms of this last equation in the existing
literature. In the non-finitely generated case, that definition
might differ from the one we use in this work.
It is used for example in the proof of the following proposition,

which we will apply extensively in Chapter 3:

Proposition 1.5. Let A be a finitely generated R-algebra and
M ⊆ A a finitely generated quadratic module. If S(M) is Zariski
dense in V(R), then

M ∩ −M ⊆ rr
√
{0}.

If M is a finitely generated preordering, then the other implica-
tion is also true.
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Here, rr
√
{0} denotes the real radical of {0}. Although the

proof is typical for Real Algebraic Geometry, we include it for
completeness.

Proof. Suppose a ∈ M ∩ −M. Then â = 0 on S(M), so by the
Zariski denseness also â = 0 on V(R) = S (∑

A2
)
. So by (1),

−a, a ∈
⋂

P∈Sper(A)

P.

The abstract real Nullstellensatz ([PD], Theorem 4.2.5) yields

a2e + σ = 0

for some e ∈ N and σ ∈ ∑
A2, so a ∈ rr

√
{0}.

Now suppose M is a preordering and M ∩−M ⊆ rr
√
{0}. Then

rr
√
{0} = rr

√
M ∩ −M =

⋂

P∈XM

P ∩ −P,

where the last equality uses the real Nullstellensatz again, see
for example [Sc3] 1.3.12. Now suppose a ∈ A \ rr

√
{0}. We show

there is some α ∈ S(M) such that α(a) 6= 0. There is some
P ∈ XM such that a /∈ P , without loss of generality. So by (1),
a /∈ M sat, which implies the claim.

So whenever S(M) ⊆ Z(I) for some ideal I of A, then I ⊆
rr
√
{0}. But then obviously Z(I) = V(R), which shows the de-

sired denseness.

We can also consider R-algebra homomorphisms

ϕ : A → B,

between arbitrary R-algebras A and B. We have a correspond-
ing map

ϕ∗ : VB(R) → VA(R)
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sending β to β ◦ϕ. ϕ∗ is continuous with respect to both defined
topologies. Indeed, for a set M ⊆ A we have

(ϕ∗)−1(S(M)) = S(ϕ(M)).

In particular, whenever S ⊆ VA(R) is basic closed semi-algebraic,
then so is (ϕ∗)−1(S) ⊆ VB(R).

For an arbitrary quadratic module M in an arbitrary R-algebra
A, we have the obvious relations

M ⊆ M ‡ ⊆ M = M∨∨ ⊆ M sat.

The last inclusion uses that each R-algebra homomorphism from
A to R is a linear functional.

Lemma 1.6. M ‡ and M are again quadratic modules, even pre-
orderings if M was a preordering.

Proof. For M ‡ this is clear, use for example the characterization
from Proposition 1.3. M+M ⊆ M is also clear from Proposition
1.3. Now suppose a·M ⊆ M for some a in A. The multiplication
with a, denoted by ϕa, is a linear and therefore continuous map
from A to A. So we have

a ·M = ϕa(M) ⊆ ϕa(M) = a ·M ⊆ M.

This shows that M is closed under multiplication with squares
and therefore a quadratic module. It also shows M ·M ⊆ M if
M is a preordering. Using M ·M = M ·M ⊆ M and applying the
result one more time, we see that M is multiplicatively closed.

Definition 1.7. (i) A quadratic module M is called saturated,
if M = M sat holds. It is called closed if M = M holds.

(ii) We say that M has the strong moment property (SMP), if
M = M sat holds.
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(iii) The strong moment problem is said to be finitely solvable
for a set S ⊆ V(R), if there is a finitely generated quadratic
module M in A, such that S(M) = S and M has (SMP).

(iv) M has the ‡-property, if M ‡ = M sat holds.

Saturatedness of finitely generated quadratic modules or pre-
orderings is a rather rare phenomenon. In the one-dimensional
case, it still occurs often, see for example [KM, KMS]. From di-
mension three upwards, it never occurs, see [Sc1]. In dimension
two, several local-global principles from [Sc2, Sc5] give exam-
ples of finitely generated saturated preorderings. Most of the
examples involve compact semi-algebraic sets. There are only
few non-compact two-dimensional examples of finitely generated
and saturated preorderings, see for example [M2].

To a great part, the interest in (SMP) comes from Haviland’s
Theorem. The original version from [H] applies to polynomial
rings, but we state a much more general version here, which is
taken from [M1].

Theorem 1.8. Let A be an R-algebra, X a Hausdorff space
and suppose :̂ A → C(X,R) is an R-algebra homomorphism.
Assume that the following condition is fulfilled:

(∗) there is some p ∈ A such that p̂ ≥ 0 on X and for all i ∈ N,

the set Xi = {x ∈ X | p̂(x) ≤ i} is compact.

Then for every linear functional L : A → R with

L ({a ∈ A | â ≥ 0 on X}) ⊆ [0,∞)

there exists a positive regular Borel measure µ on X such that

L(a) =

∫

X

âdµ

for all a ∈ A.
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For a quadratic module M in A look at the morphism

:̂ A → C(S(M),R)

obtained by restricting the functions â : V(R) → R to S(M).
Assume that the assumption (∗) from Theorem 1.8 is fulfilled,
which is for example the case if A is finitely generated; one
can take p = x2

1 + · · · + x2
n, where x1, . . . , xn are generators

of A; it also holds trivially if S(M) is compact. Now the set
{a ∈ A | â ≥ 0 on S(M)} is M sat. So if M has the strong
moment property, then every functional which is nonnegative on
M is already nonnegative on M sat, and therefore integration on
S(M) by Haviland’s Theorem. Nonnegativity on M is a priori
a weaker condition than nonnegativity on M sat. So (SMP) is a
useful property.

There are many important and interesting works concerning the
strong moment property and representations of positive polyno-
mials. A ground-breaking result is the following:

Theorem 1.9 (Schmüdgen, [Sm2]). If A is finitely generated, P

a finitely generated preordering in A, and S(P ) is compact, then
every element from A which is strictly positive on S(P ) belongs
to P . In particular, P has (SMP).

The first purely algebraic proof of the theorem can be found
in [Wö]. Further, there is a wide range of generalizations of
this important result. For example, one can ask if preorderings
can be replaced by quadratic modules in Schmüdgen’s Theorem.
First work in that direction can be found in [P]. In full general-
ity, the answer is due to Jacobi [J]. Also see [PD] or [M1] for a
proof.

Theorem 1.10. Let M be an archimedean quadratic module of
the R-algebra A. Then every element from A which is strictly
positive on S(M) belongs to M . In particular, M has (SMP).
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Archimedean means, that for every x ∈ A there is some N ∈ N,
such that N − x belongs to M . If A is finitely generated, then
N ± xi ∈ M for generators x1, . . . , xn of A already implies that
M is archimedean. For a finitely generated preordering P in a
finitely generated R-algebra, the compactness of S(P ) implies
that P is archimedean. So Theorem 1.10 is a generalization of
Theorem 1.9.
There is a lot of literature concerning these last two results.

Generalizations, alternative proofs and also quantitative ver-
sions can for example be found in [NiSw, Sw1, Sw2, Sw3].
The question whether a quadratic module is archimedean has

been dealt with in [JP], using valuation theoretic arguments.
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2 A Fibre Theorem for Closures

In this chapter we give a generalized version of Schmüdgen’s
Theorem from [Sm3]. It characterizes the closure of a preorder-
ing in terms of so called fibre-preorderings, constructed from
bounded polynomials. The original proof uses deep results from
functional analysis, taken from [D, Sm1]. Our proof is more
elementary. It relies heavily on the Radon-Nikodym Theorem.
The main ideas are published in [N]. Murray Marshall found a
similar approach to the same problem independently. It appears
in his book [M1].
We begin with a short section about closures and (SMP) on

quotients. It comprehends some helpful remarks, most of them
taken from [Sc4]. In Section 2.2 we prove a generalized fibre
theorem for closures of quadratic modules. As we show in Sec-
tion 2.3, it implies Schmüdgen’s original result (Theorem 2.8).
In the last section of this chapter we give some new applications
of the fibre theorem.

2.1 Closures and Quotients

The results from this section are all contained in [Sc4], Section 4.
We just state them for arbitrary algebras and modules whenever
possible, not only for finitely generated ones. The proofs are
mostly the same. So let A be an R-algebra and M a quadratic
module in A. Let I be an ideal of A, contained in the real radical
of the support of M, and let

π : A → A/I

be the canonical projection. An easy observation is

π(M)sat = π(M sat).

Lemma 2.1. and Corollary 3.12 from [Sc4] tell us that whenever
a ∈ I, then a + ε ∈ M for all ε > 0. In particular I ⊆ M . So
the following proposition is clear.
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Proposition 2.1. Let A be an R-algebra and M a quadratic
module in A. Let I be an ideal of A, contained in rr

√
M ∩ −M,

and π : A → A/I the canonical projection. Then

π(M) = π(M).

So M has (SMP) in A if and only if π(M) has (SMP) in A/I,

which is the case if and only if M + I has (SMP) in A.

If A is finitely generated, then (SMP) carries over from M to
M + I for arbitrary quadratic modules M and ideals I. For
finitely generated quadratic modules, this is Proposition 4.8 in
[Sc4]. However, the same proof works for arbitrary M . It shows
that the fibre condition for (SMP) in Theorem 2.6 and Theorem
2.8 below is necessary for (SMP) to hold.

Proposition 2.2. Let A be a finitely generated R-algebra, M a
quadratic module and I and ideal in A. If M has (SMP) in A,
then so does M + I.

Proof. If L ∈ (M + I)∨, then of course L ∈ M∨. So by Theorem
1.8, L is integration with respect to some measure µ on S(M) ⊆
V(R). For c ∈ I we have

0 = L(c) =

∫

S(M)
ĉdµ.

This shows that µ (S(M) \ Z(I)) = 0 (a standard argument,
using the fact that S(M)\Z(I) is a countable union of compact
sets).

So

L(a) =

∫

S(M+I)
âdµ

for all a ∈ A, which shows that L is nonnegative on elements
from (M + I)sat. So M + I has (SMP).
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2.2 The Main Theorem

Our goal in this section is to proof Theorem 2.5 below. It is
a generalized fibre theorem for closures of quadratic modules.
Before dealing with it, we describe the setup that we will use,
explain some constructions, and give some helpful results. So
let A be an R-algebra. Let X be a Hausdorff topological space
and

:̂ A → C(X,R)

a morphism of R-algebras. Denote the image of A in C(X,R)
by Â. As in Theorem 1.8 we assume condition (∗) to hold, i.e.
there exists p ∈ A such that p̂ ≥ 0 on X and for all i ∈ N, the set
Xi = {x ∈ X | p̂(x) ≤ i} is compact. This in particular implies
that X is locally compact, as observed in [M1]. Note that in case
X is compact, assumption (∗) is always fulfilled with p = 1, and
if A is finitely generated by x1, . . . , xn and X ⊆ V(R) closed, we
can choose p = x2

1 + · · ·+ x2
n.

Replacing p by p+1 if necessary, we can assume without loss of
generality that p̂ is strictly positive on X. So 1

p̂ is a continuous
positive function on X, vanishing at infinity. This means that
it takes arbitrary small values outside of compact sets.
Now we make the additional assumption that the functions â

which are bounded on X separate points. That means, for any
two distinct points in X there is some a ∈ A, such that â is
bounded on X and takes different values in the two points. This
is for example fulfilled if X is a compact subset of V(R), as
elements from A separate points of V(R). However, there are
also non-compact examples, as we will see later.
We use the assumption to apply [Bu], Theorem 3, which says

that the bounded functions from Â lie dense in the set of bounded
continuous functions on X, under the locally convex topology
defined by the family of seminorms

||f ||ψ := sup
x∈X

|ψ(x) · f(x)| ,
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where ψ is a continuous function vanishing at infinity. We will
use the seminorm defined by 1

p̂ . Note that in case X is compact,
we could use the standard Stone-Weierstrass approximation in-
stead of [Bu] in the following proofs.
We begin with a technical lemma.

Lemma 2.3. Let ν be a positive regular Borel measure on X

and h : X → R a measurable function. Suppose for all a ∈ A we
have ∫

X

â2|h|dν < ∞
as well as

0 ≤
∫

X

â2hdν.

Then h ≥ 0 on X, except on a ν-null set.

Proof. For n = 1, 2, . . . define

An := {x ∈ X | − 1

n− 1
< h(x) ≤ −1

n
},

where −1
0 := −∞. Suppose ν(Ai) > 0 for some i. Let χ be the

characteristic function of Ai, so
∫

X

χhdν ≤ −1

i
ν(Ai) < 0.

Now choose a sequence (fn)n∈N of continuous functions on X

with values in [0, 1], that converges pointwise except on a ν-null
set to χ. This can be done, using the regularity of ν as well as
Urysohn’s Lemma as stated for example in [Ru]. Using [Bu],
Theorem 3, we find a sequence (an)n∈N in A such that

sup
x∈X

∣∣∣∣
1

p̂(x)

(
ân(x)−

√
fn(x)

)∣∣∣∣ ≤
1

n

for all n. So

|ân −
√

fn| ≤ 1

n
p̂
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on X. From this we get |ân| ≤ p̂ + 1 on X, as
√

fn takes on
values only in [0, 1]. So

|â2
n − fn| = |ân −

√
fn| · |ân +

√
fn|

≤ 1

n
p̂(p̂ + 2)

holds on X. Thus the sequence | (â2
n − fn

) · h| converges to 0
pointwise on X. As | (â2

n − fn

)
h| ≤ p̂(p̂ + 2)|h| ≤ ((p̂ + 1)(p̂ +

2))2|h| on X and

∫

X

((p̂ + 1)(p̂ + 2))2 |h|dν < ∞

by assumption, the Theorem of Majorized Convergence applies
and yields

∣∣∣∣
∫

X

â2
nhdν −

∫

X

fnhdν

∣∣∣∣ ≤
∫

X

∣∣(â2
n − fn)h

∣∣ dν
n→∞−→ 0.

As |fn − χ| |h| converges pointwise except on a zero set to 0, and
is bounded from above by the function |h| which has a finite
integral, we get in the same way as above

∫

X

fnhdν
n→∞−→

∫

X

χhdν < 0.

Combining these result we have

∫

X

â2
nhdν

n→∞−→
∫

X

χhdν < 0,

which contradicts our assumption. So ν(Ai) = 0 for all i, which
proves the result.
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Towards the main theorem, we need a second R-algebra B and
an algebra homomorphism ϕ : A → B. So we have the following
diagram:

B

A
̂ //

ϕ

OO

C(X,R)

Suppose M ⊆ B is a quadratic module. We want to describe
the closure of M in terms of fibre-modules, indexed by elements
from X. Namely, for x ∈ X, we denote by Ix the ideal in B

generated by the set

{ϕ(a) | a ∈ A, â(x) = 0} .

We call Mx := M + Ix the fibre-module to x, and we want to
prove

M =
⋂

x∈X

Mx.

For this we have to make more assumptions. Namely, suppose
ϕ(a) ∈ M whenever â ≥ 0 on X. This assumption is fulfilled in
a large class of examples, as we will see below.
Now take L ∈ M∨, i.e. L is a linear functional on B that maps

M to [0,∞). For b ∈ B we define a linear functional Lb on A by

Lb(a) := L (b · ϕ(a)) .

We can apply Haviland’s Theorem (Theorem 1.8) to the func-
tionals Lb2. Indeed, whenever â ≥ 0 on X, then ϕ(a) ∈ M , so
also b2 · ϕ(a) ∈ M , so

Lb2(a) = L(b2 · ϕ(a)) ≥ 0.

So we get positive regular Borel measures νb on X such that

Lb2(a) = L(b2 · ϕ(a)) =

∫

X

âdνb
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holds for all a ∈ A. As all considered measures are defined on X,
we omit X under the integral sign from now on. The following
result is a key ingredient for the proof of Theorem 2.5:

Proposition 2.4. For all b ∈ B

νb ¿ ν1,

that is, every ν1-null set is also a νb-null set.

Proof. Let b ∈ B be fixed and suppose N ⊆ X is a Borel set
with ν1(N) = 0. We have to show νb(N) = 0. Denote the
characteristic function of N by χ.

Choose a sequence of functions (fn)n∈N from C(X, [0, 1]) that
converges pointwise to χ, except on a set that is a ν1- and a
νb-null set. This can be done, using the regularity of ν1, νb and
Urysohn’s Lemma. So

∫
fndν1

n→∞−→ ν1(N) = 0, (2)

by the Theorem of Majorized Convergence.

Apply [Bu], Theorem 3, to obtain a sequence (an)n∈N from A

with ∣∣∣ân −
√

fn

∣∣∣ ≤ 1

n
p̂

on X for all n. Exactly as in the proof of Lemma 2.3, the
sequences |ân −

√
fn| and |â2

n − fn| converge pointwise on X to
zero. |â2

n − fn| is bounded from above by p̂(p̂ + 2) on X and

∫
p̂(p̂ + 2)dν1 = L1(p(p + 2)) < ∞,

so the Theorem of Majorized Convergence implies
∣∣∣∣
∫

â2
ndν1 −

∫
fndν1

∣∣∣∣
n→∞−→ 0.
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Combined with (2) we get

∫
â2

ndν1
n→∞−→ 0. (3)

Using the inequality from Lemma 1.4, we have

(∫
ândνb

)2

= Lb2(an)
2

= L(b2 · ϕ(an))
2

≤ L(b4)L(ϕ(an)
2)

= L(b4) · L1(a
2
n)

= L(b4)

∫
â2

ndν1.

Together with (3) we find

∫
ândνb

n→∞−→ 0. (4)

As the sequence |ân −
√

fn| is bounded from above by p̂ on X

and ∫
p̂ dνb = Lb(p) < ∞,

we get, again by Majorized Convergence,

∣∣∣∣
∫

ândνb −
∫ √

fndνb

∣∣∣∣
n→∞−→ 0. (5)

The fact that (
√

fn)n converges pointwise except on a νb-null set
to χ, combined with (4) and (5), finally yields

0 = lim
n→∞

∫ √
fndνb =

∫
χdνb = νb(N).
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Proposition 2.4 allows us to apply the Radon-Nikodym Theo-
rem (see [Ru]). For every b ∈ B we get a ν1-integrable function
Φb : X → [0,∞) such that

Lb2(a) =

∫
â dνb =

∫
â · Φb dν1 for all a ∈ A.

If we define θb := Φ b+1
2
− Φ b−1

2
for b ∈ B, then all θb are ν1-

integrable and

Lb(a) = L
( b+1

2 )
2(a)− L

( b−1
2 )

2(a) =

∫
â · θb dν1

holds for all a ∈ A. Before stating and proving Theorem 2.5
below, we look at some properties of the functions θb.
For b1, b2 ∈ B, r1, r2 ∈ R and all a ∈ A we have

∫
â · θr1b1+r2b2

dν1 = Lr1b1+r2b2
(a)

= r1Lb1
(a) + r2Lb2

(a)

=

∫
â · (r1θb1

+ r2θb2
) dν1.

We apply Lemma 2.3 to the functions h = θr1b1+r2b2
−r1θb1

−r2θb2

and −h. The condition
∫

â2|h|dν1 < ∞ for all a ∈ A is obtained
by reducing to

∫
â2|Φb|dν1 = Lb2(a2) < ∞ for all b. So we get

θr1b1+r2b2
= r1θb1

+ r2θb2

except on a ν1-null set that depends on b1, b2, r1, r2.
For m ∈ M and any a ∈ A we have

0 ≤ L(m · ϕ(a)2) = Lm(a2) =

∫
â2θmdν1,

so again by Lemma 2.3,

θm ≥ 0,

except on a ν1-null set that depends on m.
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Last, for a, c ∈ A and b ∈ B we have
∫

ĉ · θb·ϕ(a)dν1 = Lb·ϕ(a)(c)

= L(b · ϕ(a)ϕ(c))

= Lb(ac)

=

∫
ĉ · âθb dν1.

So θb·ϕ(a) = â · θb, except on a ν1-null set depending on a and b.

We are now prepared for the main theorem.

Theorem 2.5. Let A,B be R-algebras of countable vector space
dimension, and let ϕ : A → B be an R-algebra homomorphism.
Let X be a Hausdorff space,

:̂ A → C(X,R)

an R-algebra homomorphism fulfilling (∗) (see Theorem 1.8) and
suppose the set

{â | a ∈ A, â bounded on X}

separates points of X. Further suppose M is a quadratic module
in B and ϕ(a) ∈ M whenever â ≥ 0 on X. For x ∈ X denote by
Ix the ideal in B generated by {ϕ(a) | a ∈ A, â(x) = 0}. Then

M =
⋂

x∈X

M + Ix.

Proof. One inclusion is obvious. For the other one fix q ∈⋂
x∈X M + Ix and L ∈ M∨. We have to show L(q) ≥ 0. From L

we construct all the functions θb as explained above.

Let B′ ⊆ B and A′ ⊆ A be a countable linear basis of B and A,
respectively. Using the fact that each element in B is a difference
of two squares, we can assume that B′ consist only of squares.
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Denote the Q-subspace of A spanned by A′ by A. Let B be the
Q-subalgebra of B generated by

B′ ∪ ϕ(A′) ∪ {q} .

B is a countable set and ϕ(A) ⊆ B. For each element b ∈ B
we have a unique representation as a finite sum b =

∑
ri · bi,

where all bi ∈ B′ and all ri ∈ R. Using the above demonstrated
properties of the functions θb, we can find one single ν1-null set
N ⊆ X such that for all x ∈ X \ N the following conditions
hold:

(i) θb(x) =
∑

riθbi
(x) for all b ∈ B

(ii) θm(x) ≥ 0 for all m ∈ M ∩ B
(iii) θb·ϕ(a)(x) = â(x) · θb(x) for all b ∈ B and all a ∈ A.

Because A and B are countable sets, this can indeed be ensured
with one single null set N .

For x ∈ X \ N we get linear functionals Lx on B by defining
them on the basis B′:

Lx(b) := θb(x) for b ∈ B′.

For b ∈ B with b =
∑

ri · bi as above we have

Lx(b) =
∑

riLx(bi) =
∑

riθbi
(x) = θb(x),

where the last equality uses (i). So for m ∈ M ∩ B
Lx(m) = θm(x) ≥ 0

holds, using (ii). Now let b ∈ M be arbitrary, i.e. b is not
necessarily from B. Write b =

∑
ri · bi with ri ∈ R and bi ∈ B′.

As all bi are squares, b +
∑

ti · bi ∈ M whenever all ti ≥ 0. So b
can be approximated in a finite dimensional R-subspace of B by
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elements from M ∩ B. Just choose ti > 0 arbitrary small such
that ri + ti ∈ Q. This shows

Lx(M) ⊆ [0,∞).

For a ∈ A and b ∈ B we have b · ϕ(a) ∈ B and therefore

Lx(b · ϕ(a)) = θb·ϕ(a)(x) = â(x) · θb(x),

using (iii). Now take a ∈ A with â(x) = 0. Approximate a by
a sequence of elements an from A in the same way as above, so
ân(x)

n→∞−→ 0. So for b ∈ B,

Lx(b · ϕ(a)) = lim
n→∞

Lx(b · ϕ(an)) = lim
n→∞

ân(x)θb(x) = 0.

By approximating arbitrary b ∈ B by elements of B we finally
get

Lx(Ix) = {0}.
Defining

Lx ≡ 0 for x ∈ N

we have

Lx ∈ (M + Ix)
∨ for all x ∈ X. (6)

Now

L(q) = Lq(1) =

∫
θq(x) dν1(x) =

∫
Lx(q) dν1(x),

using the fact that q ∈ B and N is a ν1-null set. By (6) and our
assumption on q, the function x 7→ Lx(q) is nonnegative on X,
so L(q) ≥ 0.

In the following section, we show how an algebra A and a topo-
logical space X can be constructed for a given quadratic module
M in B, in a way that allows to deduce Schmüdgen’s Theorem
from Theorem 2.5.



34 2 A FIBRE THEOREM FOR CLOSURES

2.3 Schmüdgen’s Result

Let B be an R-algebra of countable vector space dimension.
Let M be a quadratic module in B. We take finitely many
elements b1, . . . , bs ∈ B such that Ci−bi, bi−ci ∈ M for some real
numbers Ci ≥ ci. Consider the subalgebra A = R[b1, . . . , bs] of B

generated by these elements, and the quadratic module M̃ in A

generated by Ci−bi, bi−ci (i = 1, . . . , s). It is archimedean. The
role of ϕ from Theorem 2.5 is played by the canonical inclusion

ι : A ↪→ B

and we have ι(M̃) ⊆ M.

Define X := S(M̃) ⊆ VA(R), so we have the usual morphism

:̂ A → C(X,R).

Obviously X is compact, so the separating points condition from
Theorem 2.5 and the condition (∗) are fulfilled. Now if some

â ≥ 0 on X, then a + ε ∈ M̃ for all ε > 0 by Theorem 1.10, so
ι(a) ∈ M .
For α ∈ X one checks that Iα is the ideal in B generated by

b1 − α(b1), . . . , bs − α(bs),

and (α(b1), . . . , α(bs)) ∈
∏s

i=1[ci, Ci]. So we get the following
result:

Theorem 2.6. Let B be an R-algebra of countable vector space
dimension and let M ⊆ B be a quadratic module. Suppose
b1, . . . , bs ∈ B are such that

C1 − b1, b1 − c1, . . . , Cs − bs, bs − cs ∈ M

for some real numbers Ci ≥ ci (i = 1, . . . , s). Then

M =
⋂

λ∈Λ

M + (b1 − λ1, . . . , bs − λs),

where Λ =
∏s

i=1[ci, Ci]. In particular, if each quadratic module
M + (b1 − λ1 . . . , bs − λs) has (SMP), then so does M .
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Proof. Apply Theorem 2.5 to the above explained setup to get
the equality. For the remark concerning (SMP), write

Mλ := M + (b1 − λ1, . . . , bs − λs) .

Note that obviously

S(M) =
⋃

λ∈Λ

S(Mλ)

and therefore

M sat =
⋂

λ∈Λ

(Mλ)
sat

holds. So if all Mλ have (SMP), then

M =
⋂

λ∈Λ

Mλ =
⋂

λ∈Λ

(Mλ)
sat = M sat.

The assumption Ci − bi, bi − ci ∈ M for all i is indeed nec-
essary for the theorem to hold, as we will later see. However,
Schmüdgen’s original result from [Sm3] is stated only for finitely
generated preorderings and does not need it. To obtain this, we
need another result. It is implicitly already proven in [Sm2] and
again in [Sm3], but without bringing it up explicitly. We think
it is interesting for itself, so we state it as a proposition.

Proposition 2.7. Let B be a finitely generated R-algebra and
P ⊆ B a finitely generated preordering. Let

:̂ B → C(S(P ),R)

be the canonical morphism. For any b ∈ B, whenever b̂ is
bounded and nonnegative on S(P ), then

b ∈ P.
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Proof. Let L ∈ P∨. As shown in [Sm2], Theorem 1, and [Sm3],
Proposition 2, for any bounded b̂ we have

L(b2) ≤ || b̂ ||2∞.

This result uses the Positivstellensatz and the one dimensional
Hamburger moment problem. It also uses that P is closed under
multiplication. It is proven for polynomial rings, but carries over
directly to finitely generated algebras.
So let b̂ be nonnegative on S(P ) in addition. We have to show

L(b) ≥ 0. Using Lemma 1.4, we can assume L(1) = 1, maybe
after scaling with a positive real. For any δ > || b̂ ||∞ we have

−δ ≤ b̂− δ < 0

on S(P ), and so
L

(
(b− δ)2) ≤ δ2.

This implies 0 ≤ L(b2) ≤ 2δL(b), so L(b) ≥ 0, as δ > 0.

The proposition implies that P has (SMP), whenever S(P ) is
compact. This is one half of the important result from [Sm2].
And finally we get Schmüdgen’s main result from [Sm3] with it:

Theorem 2.8 (Schmüdgen, [Sm3]). Let B be a finitely gener-
ated R-algebra and P ⊆ B a finitely generated preordering. Let
b1, . . . , bs ∈ B be bounded as functions on S(P ). Then

P =
⋂

β∈S(P )

P + (b1 − β(b1), . . . , bs − β(bs)).

In particular, if each P +(b1 − β(b1), . . . , bs − β(bs)) has (SMP),
then so does P .

Proof. Choose real numbers Ci ≥ ci such that Ci − bi, bi − ci

are nonnegative as functions on S(P ). By Proposition 2.7, they
belong to P . Now Theorem 2.6 yields

P =
⋂

λ∈Λ

P + (b1 + λ1, . . . , bs + λs), (7)
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where Λ =
∏s

i=1[ci, Ci]. Now if the semi-algebraic set Sλ in
VB(R) corresponding to the finitely generated preordering
P + (b1 + λ1, . . . , bs + λs) for some λ ∈ Λ is not empty, then
λ = (β(b1), . . . , β(bs)) for any β ∈ Sλ ⊆ S(P ). If Sλ is empty,
then

P + (b1 + λ1, . . . , bs + λs) = A,

see for example [PD], Remark 4.2.13. This shows that we can
let the intersection in (7) run over β ∈ S(P ) instead of λ ∈ Λ.
The remark about (SMP) is proven similar to the one in 2.6.

Note that by Proposition 2.2, the preorderings

Pβ := P + (b1 − β(b1), . . . , bs − β(bs))

have (SMP) if P has. So it is necessary and sufficient for all Pβ

to have (SMP), for P to have (SMP).
The bigger the fibre-preorderings appearing in Theorem 2.8 are,

the more is generally known about them. For example, if they
describe one dimensional sets, the works [KM, KMS, P2, Sc2]
allow to solve the questions for (SMP), closedness etc. in almost
all cases.
So if the whole ring of functions bounded on S(P ) is finitely

generated, Theorem 2.8 applies in the best possible way. See
[P2] for a discussion of the question, when this ring is finitely
generated. Note that the ring of bounded polynomials, some-
times also called the Real Holomorphy Ring, is also of interest
beside its use in Schmüdgen’s Fibre Theorem; see for example
[BP, Sw2].
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2.4 Applications

We conclude this chapter with some applications of the fibre the-
orems from above. The first is a slight generalization of the fact,
that every finitely generated preordering describing a compact
set has (SMP).

Corollary 2.9. Let B be a finitely generated R-algebra and
S ⊆ VB(R) a basic closed semi-algebraic set. Suppose there
are b1, . . . , bs ∈ B that are bounded as functions on S and sep-
arate its points. Then every finitely generated preordering P in
B describing S has (SMP).

Proof. Apply Theorem 2.8 and note that all the preorderings

P + (b1 − α(b1), . . . , bs − α(bs))

describe singletons. So they all have (SMP), by the remark
following Proposition 2.7.

The following corollary can for example be applied to actions
of compact algebraic groups on affine varieties. At the end of
Section 3.3, that setup is explained in more detail.

Corollary 2.10. Let A,B be finitely generated R-algebras and
ϕ : A → B a morphism, such that the induced map

ϕ∗ : VB(R) → VA(R)

has compact fibres. Let S ⊆ VA(R) be basic closed semi-algebraic
and suppose there are finitely many elements from A which are
bounded as functions on S and separate points of S. Then for
(ϕ∗)−1(S), the strong moment problem is finitely solvable.

Proof. Take a finitely generated preordering P in A that de-
scribes S. P has (SMP) in A by Corollary 2.9, and the fi-
nitely generated preordering P ′ generated by ϕ(P ) in B de-
scribes (ϕ∗)−1(S). So we can apply Theorem 2.5 to this setup.
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The semi-algebraic set defined by P ′ + Ix for x ∈ S equals

(ϕ∗)−1(x)

and is therefore compact. So all the fibre-preorderings have
(SMP). The usual argument shows that also P ′ has (SMP).

The last corollary allows to pass from semi-algebraic sets to
subsets, and obtain (SMP) under certain conditions.

Corollary 2.11. Let B be a finitely generated R-algebra and
suppose M is a quadratic module in B that has (SMP). If b ∈ B
is bounded from above as a function on S(M), then

M ′ := M + b ·
∑

B2

has (SMP) as well.

Proof. We have N − b ∈ M sat = M ⊆ M ′ for some big enough
N ≥ 0. As also b ∈ M ′, we can apply Theorem 2.6 to M ′. For
λ ∈ [0, N ], M ′ + (b − λ) = M + (b − λ), so it has (SMP) by
Proposition 2.2. So also M ′ has (SMP).
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3 Stability

The notion of a stable quadratic module is first explicitly used
in [PSc]. The authors show, that stable quadratic modules are
closed under certain conditions, and they give a geometric cri-
terion for stability. Implicitly, similar notions have been used in
the proofs of [KM], Theorem 3.5, [PD], Proposition 6.4.5 and, as
pointed out by the authors of [PSc], also in [Sm1]. All these au-
thors use stability to show closedness of certain quadratic mod-
ules.

In [Sc4], stability is linked to the moment problem, generalizing
an idea by Prestel and Berg. Indeed, stability often excludes
(SMP). We start by defining stability as in [PSc]. Therefore let
A be an R-algebra, a1, . . . , as ∈ A and W a linear subspace of
A. Let ∑

(W ; a1, . . . , as)

denote the set of all elements of A of the form

σ0 + σ1a1 + · · ·+ σsas,

where all σi are sums of squares of elements from W , σi ∈
∑

W 2

for short. We obviously have

QM(a1, . . . , as) =
⋃

W

∑
(W ; a1, . . . , as),

where the union runs over all finite dimensional subspaces of A.
If W is finite dimensional, then

∑
(W ; a1, . . . , as) is contained

in some finite dimensional subspace of A. The authors of [PSc]
show, that such a set

∑
(W ; a1, . . . , as) is closed if A is finitely

generated, reduced, and S(a1, . . . , as) is Zariski dense in V(R).
The following definition is Definition 2.10 in [PSc]:

Definition 3.1. Let A be an R-algebra and M = QM(a1, . . . , as)
a finitely generated quadratic module in A. M is called stable,
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if for every finite dimensional subspace U of A there is another
finite dimensional subspace W of A such that

M ∩ U ⊆
∑

(W ; a1, . . . , as).

We call a map that assigns to each finite dimensional subspace
U such a finite dimensional subspace W a stability map for
a1, . . . , as.

In polynomial rings, stability just means that we can represent
each element a from M with sums of squares of a degree that is
bounded by a function of the degree of a.
Of course one has to show that the notion of stability does not

depend on the specific choice of generators of M . This is done
in [PSc], Lemma 2.9, and can also be found in our next section
(Lemma 3.8).
The interest in stability comes from several facts. One of them

is Theorem 3.17 from [Sc4], which generalizes Corollary 2.11
from [PSc]:

Theorem 3.2. Let M be a finitely generated quadratic module
in the finitely generated R-algebra A. If M is stable, then

M = M +
√

M ∩ −M.

Here,
√

M ∩ −M denotes the radical of the ideal M ∩ −M. If
for example A is reduced and M ∩−M = {0}, then M is closed.
This is in particular the case for stable quadratic modules in
polynomials rings, whose semi-algebraic set has nonempty inte-
rior.
Another fact making stability so interesting is [Sc4], Theorem

5.4, which we state in a slightly weaker version:

Theorem 3.3. Let M be a finitely generated quadratic module
in the polynomial ring R[X1, . . . , Xn]. If M is stable and the
semi-algebraic set S(M) ⊆ Rn has dimension at least 2, then M
does not have (SMP).
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Further, stability solves the so called Membership-Problem for
quadratic modules (see [Au]), and allows to use semi-definite
optimization to obtain explicit representations of polynomials.
So stability is a very important notion when dealing with

quadratic modules. This directs one’s attention to the question
how to find out, whether a finitely generated quadratic module
is stable. In the proof of Theorem 3.5 in [KM], the authors show
that a finitely generated quadratic module in R[X1, . . . , Xn] is
stable, if its semi-algebraic set in Rn contains a full dimensional
cone (without explicitly using the notion of stability). Theo-
rem 2.14 in [PSc], that appeared at the same time, is a stronger
version of that:

Theorem 3.4. For a finitely generated R-algebra A suppose that
the variety V = Spec(A) is normal. Let P be a finitely generated
preordering in A. Assume V has an open embedding into a
normal complete R-variety V such that the following is true: For
any irreducible component Z of V \ V , the subset S(P ) ∩ Z(R)
is Zariski dense in Z, where S(P ) denotes the closure of S(P )
in V (R). Then P is stable and closed.

See [P1, P2] for a thorough discussion and applications of this
result. Our approach is to generalize the idea from the proof
of Theorem 3.5 in [KM]. We develop tools for the analysis of
cancelling of highest degree terms of polynomials. It turns out
that this produces very easy to check conditions for stability.
These conditions can be of geometric nature (as in the theorem
above), or of more combinatorial one. So it also allows appli-
cations to quadratic modules to which Theorem 3.4 does not
apply. In addition, the geometric and combinatorial methods
can be mixed. On the other hand, our method mostly applies
to real domains only. Geometrically, that limits the focus to ir-
reducible varieties. A lot of the results even work in polynomial
rings only. However, the ease of application makes up for that
to some part.
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3.1 Generalized Definition of Stability

During the whole rest of the chapter, let A be a finitely gener-
ated R-algebra which is a real domain. That means A does not
contain zero divisors and a sum of squares a2

1 + · · ·+ a2
s is only

zero if all ai are zero.

Let (Γ,≤) be an ordered Abelian group, i.e. an Abelian group
Γ with a linear ordering, such that α ≤ β ⇒ α+γ ≤ β +γ holds
for any α, β, γ ∈ Γ.

Definition 3.5. A filtration of A is a family {Uγ}γ∈Γ of linear
subspaces of A, such that for all γ, γ′ ∈ Γ

γ ≤ γ′ ⇒ Uγ ⊆ Uγ′,

Uγ · Uγ′ ⊆ Uγ+γ′,⋃

γ∈Γ

Uγ = A and

1 ∈ U0

holds.

Definition 3.6. A grading of A is a decomposition of the vector
space A into a direct sum of linear subspaces:

A =
⊕

γ∈Γ

Aγ,

such that Aγ · Aγ′ ⊆ Aγ+γ′ holds for all γ, γ′ ∈ Γ.

Any element 0 6= a ∈ A can then be written in a unique way as

a = aγ1
+ · · ·+ aγd

for some d ∈ N and 0 6= aγi
∈ Aγi

, where γ1 < γ2 < · · · < γd.
Then deg(a) := γd is called the degree of a, and amax := aγd

is
called the highest degree part of a. Elements from Aγ are called
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homogeneous of degree γ. The degree of 0 is −∞. One easily
checks that 1 ∈ A0.

The following are some easy observations: If A =
⊕

γ∈Γ Aγ is a
grading, then

Uτ :=
⊕
γ≤τ

Aγ

defines a filtration {Uτ}τ∈Γ of A. If ν : K → Γ ∪ {∞} is a
valuation of the quotient field K of A which is trivial on R, then

Uγ := {a ∈ A | ν(a) ≥ −γ}
defines a filtration {Uγ}γ∈Γ of A. If A =

⊕
γ∈Γ Aγ is a grading,

then

ν

(
f

g

)
:= deg(g)− deg(f)

defines a valuation on the quotient field K, trivial on R. This
valuation induces the same filtration on A as the grading. For
any grading and all a, b ∈ A we have deg(a ·b) = deg(a)+deg(b)
and

deg(a2 + b2) = max{deg(a2), deg(b2)} = 2 max{deg(a), deg(b)}.
This uses that A is a real domain. We now define stability
relative to a filtration.

Definition 3.7. Let {Uγ}γ∈Γ be a filtration of A and a1, . . . , as

generators of the quadratic module M . We set a0 = 1.
(1) a1, . . . , as are called stable generators of M with respect to
the filtration, if there is a monotonically increasing map
% : Γ → Γ, such that

M ∩ Uγ ⊆
∑ (

U%(γ); a1, . . . , as

)

holds for all γ ∈ Γ.
(2) a1, . . . , as are called strongly stable generators of M with
respect to the filtration, if there is a monotonically increasing
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map % : Γ → Γ, such that for all sums of squares σ0, . . . , σs,
where σi = f 2

i,1 + · · ·+ f 2
i,ki

, we have

s∑
i=0

σiai ∈ Uγ ⇒ fi,j ∈ U%(γ) for all i, j.

Obviously, strongly stable generators of M are stable generators
of M . The notion of strong stability has also been introduced
in [P1], but under a different name. The following Lemma is
essentially the same as [PSc], Lemma 2.9.

Lemma 3.8. If M has stable generators with respect to a given
filtration, then any finitely many generators of M are stable gen-
erators with respect to that filtration.

Proof. Suppose a1, . . . , as are stable generators of M with sta-
bility map % as in Definition 3.7 (1). Let b1, . . . , bt be arbitrary
generators of M . Then we find representations

ai =
t∑

j=0

σ
(i)
j bj,

where all σ
(i)
j ∈ ∑

(Uτ)
2 for some big enough τ ∈ Γ. Now take

f ∈ M ∩Uγ for some γ and find a representation f =
∑s

i=0 σiai

with σi ∈
∑ (

U%(γ)
)2

for all i. Then

f =
∑

i

σiai =
∑

i

σi

∑
j

σ
(i)
j bj =

∑
j

(∑
i

σiσ
(i)
j

)
bj,

and all
∑

i σiσ
(i)
j are in

∑ (
U%(γ)+τ

)2
. This shows that b1, . . . , bt

are stable generators of M with stability map γ 7→ %(γ)+ τ .

So it makes sense to talk about stability of a finitely generated
quadratic module with respect to a filtration, without mention-
ing the generators. However, the stability map % may depend
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on the generators in general. Note also that M is stable in the
usual sense (defined in the previous section), if and only if it is
stable with respect to a filtration consisting of finite dimensional
subspaces Uγ.

Now suppose we are given a grading on A. We will talk about
stable generators, strongly stable generators and stable quadratic
modules with respect to the grading, and always mean these no-
tions with respect to the induced filtration. However, things
become easier to handle in this case.

Lemma 3.9. Let A =
⊕

γ∈Γ Aγ be a grading and let M be a
finitely generated quadratic module in A. Then M has strongly
stable generators with respect to the grading if and only if there
is a monotonically increasing map ψ : Γ → Γ, such that for all
f, g ∈ M

deg(f), deg(g) ≤ ψ (deg(f + g))

holds. In particular, if M has strongly stable generators, then
any finitely many generators are strongly stable generators.

Proof. Suppose a1, . . . , as are strongly stable generators of M

with stability map %. Take f, g from M with representations
f =

∑
i σiai, g =

∑
i τiai. Then for all j

deg (σjaj) = deg (σj) + deg (aj)

≤ deg (σj + τj) + deg(aj)

= deg((σj + τj) aj)

≤ ψ

(
deg

(∑

i

(σi + τi) ai

))

= ψ (deg (f + g)) ,

where the last inequality is fulfilled with

ψ(γ) := 2%(γ) + max
i

deg(ai),
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by the strong stability of the ai. So deg(f) ≤ ψ (deg(f + g))
holds, and the same is true for g. Note that ψ is monotonically
increasing, as % was.

So now suppose deg(f), deg(g) ≤ ψ (deg(f + g)) for some suit-
able map ψ and all f, g ∈ M . Take any finitely many (non-
zero) generators a1, . . . , as and sums of squares σ0, . . . , σs, where
σj = f 2

j,1 + · · ·+ f 2
j,kj

. Set a0 = 1. Then

deg (σjaj) ≤ ψ

(
deg

(∑

i

σiai

))

for all j. Thus for all j, l,

2 deg(fj,l) ≤ ψ

(
deg

(∑
i

σiai

))
−min

i
deg(ai).

So

deg (fj,l) ≤ max

{
0, ψ

(
deg

(∑

i

σiai

))
−min

i
deg(ai)

}

holds. Now %(τ) := max {0, ψ (τ)−mini deg(ai)} defines a
monotonically increasing map, and whenever

f =
∑

i

σiai ∈
⊕
γ≤τ

Aγ for some τ,

then deg(fj,l) ≤ %(deg(f)) ≤ %(τ), which shows the strong sta-
bility of the a1, . . . , as. The proof indeed shows that any finitely
many generators are strongly stable generators in this case.

So we can talk about strong stability of a quadratic module
with respect to a grading, without mentioning the generators.
A very special case of strong stability is the following, which will
have a nice characterization below.
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Definition 3.10. Let A =
⊕

γ∈Γ Aγ be a grading and let M ⊆ A
be a finitely generated quadratic module. M is totally stable with
respect to the grading, if

deg(f), deg(g) ≤ deg(f + g)

holds for all f, g ∈ M . The proof of Lemma 3.9 shows that this
is equivalent to the fact, that there are generators a1, . . . , as of
M such that

deg(σjaj) ≤ deg

(∑

i

σiai

)
for all j

holds for all σj ∈
∑

A2. All finitely many generators of M fulfill
this condition, then.

Note that a quadratic module M in A which is totally sta-
ble with respect to any grading has trivial support. Indeed if
f,−f ∈ M , then deg(f) ≤ deg(f − f) = deg(0) = −∞, so
f = 0.
If ν : K → Γ ∪ {∞} is the valuation corresponding to a given

grading, then the notion of total stability is equivalent to saying
that for any f, g ∈ M ,

ν(f + g) = min {ν(f), ν(g)}
holds. This is usually called weak compatibility of ν and M .

3.2 Conditions for Stability

Total stability with respect to a grading turns out to be well
accessible. First, when checking total stability of a finitely gen-
erated quadratic module, one can apply a reduction result, to
obtain possibly smaller quadratic modules. Therefore take gen-
erators a1, . . . , as of M , define an equivalence relation on the
generators by saying

ai ≡ aj :⇔ deg(ai) ≡ deg(aj) mod 2Γ,
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and group them into equivalence classes

{ai1, . . . , aisi
} (i = 1, . . . , r).

Then total stability reduces to total stability of the quadratic
modules generated by these equivalence classes:

Proposition 3.11. M is totally stable with respect to the given
grading if and only if all the quadratic modules

Mi := QM(ai1, . . . , aisi
)

are totally stable.

Proof. The ”only if”-part it obvious. For the ”if”-part take
f, g ∈ M with representations f = σ0 + σ1a1 + · · · + σsas and
g = τ0 + τ1a1 + · · · + τsas. By grouping the terms with respect
to the equivalence relation and using the total stability of the
modules Mi, we get decompositions

f = f1 + · · ·+ fr, g = g1 + · · ·+ gr

with fi, gi ∈ Mi and all the fi (as well as the gi) have a different
degree modulo 2Γ. So if f and g have the same degree and
deg(f) = deg(fk), deg(g) = deg(gl), then k = l and the highest
degree parts of f and g cannot cancel out, due to the total
stability of Mk.

Now total stability has the following easy characterization:

Proposition 3.12. Let A =
⊕

γ∈Γ Aγ be a grading and let M

be a finitely generated quadratic module in A. Let a1, . . . , as be
generators of M . Then

M is totally stable ⇔ supp (QM(amax
1 , . . . , amax

s )) = {0}.
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Proof. First suppose supp (QM(amax
1 , . . . , amax

s )) 6= {0}. So there
are sums of squares σ0, . . . , σs, not all zero, such that∑s

i=0 σia
max
i = 0. Now

deg

(
s∑

i=0

σiai

)
= deg

(
s∑

i=0

σi(ai − amax
i )

)

≤ max
i
{deg(σi(ai − amax

i )}
< max

i
{deg(σiai)} ,

so M is not totally stable. Conversely, for any sum of squares
σj, the highest degree part of σjaj lies in QM(amax

1 , . . . , amax
s ).

So when adding elements of the form σiai, the highest degree
parts cannot cancel out, if supp (QM(amax

1 , . . . , amax
s )) = {0}. So

M is totally stable.

The good thing about Proposition 3.12 is, that it allows to link
total stability to a geometric condition, via Proposition 1.5:

Theorem 3.13. Let A =
⊕

γ∈Γ Aγ be a grading and M a fi-
nitely generated quadratic module in A. If for a set of generators
a1, . . . , as of M , the set

S(amax
1 , . . . , amax

s ) ⊆ V(R)

is Zariski dense, then M is totally stable with respect to the
grading. If M is closed under multiplication, then total stability
implies the Zariski denseness for any finite set of generators of
M .

Proof. If S(amax
1 , . . . , amax

s ) is Zariski dense, then

supp (QM(amax
1 , . . . , amax

s )) = {0},
by Proposition 1.5 (note that A is real). So Proposition 3.12
yields the total stability of M . If M is a preordering, generated
by a1, . . . , as as a quadratic module, and totally stable, then
QM(amax

1 , . . . , amax
s ) is also a preordering. So Propositions 3.12

and 1.5 imply the denseness of S(amax
1 , . . . , amax

s ) in V(R).
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Note that if M is a finitely generated quadratic module which is
closed under multiplication, and b1, . . . , bt generate M as a pre-
ordering, then the products be := be1

1 · · · bet
t (e ∈ {0, 1}t) generate

M as a quadratic module, and

S(bmax
1 , . . . , bmax

t ) = S (
bmax
e | e ∈ {0, 1}t

)
.

In the next section we will consider different kinds of gradings
on the polynomial ring A = R[X1, . . . , Xn]. The denseness con-
dition from Theorem 3.13 will be translated into a geometric
condition on the original set S(M).
Recall that we are mostly interested in stability of a finitely gen-

erated quadratic module in the sense of [PSc] (see the previous
section), that is, stability with respect to a filtration of finite di-
mensional subspaces. Many of the later considered gradings do
not induce such finite dimensional filtrations. Our goal is then
to find stability with respect to enough different gradings, so
that in the end the desired stability is still obtained. Therefore
we consider the following setup:
Let Γ, Γ1, . . . , Γm be ordered Abelian groups and let

{Wγ}γ∈Γ ,
{

U (j)
γ

}
γ∈Γj

(j = 1, . . . , m)

be filtrations of A.

Definition 3.14. The filtration {Wγ}γ∈Γ is covered by the fil-
trations {

U (j)
γ

}
γ∈Γj

(j = 1, . . . , m),

if there are monotonically increasing maps

η : Γ1 × · · · × Γm → Γ, ηj : Γ → Γj (j = 1, . . . , m),

such that for all γ ∈ Γ, γj ∈ Γj (j = 1, . . . , m), the following
holds:

Wγ ⊆
m⋂

j=1

U
(j)
ηj(γ) and
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m⋂
j=1

U (j)
γj
⊆ Wη(γ1,...,γm).

For η, monotonically increasing refers to the partial ordering
on the product group obtained by the componentwise orderings
of the factors.
We will speak about covering of/by gradings, and mean the no-

tion from Definition 3.14 applied to the induced filtrations. The
next theorem makes clear why we are interested in coverings.

Theorem 3.15. Suppose a quadratic module M in A has gener-
ators a1, . . . , as, which are strongly stable generators with respect
to all the filtrations

{
U (j)

γ

}
γ∈Γj

(j = 1, . . . , m).

Then a1, . . . , as are also strongly stable generators of M with
respect to any filtration {Wγ}γ∈Γ which is covered by these fil-
trations.

Proof. For every j = 1, . . . , m, take a stability map %j for the

generators with respect to the filtration
{

U
(j)
γ

}
γ∈Γj

(remember

Definition 3.7(2)). As in Definition 3.14 , the covering maps are
denoted by η and ηj.
Take sums of squares σ0, . . . , σs, where σi = f 2

i,1 + · · · + f 2
i,ki

and suppose
∑s

i=0 σiai ∈ Wγ for some γ ∈ Γ. Then
∑s

i=0 σiai ∈
U

(j)
ηj(γ) for all j. So by strong stability,

fi,l ∈ U
(j)
%j(ηj(γ)) for all j, i, l.

But then

fi,l ∈ Wη(%1(η1(γ)),...,%m(ηm(γ))) for all i, l,

which shows the strong stability with respect to {Wγ}γ∈Γ.
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Before we apply these results, we conclude this section with an
easy observation. It will be helpful in generalizing an interesting
result from [CKS] later on. For this we drop the assumption that
all algebras are real domains. We consider arbitrary R-algebras
A,B and an R-algebra homomorphism ϕ : A → B. Of course,
the definitions of stability still apply.

Proposition 3.16. Let S ⊆ VA(R) be basic closed semi-
algebraic. Suppose every finitely generated quadratic module
in B describing (ϕ∗)−1(S) has only strongly stable generators
with respect to a fixed filtration (Uγ)γ∈Γ on B. Then every fi-
nitely generated quadratic module in A describing S has only
strongly stable generators with respect to the induced filtration(
ϕ−1(Uγ)

)
γ∈Γ .

Proof. Let a1, . . . , as be generators of a quadratic module M
in A with S(M) = S. Take sums of squares σ0, . . . , σs with
σi = f 2

i,1 + · · ·+ f 2
i,ki

and assume

σ0 + σ1a1 + · · ·+ σsas ∈ ϕ−1(Uγ) (8)

for some γ ∈ Γ. The elements ϕ(a1), . . . , ϕ(as) generate a
quadratic module in B that describes (ϕ∗)−1(S). So they are
strongly stable generators and we denote the corresponding sta-
bility map by %. Applying ϕ to (8) and using the strong sta-
bility yields ϕ(fi,j) ∈ U%(γ) for all i, j, and therefore all fi,j ∈
ϕ−1(U%(γ)). This shows that a1, . . . , as are strongly stable gener-
ators (with stability map %).

We will apply the result at the end of the following section.
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3.3 Applications

In this section we apply the results from the previous section,
mostly in the polynomial ring A = R[X] = R[X1, . . . , Xn]. We
identify VA(R) with Rn in the usual way. We start by defining
a class of useful gradings.
For δ = (δ1, . . . , δn) ∈ Nn and z = (z1, . . . , zn) ∈ Zn we write

Xδ := Xδ1
1 · · ·Xδn

n

and
z ◦ δ := z1δ1 + · · ·+ znδn.

For d ∈ Z define

A
(z)
d :=





∑

δ∈Nn, z◦δ=d

cδX
δ | cδ ∈ R



 .

Then
A =

⊕

d∈Z
A

(z)
d

is a grading indexed in the ordered group (Z,≤), to which we
will refer to as the z-grading. For example, z = (1, . . . , 1) gives
rise to the usual degree-grading on A, whereas z = (1, 0, . . . , 0)
defines the grading with respect to the usual degree in X1. Note
that the filtration induced by such a z-grading consists of finite
dimensional linear subspaces of A if and only if all entries of z

are positive.
We want to characterize the denseness condition from Theorem

3.13 for these z-gradings. For a compact set K in Rn with
nonempty interior, we define the tentacle in direction of z in the
following way:

TK,z := {(λz1x1, . . . , λ
znxn) | λ ≥ 1, x = (x1, . . . , xn) ∈ K} .

For z = (1, . . . , 1), such a set is just a full dimensional cone in
Rn. For z = (1, 0, . . . , 0) it is a full dimensional cylinder going to
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infinity in the direction of x1. For z = (1,−1) ∈ Z2, something
like the set defined by xy ≤ 2, xy ≥ 1 and x ≥ 1 would be such
a set.

Proposition 3.17. Let a1, . . . , as be polynomials in the graded
polynomial ring R[X] =

⊕
d∈ZA

(z)
d , where z ∈ Zn. Then the set

S(amax
1 , . . . , amax

s ) ⊆ Rn

is Zariski-dense in Rn, if and only if the set

S(a1, . . . , as) ⊆ Rn

contains a set TK,z for some compact K ⊆ Rn with nonempty
interior.

Proof. First suppose S(amax
1 , . . . , amax

s ) is Zariski-dense, which is
equivalent to saying that there is a compact set K with non-
empty interior, on which all amax

i are positive. Write each ai as
a sum of homogeneous elements (with respect to the z-grading),
for example

a1 = ad1
+ . . . + adt

,

where d1 < . . . < dt and 0 6= adi
∈ A

(z)
di

. Then for x ∈ Rn and
λ > 0

a1(λ
z1x1, . . . , λ

znxn) = λd1ad1
(x) + . . . + λdtadt

(x).

As adt
(x) = amax

1 (x) > 0 if x is taken from K, the expression
is positive for λ ≥ N with N big enough. Thereby N can be
chosen to depend only on the size of the coefficients adi

(x). So N

can be chosen big enough to make ai(λ
z1x1, . . . , λ

znxn) positive
for all λ ≥ N , x ∈ K and all i = 1, . . . , s. Replacing K by

K ′ := {(N z1x1, . . . , N
znxn) | x = (x1, . . . , xn) ∈ K}

we find TK ′,z ⊆ S(a1, . . . , as).
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Conversely, suppose S(a1, . . . , as) contains a set TK,z. Then all
the highest degree parts of the ai must be nonnegative on K,
with the same argument as above. So S(amax

1 , . . . , amax
s ) contains

K and is therefore Zariski-dense in Rn.

Combined with Theorem 3.13 we get:

Theorem 3.18. Let a1, . . . , as be polynomials in the graded poly-
nomial ring R[X] =

⊕
d∈ZA

(z)
d , where z ∈ Zn. If the set

S(a1, . . . , as) ⊆ Rn

contains some tentacle TK,z (K compact with nonempty inte-
rior), then the quadratic module QM(a1, . . . , as) is totally sta-
ble. If QM(a1, . . . , as) is a preordering and totally stable, then
S(a1, . . . , as) contains such a tentacle.

For the z-gradings, we can also settle the questions of coverings:

Proposition 3.19. Let z, z(1), . . . , z(m) ∈ Zn and assume there
exist numbers r1, . . . , rm, t1, . . . , tm ∈ N, such that the following
conditions hold (where v º w means ≥ in each component of
the vectors v, w in Zn):

r1z
(1) + · · ·+ rmz(m) º z and

tjz º z(j) for j = 1, . . . , m.

Then the z-grading on R[X] is covered by the z(j)-gradings.

Proof. We denote by deg(f) and deg(j)(f) the degree of a poly-
nomial f with respect to the z- and the z(j)-grading, respectively.
First take a polynomial f and suppose deg(f) ≤ d for d ∈ Z. So
for every monomial cXδ occurring in f we have z ◦ δ ≤ d. Now
for every j = 1, . . . , m,

z(j) ◦ δ ≤ tj (z ◦ δ) ≤ tjd,

so deg(j)(f) ≤ tjd. Thus ψj : Z → Z; d 7→ tjd fulfills the condi-
tion from Definition 3.14.
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Now suppose deg(j)(f) ≤ dj for dj ∈ Z and j = 1, . . . , m. Now
for every monomial cXδ occurring in f ,

z ◦ δ ≤ r1

(
z(1) ◦ δ

)
+ · · ·+ rm

(
z(m) ◦ δ

)
≤ r1d1 + · · ·+ rmdm

holds. So ψ : Zm → Z; (d1, . . . , dm) 7→ r1d1 + · · · + rmdm fulfills
the other condition from Definition 3.14.

For example, the usual grading (z = (1, . . . , 1)) is covered by
the gradings defined by

z(1) = (1, 0, . . . , 0), z(2) = (0, 1, 0, . . . , 0), . . . , z(n) = (0, . . . , 0, 1).

For n = 2, the two gradings defined by

z(1) = (0, 1), z(2) = (1,−1)

also cover the usual grading.
Combining Proposition 3.19, Theorem 3.15 and Theorem 3.18,

we get geometric conditions for stability in the sense of [PSc].
Indeed, take a covering of the usual grading by some z-gradings.
For all the z-gradings we have a geometric interpretation of total
stability (Theorem 3.18). So Theorem 3.15 yields a geometric
condition for (strong) stability with respect to the usual grading:

Theorem 3.20. Let S ⊆ Rn be a basic closed semi-algebraic set
that contains sets TKj ,z(j), where Kj is compact with nonempty

interior and z(j) ∈ Zn (j = 1, . . . , m). If there exist r1, . . . , rm ∈
N such that

r1z
(1) + · · ·+ rmz(m) Â 0,

then any finitely generated quadratic module describing S is sta-
ble and closed. If n ≥ 2, (SMP) is not finitely solvable for S.
Such natural numbers ri exist, if and only if the only polynomial
functions bounded on

m⋃
j=1

TKj ,z(j)

are the reals.
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Proof. The first part of the theorem is clear from the above
results. We only have to prove the part concerning the bounded
polynomial functions. Note that a polynomial f is bounded on a
set TK,z, if and only if it has degree less or equal to 0 with respect
to the z-grading. This follows easily, using the ideas from the
proof of Proposition 3.17, and the fact that K is compact and
has nonempty interior. So in case there are natural numbers
r1, . . . , rm ∈ N with

r1z
(1) + · · ·+ rmz(m) Â 0,

there is no nontrivial monomial Xδ that has degree less or equal
to 0 with respect to all the z(j)-gradings. As all the monomials
are homogeneous elements, there can be no nontrivial polyno-
mial bounded on

⋃m
j=1 TKj ,z(j).

Conversely, assume there do not exists suitable numbers ri.
Then, by a Theorem of the Alternative (see for example [A],
Lemma 1.2), there must be δ ∈ Nn \ {0}, such that

δ ◦ z(j) ≤ 0

for all j. But this means that the (nontrivial) monomial Xδ is
bounded on

⋃m
j=1 TKj ,z(j).

Another class of gradings on the polynomial ring A is given by
term-orders. A term order is defined to be a linear ordering ≤
on Nn which fulfills

α ≤ β ⇒ α + γ ≤ β + γ

for all α, β, γ ∈ Nn. Such a term order extends in a canonical
way to an ordering of the Abelian group Zn. Indeed write γ ∈ Zn

as a difference α − β of elements from Nn; then define γ ≥ 0 if
and only if α ≥ β.

We have a grading
A =

⊕

γ∈Zn

A(≤)
γ ,
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where A
(≤)
γ := R ·Xγ if γ ∈ Nn and A

(≤)
γ := {0} otherwise. We

refer to this grading as the ≤-grading. The decomposition of a
polynomial f ∈ R[X] is

f = cγ1
Xγ1 + · · ·+ cγt

Xγt,

where cγi
6= 0 are the coefficients of f and γ1 < · · · < γt with

respect to the term order. The degree of f is γt then, and the
highest degree part is the monomial cγt

Xγt. Now for these term
order gradings, the question of total stability is easy to solve.
First we apply the reduction result from Proposition 3.11 to the
generators of the quadratic module. So we can assume that all
the generators have the same degree mod 2Zn. The highest de-
gree parts of the generators are then monomials cγX

γ, where
all the γ are congruent modulo 2Zn. So obviously the quadratic
module is totally stable if and only if all the occurring coeffi-
cients cγ have the same sign, and are positive in case the γ are
congruent 0 modulo 2Zn. So this gives an easy to apply method
to decide total stability of a quadratic module with respect to a
term order grading.

Note that not all of these ≤-gradings induce filtrations with
finite dimensional linear subspaces. For example, a lexicograph-
ical ordering on Nn does not. However, if we first sort by the
norm |α| := α1 + · · · + αn and then lexicographically, the sub-
spaces are finite dimensional.

These term order gradings can show stability of quadratic mod-
ules, where the purely geometric conditions derived above and in
[PSc] do not apply. So they allow to take into account the differ-
ence between quadratic modules and preorderings. See Chapter
5 for examples.

For algebras A other than the polynomial ring, it is not so
obvious how to get gradings. However, if an ideal I in the graded
R-algebra A =

⊕
γ∈Γ Aγ is generated by homogeneous elements,
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the factor algebra A/I carries a grading

A/I =
⊕

γ∈Γ

Aγ,

where Aγ consists of the residue classes of the elements from Aγ.
For example, the polynomial 1−X1X2 is homogeneous with re-

spect to the (1,−1)- as well as the (−1, 1)-grading on R[X1, X2],
defined above. So these two gradings push down to

A = R[X1, X2]/(1−X1X2),

and they cover the usual finite dimensional filtration, obtained
by pushing down the canonical filtration (by degree) of R[X1, X2].
Note also that A is a real domain.
We conclude this section with an application of Proposition

3.16, namely a generalization of Theorem 6.23 from [CKS]. We
briefly recall the setup of that article and refer to it for more
detailed information. Consider a finitely generated and reduced
R-algebra B with affine R-variety VB and its set of real points
VB(R). Then B equals R[VB], the algebra of real regular func-
tions on VB. Let G be a linear algebraic group defined over R,
acting on VB by means of R-morphisms. Then G(R) acts canon-
ically on B = R[VB], and if G(R) is compact, the set of invariant
regular functions, denoted by A = R[VB]G, is a finitely generated
R-algebra. So it corresponds to an affine R-variety VA and the
inclusion ι : A = R[VB]G ↪→ R[VB] = B corresponds to a mor-
phism VB → VA. The restricted morphism ι∗ : VB(R) → VA(R)
can be seen as the orbit map of the group action, by a Theo-
rem by Procesi, Schwarz and Bröcker. Indeed, the nonempty
fibers are precisely the G(R)-orbits. Furthermore, for any ba-
sic closed semi-algebraic set S in VB(R), the set ι∗(S) is basic
closed semi-algebraic in VA(R). The affine variety VA is denoted
by VB//G.
Now suppose S ⊆ VB(R) is G-invariant. Then one can look at

the invariant moment problem for S. That is, one wants to find
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a finitely generated quadratic module M ⊆ R[VB]G, such that
every linear functional L on B, which is invariant under the
action of G(R), and which is nonnegative on M , is integration
with respect to a measure on S. One of the main results from
[CKS] concerning the invariant moment problem is, that this is
possible if and only if M defines ι∗(S) in VA(R) and has (SMP) in
A (Lemma 6.9 in [CKS]). The situation in VA(R) is often simpler
than the one in VB(R), and so the invariant moment problem
can be solved in cases where the strong moment problem cannot.

However, Theorem 6.23 in [CKS] yields a negative result about
the invariant moment problem. Roughly spoken, it says that if
(SMP) is not finitely solvable due to some geometric conditions
on S, then the invariant moment problem is not solvable either.
The result is proven for finite groups G and irreducible varieties
only. The following result holds for arbitrary compact groups.

Theorem 3.21. Let the compact group G act on the affine vari-
ety VB and let S be a G(R)-invariant basic closed semi-algebraic
set in VB(R). Fix a filtration of finite dimensional subspaces
of B, and assume that every finitely generated quadratic module
in B describing S has only strongly stable generators with re-
spect to that filtration. Then every finitely generated quadratic
module in A = R[VB]G describing ι∗(S) has only strongly stable
generators with respect to the induced filtration on A.

In particular, if dim(ι∗(S)) ≥ 2, then (SMP) is not finitely solv-
able for ι∗(S). So the invariant moment problem is not finitely
solvable for S in that case.

Proof. If QM(a1, . . . , as) ⊆ A describes ι∗(S), then

QM(ι(a1), . . . , ι(as)) ⊆ B

describes S = (ι∗)−1(ι∗(S)). This uses that the fibres of ι∗ are
precisely the G(R)-orbits and that S is G(R)-invariant. Now
apply Proposition 3.16.
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One checks that the geometric conditions from Theorem 6.24
in [CKS] imply, that the conditions from our Theorem 3.21 are
fulfilled. Note also that the geometric conditions obtained above
always imply the strong stability of any finite set of generators
for S. So Theorem 3.21 yields a negative result concerning the
invariant moment problem in all of these cases.
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4 The Sequential Closure

In this chapter we deal with the ‡-property of quadratic modules.
Remember that for a set C in a real vector space E, C‡ is defined
to be the sequential closure of C with respect to the finest locally
convex topology on E. It is contained in the closure C and can
be characterized as the union of all finite dimensional closures
of C (see the remark following Lemma 1.1). If C is a convex
cone, by Proposition 1.3, C‡ consists of all elements f of E for
which there is some q ∈ E, such that

f + εq ∈ C for all ε > 0.

We examine the sequence of iterated sequential closures of a
convex cone C in E. Therefore define

C(0) := C, C(ξ+1) :=
(
C(ξ)

)‡

for ordinals ξ, and
C(µ) :=

⋃

ξ<µ

C(ξ)

for limit ordinals µ. Define

‡(C) := ξ,

where ξ is the least ordinal such that C(ξ) = C(ξ+1), and call it
the ‡-index of C. If the vector space has countable dimension,
then a set C is closed if and only if it is sequentially closed, by
Proposition 1.2 and Lemma 1.1. So the transfinite sequence of
iterated sequential closures of C terminates exactly at C, and
‡(C) is the least ordinal ξ such that C(ξ) = C.
A quadratic module M in an R-algebra is said to have the ‡-

property, if
M ‡ = M sat

holds. This property implies (SMP) for M , and that was one of
the reasons the authors of [KM, KMS] introduced and examined
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it. One of the most important results of these works concerning
the ‡-property is Theorem 5.3 in [KMS]. It says that a quadratic
module defining a cylinder with compact cross section has the
‡-property, under reasonable assumptions on the generators.

It was an open problem whether the ‡-property and (SMP)
are equivalent for quadratic modules or preorderings. It was
even unknown whether M ‡ = M could be true for quadratic
modules or preorderings in general. We solve these questions to
the negative, by providing a finitely generated preordering in the
polynomial ring of two variables, that has (SMP) but not the ‡-
property. This is done in Section 4.2. Section 4.3 contains some
short remarks about the sequential closure on quotient algebras.
In Section 4.4 we prove a fibre theorem that allows to check the
‡-property by looking at lower dimensional problems. The idea
is to generalize the proof of Theorem 5.3 from [KMS]. However,
we start by examining convex cones in countable dimensional
vector spaces.

4.1 Examples of Sequential Closures of Convex Cones

During this section let

E =
∞⊕

i=0

R · ei = {(fi)i∈N | fi ∈ R, only finitely many fi 6= 0}

be a countable dimensional R-vector space. For m ∈ N \ {0} we
write

Wm :=
m−1⊕

i=0

R · ei,

so the increasing sequence (Wm)m∈N of finite dimensional sub-
spaces exhausts the whole space E. In the following we construct
examples of sets and convex cones with different ‡-indices.

For n ∈ {1, 2, . . .} and l = (l0, l1, . . . , ln) ∈ (N \ {0})n+1 define
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V (l) := [
1

l1
, 1]× · · · × [

1

l1
, 1]

︸ ︷︷ ︸
l0 times

× [
1

l2
, 1]× · · · × [

1

l2
, 1]

︸ ︷︷ ︸
l1 times

× · · ·

× [
1

ln
, 1]× · · · × [

1

ln
, 1]

︸ ︷︷ ︸
ln−1 times

.

V (l) is a compact subset of Wl0+···+ln−1
. Let

U(l) := V (l)×
∞⊕

i=l0+···+ln−1

[0, 1] · ei,

so U(l) ⊆ E and U(l)∩Wm is compact for every m ∈ N; indeed
nonempty if and only if m ≥ l0 + · · ·+ ln−1. Now define

Mn :=
⋃

l∈(N\{0})n+1

U(l).

The intention behind this is, that Mn contains n ”steps”, and
the application of the ‡-operator removes one at a time.
We have for m ≥ n ≥ 2

Mn ∩Wm ⊆ Mn−1.

To see this take a converging sequence (xi)i from Mn ∩Wm. So
for each xi there is some l(i) ∈ (N \ {0})n+1 such that xi ∈ U(l(i)).
As U(l) ∩Wm is only nonempty if l0 + · · · + ln−1 ≤ m, we can
assume without loss of generality (by choosing a subsequence),
that the l(i) coincide in all but the last component. This shows
that the limit of the sequence (xi)i belongs to Mn−1 (indeed to

U(l
(i)
0 , . . . , l

(i)
n−1) ∩Wm).

So (Mn)
‡ ⊆ Mn−1, and the other inclusion is obvious. We thus

have for n ≥ 2 :
(Mn)

‡ = Mn−1.
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In addition,

M1 ( M ‡
1 =

∞⊕
i=0

[0, 1] · ei,

which is closed. This shows ‡(Mn) = n and Mn =
⊕∞

i=0 [0, 1] ·ei

for all n ≥ 1.

Let cc(Mn) denote the convex cone generated by Mn, i.e. cc(Mn)
consists of all finite positive combinations of elements from Mn,
including 0. We have for n ≥ 2

cc(Mn)
‡ = cc(Mn−1).

To see ”⊆” suppose x ∈ cc(Mn)
‡. Then we have a sequence (xi)i

in some cc(Mn) ∩ Wm = cc(Mn ∩ Wm) that converges to x in
Wm. Write

xi = λ
(i)
1 a

(i)
1 + · · ·λ(i)

N a
(i)
N

with all a
(i)
j ∈ Mn∩Wm and all λ

(i)
j ≥ 0. We can choose the same

sum length N for all xi, by the conic version of Carathéodory’s
Theorem (see for example [Ba], Problem 6, p. 65). By choosing
a subsequence of (xi)i we can assume that for all j ∈ {1, . . . , N}
the sequence (a

(i)
j )i converges to some element aj. This uses

Mn ∩Wm ⊆ [0, 1]m. All elements aj lie in M ‡
n = Mn−1. As n ≥

2, the first component of each element a
(i)
j is at least 1

m . So

all the sequences (λ
(i)
j )i are bounded and therefore without loss

of generality also convergent. This shows that x belongs to
cc(Mn−1).

To see ”⊇” note that M ‡
n ⊆ cc(Mn)

‡ and cc(Mn)
‡ is a convex

cone. So

cc(Mn−1) = cc(M ‡
n) ⊆ cc(Mn)

‡.

For n = 1 we have

cc(M1) =

{
f = (fi)i ∈

∞⊕

i=0

R≥0 · ei | f0 = 0 ⇒ f = 0

}
,
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so

cc(M1) ( cc(M1)
‡ =

∞⊕
i=0

R≥0 · ei,

which is closed. So we have:

Example 4.1. For n ∈ {1, 2, . . .}, the convex cone cc(Mn) ful-
fills

‡(cc(Mn)) = n

and

cc(Mn) =
∞⊕
i=0

R≥0 · ei.

We proceed and now want to construct a set that does not have
a finite ‡-index. The idea is to unite all the sets Mn with enough
distance between them, so that the ‡-operator applies to each of
them separately.
First note that for any set A ⊆ E and any x ∈ E we have

(x + A)‡ = x + A‡.

This follows directly from continuity of addition. So with the
above defined notions, for x ∈ E and k, n ∈ {1, 2 . . .} we have

x ∈ (x + Mn)
(k) ⇔ k ≥ n.

Indeed x ∈ (x + Mn)
(k) = x+M

(k)
n if and only if 0 ∈ M

(k)
n , which

we have shown to hold precisely if k ≥ n.
Now define xn := (2n, 1, 0, 0, . . .) ∈ E and

M :=
∞⋃

n=1

(xn + Mn) ⊆ E.

We claim that for all k ∈ N we have

M (k) =
∞⋃

n=1

(xn + Mn)
(k) .
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Note that for all k, m,

(xn + Mn)
(k) ∩Wm ⊆ [2n, 2n + 1]× [1, 2]× [0, 1]× · · · × [0, 1].

So an easy induction argument shows that a converging se-
quence from M (k) lies without loss of generality in one fixed
(xn + Mn)

(k), which proves the claim.

For all k, n we have

xn ∈ M (k) ⇔ xn ∈ (xn + Mn)
(k) ⇔ k ≥ n.

This shows that the sequence of iterated sequential closures of
M does not terminate after finitely many steps. Furthermore,

M (ω) =
⋃

k∈N
M (k) =

⋃

k∈N

∞⋃
n=1

xn + M (k)
n =

∞⋃
n=1

xn + M (n)
n

is closed. So:

Example 4.2. With M as above, we have

‡(M) = ω.

Now we want to find a convex cone with a similar property. We
claim

cc(M)(k) = cc(M (k))

for all k ∈ N. We prove this by induction; the case k = 0 is clear.
Now we suppose it is true for some k and show it for k + 1. For
”⊆” take a converging sequence (xi)i from cc(M)(k) ∩ Wm =
cc(M (k)) ∩ Wm = cc(M (k) ∩ Wm) for some m ≥ 2. As before
write

xi = λ
(i)
1 a

(i)
1 + · · ·λ(i)

N a
(i)
N

with fixed N , all λ
(i)
j ≥ 0 and all a

(i)
j ∈ M (k) ∩Wm. So each a

(i)
j

belongs to some
(
xn + M

(k)
n

)
∩ Wm, from which we conclude

n ≤ m + k (otherwise the intersection would be empty). So,
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similar as before, we can assume that all the sequences (a
(i)
j )i

converge to some aj ∈ M (k+1). As the first components of all

a
(i)
j are bigger or equal than 2, we can also bound the λ

(i)
j and

so assume that the sequences (λ
(i)
j )i converge. This shows that

the limit of the sequence (xi)i lies in cc(M (k+1)). The inclusion
”⊇” is again clear.

Now we have

cc(M)(ω) =
⋃

k∈N
cc(M (k))

= cc

(⋃

k∈N
M (k)

)

= cc

( ∞⋃
n=1

xn + M (n)
n

)
.

So one checks that a = (1, 0, 0, . . .) does not belong to cc(M)(ω).

On the other hand, each xk = (2k, 1, 0, . . .) and therefore
(1, 1

2k , 0, . . .) does. So

cc(M)(ω+1) ⊇ cc(M)(ω) + R≥0 · a ) cc(M)(ω),

and the convex cone in the middle is closed. Indeed if a sequence
(xi)i converges in some Wm, with

xi = λ
(i)
1 a

(i)
1 + · · ·λ(i)

N a
(i)
N + λ(i)a, (9)

all λ
(i)
j , λ(i) ≥ 0, all a

(i)
j ∈ ⋃∞

n=1 xn + M
(n)
n , then the sequences

(λ
(i)
j )i and (λ(i))i converge without loss of generality (they are

bounded, look at the first components of (9)). If such a sequence

(λ
(i)
j )i converges to zero, then the sequence (λ

(i)
j a

(i)
j )i converges

without loss of generality to an element from R≥0·a. Otherwise it
converges without loss of generality to an element from cc(M)(ω).
So all in all we have proven the following surprising fact:
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Example 4.3. For the convex cone cc(M) we have

‡(cc(M)) = ω + 1.

Unfortunately, the ‡-index does not behave very predictable
when going down to some quotient space E/W in general. For
example, the image of Mn and cc(Mn) in E/Wm, under the
canonical identification E/Wm

∼= E, equals Mn−m and cc(Mn−m),
respectively. Here, we set Mk = M1 when k ≤ 0. So the ‡-index
can fall by an arbitrary natural number when going down to a
quotient space.
On the other hand, it can also go up. For example look at

Dn :=
{
(|l|, x) | l ∈ (N \ {0})n+1, x ∈ (xn + U(l))

}

as well as

D :=
∞⋃

n=1

Dn

as sets in the space
E ′ := R⊕ E.

Here, |l| denotes l0 + · · · + ln. D and all the Dn are checked to
be closed. Factoring out the first component of E ′ makes the
‡-index of Dn rise from 0 to n, the index of D even rise from 0
to ω.
See Section 4.3 for some results about quadratic modules and

quotient algebras.
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4.2 A Preordering Counterexample

In this section we construct an example, which shows that (SMP)
does not imply the ‡-property. This will answer Question 3 in
[KM] and Question 2 in [KMS]. It will also give a negative an-
swer to the question in [Sm3], whether the fibre theorem (Theo-
rem 2.8 in our work) holds for the ‡-property instead of (SMP).

Consider A = R[X, Y ], the real polynomial ring in two vari-
ables. We take the four polynomials

f1 = Y 3, f2 = Y + X, f3 = 1−XY and f4 = 1−X2

and write

P := PO(f1, f2, f3, f4).

The corresponding basic closed semi-algebraic set S(P ) in R2

looks like this:

Proposition 4.4. The preordering P in R[X, Y ] has (SMP).

Proof. The basic closed semi-algebraic set S(P ) is contained in
the cylinder [−1, 1]×[0,∞) in R2. The polynomial X is therefore
bounded on S and we can apply Schmüdgen’s Fibre Theorem
(Theorem 2.8) to the preordering P .

For any λ ∈ [−1, 1] write

Pλ = P + (X − λ).
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For 0 < λ ≤ 1, Pλ describes a compact semi-algebraic set and
therefore has (SMP) by Theorem 1.9 (even the ‡-property). For
λ ∈ [−1, 0], Pλ has (SMP) if and only if the preordering

PO(Y 3, Y + λ, 1− λY ) ⊆ R[Y ]

has (SMP), by Proposition 2.1. This preordering describes the
one dimensional semi-algebraic set [−λ,∞). As Y + λ is the
natural generator for this set, it is even saturated (see [KM],
Theorem 2.2). So Pλ has (SMP) (it is indeed also saturated). So
by Schmüdgen’s Theorem, the whole preordering P has (SMP).

The next result is a characterization of P ‡. We write

PO(a1, . . . , as)d

for the set of elements having a representation in PO(a1, . . . , as)
with sums of squares of elements of degree ≤ d.

Proposition 4.5. A polynomial f ∈ R[X,Y ] belongs to P ‡

if and only if there is some d ∈ N, such that for all λ ∈ [−1, 1],

f(λ, Y ) ∈ PO(f1(λ, Y ), . . . , f4(λ, Y ))d ⊆ R[Y ].

Proof. The ”if”-part is a consequence of Theorem 4.14 below (or
can already be obtained by looking at the proof of Theorem 5.3.
in [KMS]). We can use it with s = 1, b1 = X, and find

f = pλ + (X − λ)qλ

where pλ ∈ P and deg(qλ) is bounded for all λ. So Theorem
4.14 yields f ∈ P ‡.
For the ”only if”-part assume f belongs to P ‡. So there is some

q ∈ R[X,Y ] and sums of squares σ
(ε)
e ∈ ∑

R[X, Y ] for all ε > 0
and e ∈ {0, 1}4, such that

f + εq =
∑

e

σ(ε)
e f e1

1 · · · f e4

4 .
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Note that the total degree of the σ
(ε)
e may rise with ε getting

smaller. However, the degree as polynomials in Y cannot rise; it
is bounded by the Y -degree of f+εq, which does not change with
ε. This is because the set S(P ) contains the cylinder [−1, 0] ×
[1,∞] and is therefore totally stable with respect to the (0, 1)-
grading (see Chapter 3).
By evaluating in X = λ, this means that f(λ, Y ) + εq(λ, Y )

belongs to
PO(f1(λ, Y ), . . . , f4(λ, Y ))d

for some fixed d and all λ ∈ [−1, 1], ε > 0. As mentioned
in the previous chapter, PO(f1(λ, Y ), . . . , f4(λ, Y ))d is a closed
set in a finite dimensional subspace of R[Y ] (Proposition 2.6 in
[PSc]). So we get f(λ, Y ) ∈ PO(f1(λ, Y ), . . . , f4(λ, Y ))d for all
λ ∈ [−1, 1], the desired result.

Corollary 4.6. P does not have the ‡-property.
Proof. The polynomial Y is obviously nonnegative on the semi-
algebraic set S(P ). However, it does not belong to

PO(f1(1, Y ), . . . , f4(1, Y )) = PO(Y 3, Y + 1, 1− Y ) ⊆ R[Y ].

Indeed, writing down a representation and evaluating in Y = 0,
this shows that Y 2 divides Y , a contradiction. So in view of
Proposition 4.5, Y cannot belong to P ‡.

Note that Y is not in P ‡, as it fails to be in the preordering
corresponding to the fibre X = 1. However, Proposition 4.5 even
demands all the polynomials f(λ, Y ) to have representations in
the fibre-preorderings

PO(f1(λ, Y ), . . . , f4(λ, Y ))

with simultaneous degree bounds, for f to be in P ‡. Indeed,
there are examples of polynomials belonging to all the fibre-
preorderings, but failing the degree-bound condition (and so also
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not belonging to P ‡). We will give one here, as it gives a justi-
fication for one of the assumptions in Theorem 4.14 below.

Example 4.7. Take f = 2Y + X, which belongs to P sat. For
any λ ∈ [−1, 1], f(λ, Y ) = 2Y + λ belongs to

PO(f1(λ, Y ), . . . , f4(λ, Y )) ⊆ R[Y ];

for λ > 0 as f(λ, Y ) is strictly positive on the corresponding
compact semi-algebraic set (so use Theorem 1.9), for λ ∈ [−1, 0],
as the fibre preordering is saturated, see the proof of Proposition
4.4.

However, for λ ↘ 0, there can be no bound on the degree of
the sums of squares in the representation. Indeed, for λ > 0,
write down a representation

2Y + λ =
∑

e∈{0,1}3
σ(λ)

e Y 3e1(Y + λ)e2(1− λY )e3, (10)

where the σ
(λ)
e are sums of squares in Y . Evaluating in Y = 0,

this shows

σ
(λ)
(0,1,0)(0) + σ

(λ)
(0,1,1)(0) ≤ 1. (11)

Now if the degrees of the σ
(λ)
e could be bounded for all λ > 0, we

could write down a first order logic formula, saying that we have
representations as in (10) for all λ > 0. We add the statement
(11) to the formula. By Tarski’s Transfer Principle, it holds in
any real closed extension field of R. So take such a representa-
tion in some non-archimedean real closed extension field R, for
some λ > 0 which is infinitesimal with respect to R. The same
argument as for example in [KMS], Example 4.4(a) shows, that
we can apply the residue map O → O/m = R to the coefficients
of all the polynomials occurring in this representation. Here, O
denotes the convex hull of R in R. This is a valuation ring with
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maximal ideal m. So we would get a representation

2Y = σ(0,0,0) + σ(1,0,0)Y
3 + σ(0,1,0)Y + σ(0,0,1) + σ(1,1,0)Y

4

+ σ(1,0,1)Y
3 + σ(0,1,1)Y + σ(1,1,1)Y

4,

with sums of squares σe in R[Y ] fulfilling

σ(0,1,0)(0) + σ(0,1,1)(0) ≤ 1. (12)

As no cancellation of highest degree terms can occur, we get

0 = σ(0,0,0) = σ(1,0,0) = σ(0,0,1) = σ(1,1,0) = σ(1,0,1) = σ(1,1,1)

as well as

σ(0,1,0) + σ(0,1,1) = 2.

This last fact obviously contradicts (12).

So for f = 2Y + X, the degree bound condition on the fibres
fails, although the polynomial belongs to all of the fibre pre-
orderings. In view of Proposition 4.5, f does not belong to P ‡.
This shows that the ”degree bound”-assumption in Theorem
4.14 below is really necessary.

The above example answers open question 3 in [KM], whether
(SMP) implies the ‡-property. It also answers open question
2 in [KMS], whether the strong assumptions in their Theorem
5.3 are really necessary; they indeed are. Finally, it answers
the question in [Sm3], whether the fibre theorem holds for the
‡-property instead of (SMP). We have shown in the proof of
Proposition 4.4, that all the fibre preorderings Pλ do not only
have (SMP), but even the ‡-property. As P itself does not have
the ‡-property, this gives a negative answer to the question. In
Section 4.4 we will prove a result, that sometimes allows to use
a dimension reduction when examining the ‡-property.
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We conclude this section with the following result:

Proposition 4.8. For the preordering P we have

‡(P ) = 2.

Proof. We first claim that Y + ε ∈ P ‡ for all ε > 0. This follows
from Proposition 4.5, once we have shown

Y + ε ∈
∑

(W ; Y 3, Y + λ, Y 3(1− λY ))

for a fixed finite dimensional subspace W of R[Y ] and all λ ∈
[−1, 1] (see Chapter 3 for the notation). But this is indeed the
case. For λ ≤ ε it is obvious with W = R. Now write down a
representation

Y + ε = σ0 + σ1Y
3 + σ2Y

3(1− εY ),

which is possible using the fact that in dimension one, each
quadratic module describing a compact set is archimedean (see
for example Theorem 6.3.8 in [PD]). For λ ≥ ε we have

Y + ε = σ0 + σ1Y
3 + σ2Y

3(1− λY ) + σ2Y
3(λ− ε)Y

= τ0 + σ1Y
3 + σ2Y

3(1− λY ),

where τ0 = σ0 + (λ− ε)Y 4σ2. This proves our first claim.
Now let f ∈ P sat. For all ε > 0 there is some δ > 0 such that

f + ε ∈ PO(Y + δ,X + Y, 1−XY, 1−X2)sat.

Now we find

f + ε + ε′q ∈ PO(Y + δ,X + Y, 1−XY, 1−X2)

for a suitable q and all ε′ > 0. This is Theorem 5.3 from [KMS]
or Theorem 4.14 below. By looking at the proofs we can indeed
choose the same element q for all ε (and corresponding δ) . See
also Remark 4.15. So in particular

f + ε(q + 1) ∈ PO(Y + δ,X + Y, 1−XY, 1−X2) ⊆ P ‡,

so f ∈ P (2).
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4.3 Sequential Closures and Quotients

We include a short section on sequential closures on quotients,
similar to Section 2.1 above. We show that we can always fac-
tor out ideals contained in rr

√
M ∩ −M without changing the

situation too much. Therefore let A be an R-algebra and M a
quadratic module in A. Let I be an ideal of A, contained in the
real radical of the support of M, and

π : A → A/I

the canonical projection. We already noted

π(M)sat = π(M sat) and π(M) = π(M).

Lemma 2.1 and Corollary 3.12 from [Sc4] tell us I + ε ⊆ M for
all ε > 0, so in particular I ⊆ M ‡.

Proposition 4.9. Let A be an R-algebra and M a quadratic
module in A. Let I be an ideal of A, contained in rr

√
M ∩ −M,

and π : A → A/I the canonical projection. Then for all ordinals
ξ we have

π(M)(ξ) = π(M (ξ))

and
‡(π(M)) = ‡(M + I).

If ‡(π(M)) ≥ 1, then ‡(M) = ‡(π(M)), whereas ‡(π(M)) = 0
implies ‡(M) ≤ 1. M has the ‡-property in A if and only if
π(M) has the ‡-property in A/I, which is again the case if and
only if M + I has the ‡-property in A.

Proof. First suppose π(f) ∈ π(M)‡ for some f ∈ A. So there is
some q ∈ A, such that for all ε > 0 there is some mε ∈ M and
iε ∈ I, such that

f + εq = mε + iε.

So
f + ε(q + 1) = mε + iε + ε ∈ M,
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using I + ε ⊆ M as explained above. So f ∈ M ‡ and therefore
π(f) ∈ π(M ‡). The inclusion π(M ‡) ⊆ π(M)‡ is obvious. A
straightforward transfinite induction now shows

π(M)(ξ) = π(M (ξ))

for all ordinals ξ.

Now whenever ‡(M) ≤ ξ, then M (ξ) = M (ξ+1), so

π(M)(ξ) = π(M (ξ)) = π(M (ξ+1)) = π(M)(ξ+1),

which shows ‡(π(M)) ≤ ξ, so

‡(π(M)) ≤ ‡(M).

The same result applied to M + I instead of M yields

‡(π(M)) ≤ ‡(M + I).

For arbitrary ordinals ξ we have

π−1(π(M)(ξ)) = π−1(π(M (ξ))) = M (ξ) + I.

So whenever ‡(π(M)) = ξ, then

M (ξ)+I = π−1(π(M)(ξ)) = π−1(π(M)(ξ+1)) = M (ξ+1)+I = M (ξ+1)

using I ⊆ M ‡ ⊆ M (ξ+1). If ξ ≥ 1 we get M (ξ) = M (ξ+1), so
‡(M) ≤ ξ, so

‡(M) = ‡(π(M)) = ‡(M + I).

If ξ = 0, then M + I = M ‡ = π−1(π(M)) is sequentially closed,
so ‡(M + I) = 0, ‡(M) ≤ 1. The remark concerning the ‡-
property is clear from these considerations.
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For arbitrary ideals we have the following result:

Proposition 4.10. Let A be a finitely generated R-algebra and
M a finitely generated quadratic module in A. If M has the
‡-property and I is an ideal in A, then

(M + I)(2) = (M + I)sat.

Proof. Let f ∈ (M +I)sat. By Corollary 2.6 in [Sc6], for all ε > 0
there is some iε ∈ I, such that f + ε + iε ∈ M sat. So

f + ε + iε + δqε ∈ M

for some suitable qε and all δ > 0. Therefore

f + ε ∈ (M + I)‡

and so f ∈ (M + I)(2).

Under an additional assumption we can improve on this:

Proposition 4.11. Let A be a finitely generated R-algebra and
M a finitely generated quadratic module in A. Assume M has
the following property: For every finite dimensional subspace W

of A there is some qW ∈ A, such that whenever f ∈ M sat ∩W ,
then f + εqW ∈ M for all ε > 0.
Then for any ideal I of A, the quadratic module M + I has the
same property. In particular, it has the ‡-property.
Proof. Let f ∈ (M + I)sat ∩W for some finite dimensional sub-
space W of A. Then for every ε > 0 there is some iε ∈ I, such
that f + ε + iε ∈ M sat. This follows again from Corollary 2.6
in [Sc6]. We even can choose all the elements iε from a finite
dimensional subspace of A depending on M , I and W , but not
on ε. This follows, using a standard ultrapower argument, from
the fact that Corollary 2.6 from [Sc6] holds for finitely generated
algebras over arbitrary real closed fields. So

f + ε + iε ∈ M sat ∩W ′
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for some finite dimensional subspace W ′ of A and all ε > 0. So

f + ε(1 + qW ′) = f + ε + εqW ′ ∈ M + I

for all ε > 0, what was to be shown.

In almost all of our coming examples of quadratic modules hav-
ing the ‡-property, we will indeed have the slightly stronger prop-
erty demanded in Proposition 4.11.
To what extent we can check the ‡-property by looking at a

suitable family of fibre modules is the content of the next section.

4.4 A Fibre Theorem for Sequential Closures

The setup in this section is similar to the one in Chapter 2.
We consider arbitrary R-algebras A,B and a Hausdorff space
X, which is now assumed to be compact. We suppose to have
algebra homomorphisms ϕ : A → B and :̂ A → C(X,R) :

B

A
̂ //

ϕ

OO

C(X,R)

For some quadratic module M in B we want to examine M ‡ in
terms of the fibre modules Mx = M + Ix as in Chapter 2. As
we have seen, we cannot expect a result like

M ‡ =
⋂

x∈X

M ‡
x

to hold under reasonable assumptions. Indeed, even

M ‡ ⊇
⋂

x∈X

Mx

is not true in the example from the section 4.2. We will need
some kind of additional degree bound condition, as in Proposi-
tion 4.5. This is done in Theorem 4.13, which is the main result
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in this section. We derive from it conditions for a quadratic
module to have the ‡-property. First we prove a helpful (but
technical) proposition:

Proposition 4.12. Let A,B be R-algebras and ϕ : A → B an
algebra homomorphism. Let X be a non-empty compact Haus-
dorff space and :̂ A → C(X,R) a homomorphism whose image
separates points of X. Assume w,w1, . . . , ws ∈ B and ε > 0 are
such that for all x ∈ X there is a representation

w =
s∑

j=1

ϕ(a
(x)
j ) · wj,

with a
(x)
j ∈ A and |â(x)

j (x)| < ε for all j. Then there are
a1, . . . , as ∈ A with |âj| < ε on X for all j and

w =
s∑

j=1

ϕ(aj) · wj.

Proof. Every x ∈ X has an open neighborhood Ux, such that

|â(x)
j | < ε on Ux for all j = 1, . . . , s. By compactness of X there

are x1, . . . , xt ∈ X, such that

X = Ux1
∪ · · · ∪ Uxt

.

If t = 1, then the result follows, so assume t ≥ 2. Choose a
partition of unity e1, . . . , et subordinate to that cover, i.e. all ek

are continuous functions from X to [0, 1], supp(ek) ⊆ Uxk
for all

k, and e1(x) + · · ·+ et(x) = 1 for all x ∈ X. Then for

fj := e1 · â(x1)
j + · · ·+ et · â(xt)

j

we have

‖ fj ‖< ε,
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where ‖ ‖ denotes the sup-norm on C(X,R). Let

δ := min { ε− ‖ fj ‖ | j = 1, . . . , s}

and choose a positive real number N , big enough to bound the

sup-norm of all â
(xk)
j .

The image of A in C(X,R) is dense, by the Stone-Weierstrass
Theorem. So we find q1, . . . , qt−1 ∈ A such that

‖ ek − q̂k ‖< δ

N(t− 1)t

for k = 1, . . . , t− 1, and we define

qt := 1−
t−1∑

k=1

qk.

So we have for k = 1, . . . , t

‖ ek − q̂k ‖< δ

Nt
.

We define

aj := q1 · a(x1)
j + · · ·+ qt · a(xt)

j

for j = 1, . . . , s. So

‖ âj ‖ ≤ ‖ fj ‖ + ‖ âj − fj ‖

≤ ‖ fj ‖ +
t∑

k=1

‖ ek − q̂k ‖ · ‖ â
(xk)
j ‖

< ‖ fj ‖ + δ

≤ ε.

Now as
∑t

k=1 qk = 1 we have
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w = ϕ(
t∑

k=1

qk) · w

=
t∑

k=1

(
ϕ(qk) ·

s∑
j=1

ϕ(a
(xk)
j )wj

)

=
s∑

j=1

ϕ

(
t∑

k=1

qka
(xk)
j

)
· wj

=
s∑

j=1

ϕ(aj) · wj,

which proves the proposition.

As in Section 2, we denote by Ix the ideal in B generated by
the set

Zx = {ϕ(a) | â(x) = 0},
for x ∈ X. If W is a subset of B, then we write

Ix(W ) =

{
s∑

j=1

zjvj | s ∈ N, zj ∈ Zx, vj ∈ W

}
.

For W = B, Ix(W ) obviously equals Ix.
The following is the main theorem in this Chapter. Its proof

contains and generalizes the idea from [KMS], Theorem 5.3.

Theorem 4.13. Let A,B be R-algebras and ϕ : A → B an al-
gebra homomorphism. Let X be a compact Hausdorff space and
:̂ A → C(X,R) a homomorphism whose image separates points
of X. Let M ⊆ B be a quadratic module and assume

â > 0 on X ⇒ ϕ(a) ∈ M

holds for all a ∈ A. Then for all finitely generated A-submodules
W of B, we have ⋂

x∈X

M + Ix(W ) ⊆ M ‡.
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Proof. Fix such a W . Assume f ∈ B has a representation

f = mx + ix

with mx ∈ M and ix ∈ Ix(W ), for all x ∈ X. As Ix(W ) ⊆ W ,
we can assume without loss of generality mx ∈ M ∩ W for all
x. Let w1, . . . , ws be generators of W as an A-module. Due to
the identity w = (w+1

2 )2 − (w−1
2 )2 we can assume that all wj are

squares in B (by possibly enlarging W ). We will now show

f + ε
s∑

j=1

wj ∈ M

for all ε > 0. Therefore fix one such ε > 0. We take representa-
tions

ix =
s∑

j=1

ϕ
(
c
(x)
j

)
· wj, mx =

s∑
j=1

ϕ
(
d

(x)
j

)
· wj

where all c
(x)
j , d

(x)
j ∈ A and ĉ

(x)
j (x) = 0. Now each x ∈ X has an

open neighborhood Ux, such that

|ĉ(x)
j | < ε

2
on Ux

for j = 1, . . . , s. By compactness of X we have

X = Ux1
∪ · · · ∪ Uxt

for some x1, . . . , xt ∈ X. Let e1, . . . , et be a continuous partition
of unity subordinate to that cover. Using the Stone-Weierstrass
Theorem, we approximate the square root of each ek (which is
again a continuous function) by elements gk from A, such that

t∑

k=1

‖ ek − ĝ2
k ‖ · ‖ d̂

(xk)
j ‖ <

ε

2
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holds for all j = 1, . . . , s. Here, ‖ ‖ denotes the sup-norm on
C(X,R) again. Define

w = f −
t∑

k=1

ϕ(gk)
2 ·mxk

︸ ︷︷ ︸
∈M

.

The proof is complete if we show w+ε
∑s

j=1 wj ∈ M. Fix x ∈ X.
Then

w =
t∑

k=1

ek(x) · f −
t∑

k=1

ϕ(g2
k) ·mxk

=
t∑

k=1

ek(x) · (f −mxk︸ ︷︷ ︸
=ixk

) +
t∑

k=1

(
ek(x)− ϕ(g2

k)
)
mxk

=
t∑

k=1

ek(x)
s∑

j=1

ϕ(c
(xk)
j )wj +

t∑

k=1

(
ek(x)− ϕ(g2

k)
) s∑

j=1

ϕ(d
(xk)
j )wj

=
s∑

j=1

(
t∑

k=1

ek(x)ϕ(c
(xk)
j )

)
· wj

+
s∑

j=1

(
t∑

k=1

(
ek(x)− ϕ(g2

k)
)
ϕ(d

(xk)
j )

)
· wj

=
s∑

j=1

ϕ(a
(x)
j ) · wj,

where we define

a
(x)
j =

t∑

k=1

ek(x) · c(xk)
j +

(
ek(x)− g2

k

) · d(xk)
j .

By the above considerations we have

|â(x)
j (x)| < ε
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for all j. So we can apply Proposition 4.12 to w, w1, . . . , ws and
find

w =
s∑

j=1

ϕ(aj) · wj

for some aj ∈ A with |âj| < ε on X. Thus

w + ε

s∑
j=1

wj =
s∑

j=1

ϕ(aj + ε) · wj ∈ M,

as all âj + ε are strictly positive on X and all wj are squares.

We can apply this in the same way as we applied Theorem 2.5
in Chapter 2. Therefore let B be an arbitrary R-algebra and
M ⊆ B a quadratic module. Assume we have b1, . . . , bs ∈ B

such that Ci − bi, bi − ci ∈ M for some real numbers Ci ≥ ci.

Consider the subalgebra A = R[b1, . . . , bs] of B generated by

these elements, and the quadratic module M̃ in A generated by
Ci − bi, bi − ci (i = 1 . . . , s). It is archimedean. The role of ϕ is
again played by the canonical inclusion

ι : A ↪→ B

and we have ι(M̃) ⊆ M. The space X := S(M̃) ⊆ VA(R) is
compact and we have the usual morphism

:̂ A → C(X,R),

whose image separates points. Whenever â > 0 on X, then
a ∈ M̃, by Theorem 1.10, so ι(a) ∈ M. Note that for α ∈ X and
W an A-submodule of B, we have

Iα(W ) =

{
s∑

i=1

(bi − α(bi))wi | wi ∈ W

}

and (α(b1), . . . , α(bs)) ∈
∏s

i=1[ci, Ci]. For λ ∈ Rn write

Iλ(W ) =

{
s∑

i=1

(bi − λi)wi | wi ∈ W

}
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and Iλ := Iλ(B). We get the following ‡-counterpart to Theorem
2.6:

Theorem 4.14. Let B be an R-algebra and M ⊆ B a quadratic
module. Suppose b1, . . . , bs ∈ B are such that

C1 − b1, b1 − c1, . . . , Cs − bs, bs − cs ∈ M

for some real numbers Ci ≥ ci (i = 1, . . . , s). Then for every
finitely generated R[b1, . . . , bs]-submodule W of B we have

⋂

λ∈Λ

M + Iλ(W ) ⊆ M ‡,

where Λ =
∏s

i=1[ci, Ci]. In particular, if M is finitely generated
and all the (finitely generated) quadratic modules M + Iλ are
closed and stable with the same stability map, then M ‡ = M. If
all M + Iλ are saturated and stable with the same stability map,
then M has the ‡-property. (Here, the stability map with respect
to the canonical generators of each M + Iλ is meant.)

Proof. The first part of the theorem is clear from the above
considerations and Theorem 4.13. For the second part, assume
M is finitely generated, say by f1, . . . , ft. Then M +Iλ is finitely
generated as a quadratic module, by the canonical generators

f1, . . . , ft,±(b1 − λ1), . . . ,±(bs − λs).

Assume all M + Iλ are closed (or saturated, respectively) and
stable with the same stability map. Suppose some f belongs to
M (or M sat, respectively). Then f belongs to all M + Iλ (or
(M + Iλ)

sat, respectively), so to all M + Iλ by our assumption.
Now by the assumed stability there is a fixed finite dimensional
R-subspace W of B, such that f belongs to all M + Iλ(W ). So
the first part of the theorem yields f ∈ M ‡.

Remark 4.15. If all the quadratic modules M + Iλ in Theorem
4.14 are saturated and stable with the same stability map, we
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even get a little bit more than the ‡-property for M . Indeed, we
get the property that was assumed in Proposition 4.11. That is,
for any f ∈ M sat we find f + εq ∈ M for all ε > 0, and we can
choose the element q to only depend on the finite dimensional
subspace f is taken from, not on the explicit choice of f . Indeed,
the proof of Theorem 4.14 shows that q only depends on the A-
module W , which only depends on the space f is taken from.

Remark 4.16. As in Theorem 2.8, if B is a finitely generated
R-algebra and M ⊆ B a finitely generated preordering, we can
let the intersection in Theorem 4.14 run over M + Iα(W ) for
α ∈ S(M), instead of M + Iλ(W ) for λ ∈ Λ.

Proof. Suppose f belongs to
⋂

α∈S(M) M + Iα(W ) for some fi-
nitely generated R[b1, . . . , bs]-module W . We show that f also
belongs to

⋂
λ∈Λ M + Iλ(W

′) for some finitely generated
R[b1, . . . , bs]-module W ′.
If for λ ∈ Λ the semi-algebraic set corresponding to M + Iλ

is nonempty, then λ = (β(b1), . . . , β(bs)) for some β ∈ S(M),
exactly as in the proof of Theorem 2.8. So f belongs to M +
Iλ(W ).
If the semi-algebraic set is empty, then −1 ∈ M + Iλ. In-

deed even −1 ∈ M + Iλ(U), where U is a finitely generated
R[b1, . . . , bs]-submodule of B that does not depend on λ (only on
the generators of M and on b1, . . . , bs). This follows for example
from [PD], Remark 4.2.13 and a standard ultrapower argument.
Using the identity f = (f+1

2 )2 − (f−1
2 )2 we get

f ∈ M + Iλ

((
f − 1

2

)2

· U
)

.

So we can take

W ′ :=
(

f − 1

2

)2

· U + W.
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Note that we really need the finitely generated submodule W in
Theorem 4.14 (and therefore also in Theorem 4.13) in general.
In Example 4.7, the polynomial f = 2Y +X belongs to all fibre
preorderings P + (X − λ), but fails to be in P ‡. As we have
shown, this is because it is not possible to find one fixed finitely
generated R[X]-module W, such that f ∈ P + Iλ(W ) for all
λ > 0.

The condition Ci − bi, bi − ci ∈ M from Theorem 4.14 (and
therefore also the condition â > 0 on X ⇒ ϕ(a) ∈ M from
Theorem 4.13) is also necessary in general. This is shown by
Example 5.1 below.

4.5 Applications

In this section we give some applications of the fibre theorem
from the last section. The first one is the Cylinder Theorem
(Theorem 5.3 combined with Corollary 5.5) from [KMS]. See
[KM, KMS] for the definition of natural generators for semi-
algebraic subsets of R.

Corollary 4.17. Let P = PO(f1, . . . , ft) be a finitely generated
preordering in the polynomial ring R[X1, . . . , Xn, Y ]. Assume
N − ∑n

i=1 X2
i ∈ P for some N > 0. Now for all λ ∈ Rn, the

preordering

PO(f1(λ, Y ), . . . , ft(λ, Y )) ⊆ R[Y ]

describes a basic closed semi-algebraic set Sλ in R. Suppose the
natural generators for Sλ are among the f1(λ, Y ), . . . , ft(λ, Y ),
whenever Sλ is not empty. Then P has the ‡-property, even the
slightly stronger property described in Remark 4.15.

If all the fibre sets Sλ are of the form ∅, (−∞,∞), (−∞, p],
[q,∞), (−∞, p] ∪ [q,∞) or [p, q], then the result holds with P

replaced by M = QM(f1, . . . , ft).
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Proof. The assumptions imply that all the preorderings

P + (X1 − λ1, . . . , Xn − λn)

(or the corresponding quadratic modules, respectively) are sat-
urated and stable with the same stability map for all λ. See
[KMS], Section 4. An easy calculation, as for example in [KM],
Note 2.3 (4), shows

√
N −Xi, Xi +

√
N ∈ P

for all i. So we can apply Theorem 4.14.

We can also use Theorem 4.14 in the case that the natural
generators are not among the fi(λ, Y ). This can be seen as a
slight generalization of Corollary 5.4 from [KMS]:

Corollary 4.18. Let M = QM(f1, . . . , ft) be a finitely generated
quadratic module in R[X1, . . . , Xn, Y ] and assume

N −
n∑

i=1

X2
i ∈ M

for some N > 0. Suppose for all λ ∈ Rn the set

Sλ := S(M) ∩ {(x1, . . . , xn, y) | x1 = λ1, . . . , xn = λn}
is either empty or unbounded. Then

M ‡ = M

holds.

Proof. Again
√

N − Xi, Xi +
√

N ∈ P for all i. Furthermore.
the assumptions imply that all the quadratic modules

M + (X1 − λ1, . . . , Xn − λn)

are closed and stable with the same stability map for all λ (for
the empty fibers use Theorem 4.5 from [KMS]). Now apply
Theorem 4.14.
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We want to get results for more complicated fibres. [Sc2] gives
a criterion for quadratic modules on curves to be stable and
closed. However, we need some result to obtain the uniform
stability asked for in Theorem 4.14. So we consider the following
setup. Let b ∈ R[X, Y ] be a polynomial of degree d > 0. We
assume that the highest degree homogeneous part of b factors
as

d∏
i=1

(riX + siY ) ,

where all the (ri : si) are pairwise disjoint points of P1(R). In
particular, b is square free. Let C denote the affine curve defined
by b and C̃ its projective closure. So C̃ is defined by b̃, the
homogenization of b with respect to the new variable Z. The
assumption on the highest degree part of b implies, that all the
points at infinity of b, namely

P1 = (−s1 : r1 : 0), . . . , Pd = (−sd : rd : 0) ∈ P2,

are real regular points (of the projective curve C̃). So the local
rings of C̃ at all these points are discrete valuation rings (a
well known fact, see for example [F], Chapter 3). Indeed, the
projective curve C̃ is the so called ”good completion” (see for
example [P2]) of the affine curve C. We denote the valuation
corresponding to the local ring at Pi by ordi. For a polynomial
h ∈ R[X, Y ], we write ordPi

(h) and mean the value with respect
to the valuation ordPi

of h(X
Z , Y

Z ) as a rational function on C̃.

We start with the following result:

Proposition 4.19. Let b, C and C̃ be as above. Suppose

ordPi
(h) ≥ −n

for some h ∈ R[X,Y ], n ∈ N and all i. Then there is some
h′ ∈ R[X, Y ] with deg(h′) ≤ n and h ≡ h′ mod (b).
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Proof. Let m be the degree of h and b̃ = Zdb(X
Z , Y

Z ) as well as

h̃ = Zmh(X
Z , Y

Z ) be the homogenization of b and h, respectively.
Assume without loss of generality

P1 = (1 : y : 0)

for some y ∈ R.

For any homogeneous polynomial g in the variables X, Y, Z we
have

0 ≤ ordP1

( g

Xdeg(g)

)
= I(P1; b̃ ∩ g),

where I denotes the intersection number. This is [F], Chapter
3.3.

As

ordP1
(h) = ordP1

(
h̃

Xm

)
−m · ordP1

(
Z

X

)
,

we have

−n ≤ ordP1
(h)

= I(P1; b̃ ∩ h̃)−m · I(P1; b̃ ∩ Z)

≤ I(P1; b̃ ∩ h̃)−m.

Now whenever m ≥ n + 1, then

1 ≤ I(P1; b̃ ∩ h̃),

so h̃ must vanish at P1.

The same argument applies to all points at infinity of b. So if
m ≥ n + 1, then the highest degree part of b divides the highest
degree part of h in R[X,Y ]. Thus h can be reduced modulo b

to a polynomial h′ of strictly smaller degree.

In the following proposition, the pure closedness and stability
result follows from [Sc2], Proposition 6.5.
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Proposition 4.20. Let M = QM(f1, . . . , ft) ⊆ R[X, Y ] be a
finitely generated quadratic module. Let b ∈ R[X, Y ] be a poly-
nomial whose highest degree part factors as above. For some
λ ∈ R assume that all the (real regular) points at infinity of the
curve Cλ defined by b = λ lie in the closure of S(M) ∩ Cλ(R).
Then the finitely generated quadratic module

M + (b− λ)

is closed and stable, with a stability map that depends only on b

and M , but not on λ.

Proof. Without loss of generality, let P1 = (1 : y : 0) be a point
at infinity of Cλ. Denote by ordP1

the valuation with respect to

the local ring of C̃λ at P1. Let h ∈ R[X, Y ] have degree m, and

let h̃ as well as b̃− λ be the homogenizations, as in the previous
proof. Then

ordP1
(h) = ordP1

(
h̃

Xm

)
−m · ordP1

(
Z

X

)

≥ −m · I
(
P1; b̃− λ ∩ Z

)

= −m · I
(
P1; b̃ ∩ Z

)
,

where the last equality uses property (7) in [F], p. 75, for inter-
section numbers. So there is some N , not depending on λ, such
that

ordP (h) ≥ −m ·N
for all the points at infinity of Cλ.
Now the proof of Proposition 6.5 from [Sc2] shows that when-

ever h ∈ M + (b− λ), then we can find a representation

h =
t∑

k=0

σkfk + g · (b− λ) (13)
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with sums of squares σk built of polynomials that have order
greater than −m · N in all points at infinity of Cλ. Applying
Proposition 4.19 we can reduce these elements modulo b − λ

and obtain a representation as in (13) with sums of squares of
elements of degree ≤ m · N . So of course also the degree of
g is bounded suitably, independent of λ. This shows that the
stability map does not depend on λ.

So the following Theorem is an immediate consequence of The-
orem 4.14 and Proposition 4.20.

Theorem 4.21. Let M ⊆ R[X,Y ] be a finitely generated
quadratic module. Let b ∈ R[X,Y ] with R − b, b − r ∈ M for
some r ≤ R, and assume the highest degree part of b factors as
above. Suppose for all λ ∈ [r, R], all the (real regular) points at
infinity of the curve Cλ defined by b = λ lie in the closure of
S(M) ∩ Cλ(R). Then

M ‡ = M

holds. If all the fibre modules M+(b−λ) have (SMP) in addition,
then M has the ‡-property.
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5 Examples in the plane

We conclude this work with a collection of examples in the plane.
They illustrate our main results. Our R-algebra will always be
A = R[X,Y ], the real polynomial ring in two variables.

Example 5.1. We look at the semi-algebraic set in R2 defined
by the inequalities 0 ≤ x, 0 ≤ y and xy ≤ 1 :

A lot of interesting phenomena can be observed for this set.
There are different quadratic modules describing it, we consider
the following ones:

M1 := QM (X,Y, 1−XY )

M2 := QM (X,Y,XY, 1−XY )

M3 := QM
(
X,Y 3, XY, 1−XY

)

P1 := PO (X, Y, 1−XY )

P2 := PO
(
X,Y, (1−XY )3)

The quadratic module M1 is stable. Indeed, take the monomial
ordering that first sorts by degree and then lexicographically
with X > Y. No two generators of M1 have the same degree
modulo 2 · (Z ⊕ Z). So Proposition 3.11 combined with Theo-
rem 3.13 yields total stability with respect to the corresponding
grading. This grading induces a filtration of finite dimensional
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subspaces, so in particular, M1 is stable. By Theorem 3.2 and
Theorem 3.3, M1 is closed and does not have (SMP).

To the quadratic module M2 we can apply Theorem 4.21 with
the bounded polynomial b = XY : we have b, 1 − b ∈ M2. For
λ ∈ [0, 1], the finitely generated quadratic module

QM(X, Y, XY, 1−XY ) + (XY − λ) = QM(X, Y ) + (XY − λ)

has (SMP). It is indeed even saturated. This is an easy calcu-
lation for λ > 0; for λ = 0 it is Example 3.26 from [P2]. So M2

has the ‡-property, and in particular (SMP).

Note that the fibre modules of M1 and M2 are the same:

M1 + (XY − λ) = M2 + (XY − λ)

for all λ ∈ [0, 1]. As M1 does neither have the ‡-property nor
(SMP), this shows that the condition N − b, b− n ∈ M in The-
orem 4.21, as well as the corresponding conditions in Theorem
4.14 and Theorem 2.6 cannot be omitted.

Now consider M3. The quadratic module QM(Y 3) ⊆ R[Y ],
obtained by evaluating in X = 0, does not have (SMP) (see for
example [KM]). So in view of Proposition 2.1 and Proposition
2.2, M3 does not have (SMP). On the other hand, we can still
apply Theorem 4.21 with b = XY , and obtain

M ‡
3 = M3.

The preordering P1 obviously contains M2 and therefore also
has the ‡-property. This solves the question posed in [KMS],
Example 8.4.

P2 finally illustrates that we can always replace bounded gen-
erators of a preordering by odd powers, without losing (SMP).
Indeed, by Proposition 2.7, the polynomial 1 − XY belongs to
P2, so P2 = P1 and P2 has (SMP).
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Example 5.2. We consider the semi-algebraic set defined by
the inequalities 0 ≤ x(x + y)(x− y)− xy ≤ 1 :

We can apply Theorem 4.21 to the quadratic module

M = QM(b, 1− b),

where b = X(X + Y )(X − Y )−XY . We use b as the bounded
polynomial and obtain

M ‡ = M∨∨.

However, M does not have (SMP). Indeed, the quadratic module

M + (b)

does not have (SMP). This follows (together with Proposition
2.1) from [P2], Theorem 3.17 and Proposition 6.5 from [Sc2]. So
in view of Proposition 2.2, M does not have (SMP).
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Example 5.3. This example is Example 3 from [Sm3] and il-
lustrates the use of Corollary 2.9. The semi-algebraic set S we
are looking at is defined by the inequalities 0 ≤ x, x ≤ 2, 1 ≤
xy, xy ≤ 2:

The two polynomials X and XY are bounded on S and sep-
arate its points. So by Corollary 2.9, every finitely generated
preordering describing this set has (SMP).
We can use Corollary 4.17 in that example to see that the

quadratic module

M = QM(X, 2−X,XY − 1, 2−XY )

has the ‡-property. But we can also apply Theorem 4.14 with
the two polynomials X and XY simultaneously to get the same
result. We demonstrate how to do this.
Therefore take λ = (λ1, λ2) ∈ [0, 2] × [1, 2] and consider the

fibre module

Mλ := M+(X−λ1, XY−λ2) =
∑

R[X, Y ]2+(X−λ1, XY−λ2).

If λ1 > 0, the corresponding semi-algebraic set is the singleton
{(λ1, λ2/λ1)}. Whenever some f ∈ R[X,Y ] is nonnegative on
this point, then

f = f(λ1,
λ2

λ1
) + f1 · (X − λ1) + f2 · (Y − λ2

λ1
)
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for some polynomials f1, f2 with deg(f1), deg(f2) ≤ deg(f). From
the identity

Y − λ2

λ1
= − 1

λ1
Y · (X − λ1) +

1

λ1
· (XY − λ2)

we see that f belongs to Mλ with the required degree bounds
independent of λ. If λ1 = 0, then the semi-algebraic set defined
by Mλ is empty. In fact we have

1 =
1

λ2
Y ·X − 1

λ2
· (XY − λ2),

which shows that every f ∈ R[X,Y ] belongs to Mλ with the
required degree bounds independent of λ. So Theorem 4.14
applied to M shows

M ‡ = M sat.

Note that we cannot use Theorem 4.21 with the bounded poly-
nomial b = X or b = XY to obtain this result, as not all
the points at infinity of these polynomials lie in the closure of
S(M) ∩ Cλ(R).
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Example 5.4. Now we give some examples for the geometric
stability results from Chapter 3.
The first set we look at is defined by the three inequalities

0 ≤ x, x2 ≤ y, y ≤ 2x2 :

It contains a set TK,(1,2) (see Section 3.3 for the notation).
Therefore every finitely generated quadratic module describing
this set is stable, thus also closed and does not have (SMP).
The second set is described by 0 ≤ x, 0 ≤ y, (x− 1)(y− 1) ≤ 1:

It contains a full dimensional cylinder in each direction of coor-
dinates (that is, sets TK1,(1,0) and TK2,(0,1)), and so every finitely
generated quadratic module describing it is stable, closed and
cannot have (SMP). This is one way to answer Open Question
4 from [KMS]. Another way to solve this open question is due
to Claus Scheiderer. One applies Theorem 3.10 from [PSc].
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We can weaken the geometric situation and still obtain stability.
Look at the inequalities 0 ≤ x, 0 ≤ y, (x− 1)y ≤ 1:

This set contains a full dimensional cylinder in direction of y

(a set TK1,(0,1)) and a set TK2,(1,−1). The (0, 1)- and the (1,−1)-
gradings cover the usual grading, by Proposition 3.19 (or the fact
that there are no nontrivial bounded polynomials; see Theorem
3.20). So every finitely generated quadratic module describing
this set is stable, therefore also closed and cannot have (SMP).

We can still go one step further in narrowing the tentacles going
to infinity. Look at the semi-algebraic set defined by

0 ≤ x, x2y ≤ 1,−1 ≤ xy :



102 5 EXAMPLES IN THE PLANE

It contains a set TK1,(−1,2) (corresponding to the tentacle going
to infinity in positive direction of y), and a set TK2,(1,−1) (corre-
sponding to the part of the tentacle going to infinity in direction
of x that lies below the x-axis). As

2 · (−1, 2) + 3 · (1,−1) = (1, 1)

is positive in each coordinate, the results from Chapter 3 show
that every finitely generated quadratic module describing this
set is stable, and therefore also closed and does not have (SMP).
The considerations also show that there are no nontrivial
bounded polynomials on this set, which is not completely ob-
vious in this case.

Example 5.5. This last example illustrates a non-geometric
stability result one more time. Exactly the same argument as
applied to M1 in the first example shows, that the quadratic
module

M = QM(X − 1

2
, Y − 1

2
, 1−XY )

is stable and therefore closed. In contrast to M1, it describes a
compact set:

This quadratic module is Example 6.3.1 from [PD], for a non-
archimedean quadratic module describing a compact set. We
can see here that M is not only non-archimedean, but indeed
does not have (SMP), which is stronger.
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Zusammenfassung auf Deutsch

Endlich viele reelle Polynome f1, . . . , ft ∈ R[X] = R[X1, . . . , Xn]
definieren eine abgeschlossene semi-algebraische Menge

S(f1, . . . , ft) := {x ∈ Rn | f1(x) ≥ 0, . . . , ft(x) ≥ 0} .

Man möchte nun die Menge

Pos(S(f1, . . . , ft)) = {f ∈ R[X] | f ≥ 0 auf S(f1, . . . , ft)} ,

also die Menge der auf S(f1, . . . , ft) nichtnegativen Polynome
genauer untersuchen. Dazu betrachtet man zunächst die Prä-
ordnung, die von den Polynomen f1, . . . , ft definiert wird. Sie
entsteht aus den fi und Quadratsummen von Polynomen durch
Addieren und Multiplizieren, also

PO(f1, . . . , ft) =





∑

e∈{0,1}t

σef
e1

1 · · · f et
t | σe ∈

∑
R[X]2



 .

Offensichtlich ist PO(f1, . . . , ft) in Pos(S(f1, . . . , ft)) enthalten,
im Allgemeinen gilt jedoch keine Gleichheit. Man erweitert nun
PO(f1, . . . , ft) durch

PO(f1, . . . , ft)
‡ := {f ∈ R[X] |∃q ∈ R[X] ∀ε > 0

f + εq ∈ PO(f1, . . . , ft)},
sowie

PO(f1, . . . , ft)
∨∨ := {f ∈ R[X] |L(f) ≥ 0 für alle

L : R[X] → R linear mit

L (PO(f1, . . . , ft)) ⊆ [0,∞)},
und erhält so folgende Kette:

PO(f1, . . . , ft) ⊆ PO(f1, . . . , ft)
‡

⊆ PO(f1, . . . , ft)
∨∨

⊆ Pos(S(f1, . . . , ft)).
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Dabei kann PO(f1, . . . , ft)
∨∨ auch als der Abschluss und

PO(f1, . . . , ft)
‡ als der Folgenabschluss von PO(f1, . . . , fs) in der

feinsten lokalkonvexen Topologie auf R[X] charakterisiert wer-
den.
Die Untersuchung von PO(f1, . . . , ft)

∨∨ ist stark durch das so-
genannte Momentenproblem motiviert, also der Frage, wann ein
lineares Funktional ein darstellendes Maß besitzt. Der folgende
Satz, eine unmittelbare Folgerung aus dem Satz von Haviland
[H], zeigt diesen Zusammenhang:

Satz. Gilt PO(f1, . . . , ft)
∨∨ = Pos(S(f1, . . . , ft)), so hat jedes

lineare Funktional des Polynomrings R[X], welches auf
PO(f1, . . . , ft) nichtnegativ ist, ein darstellendes Maß auf
S(f1, . . . , ft). Das heißt, es gibt für jedes solche L ein Maß µ

mit

L(f) =

∫

S(f1,...,ft)
fdµ ∀f ∈ R[X].

Ein erstes wichtiges Resultat hierzu liefert Schmüdgens berühm-
ter Satz aus dem Jahr 1991 (siehe [Sm2]). Er besagt (unter
anderem) die Gleichheit

PO(f1, . . . , ft)
‡ = PO(f1, . . . , ft)

∨∨ = Pos(S(f1, . . . , ft))

für den Fall, dass S(f1, . . . , ft) kompakt ist.
Für den nichtkompakten Fall gibt es Schmüdgens Fasersatz aus

dem Jahr 2003:

Satz (Schmüdgen, [Sm3]). Sei b ∈ R[X] mit c ≤ b ≤ C auf
S(f1, . . . , ft) für gewisse c ≤ C. Dann gilt

PO(f1, . . . , ft)
∨∨ =

⋂

r∈[c,C]

PO(f1, . . . , ft, b− r, r − b)∨∨.

Falls also

PO(f1, . . . , ft, b− r, r − b)∨∨ = Pos(S(f1, . . . , ft, b− r, r − b))
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für alle r gilt, so gilt auch

PO(f1, . . . , ft)
∨∨ = Pos(S(f1, . . . , ft)).

Die Faserpräordnungen PO(f1, . . . , ft, b − r, r − b) definieren
im Allgemeinen niedrigerdimensionale semi-algebraische Men-
gen. Oft ist deshalb mehr über sie bekannt, und der Fasersatz
erlaubt die Übertragung des Wissens auf die komplizierteren
Präordnungen PO(f1, . . . , ft) und PO(f1, . . . , ft)

∨∨.
Das erste Hauptkapitel der vorliegenden Arbeit (Kapitel 2)

beschäftigt sich mit diesem Fasersatz. Der ursprüngliche Be-
weis in [Sm3] benützt tiefliegende funktionalanalytische Resul-
tate. Eine direkte Integralzerlegung von GNS Repräsentationen
wird verwendet, um ein lineares Funktional des Polynomrings
als Integral über andere Funktionale darzustellen. In Kapitel
2 wird Schmüdgens Satz nun elementarer bewiesen. Zusätzlich
kann das ursprüngliche Resultat verallgemeinert werden. Unter
gewissen Voraussetzungen gilt die Aussage auch für sogenannte
quadratische Moduln, und in Algebren von abzählbarer Vektor-
raumdimension, anstatt nur in R[X]. Diese Ergebnisse folgen
aus einem allgemeinen Hauptsatz, in dessen Beweis der Satz
von Radon-Nikodym ein wesentlicher Bestandteil ist. Kapitel 2
endet mit einigen Anwendungen von Schmüdgens Fasersatz.
In Kapitel 3 wird Stabilität von Präordnungen und quadrati-

schen Moduln untersucht. Dieser Begriff geht auf die Arbeit
[PSc] zurück. Dabei heißt die Präordnung PO(f1, . . . , ft) stabil,
wenn man gewisse Gradschranken für die Quadratsummen in
der Darstellung von Polynomen finden kann. Stabilität ist eine
interessante Eigenschaft. In [PSc, Sc4] wird bewiesen, dass sie
häufig

PO(f1, . . . , ft) = PO(f1, . . . , ft)
∨∨ ( Pos(S(f1, . . . , ft))

impliziert. In Kapitel 3 definieren wir nun Stabilität bezüglich
Graduierungen, und setzen den Begriff mit dem urspünglichen
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in Verbindung. Eine Charakterisierung der Stabilität bezüglich
Graduierungen liefert dann sowohl geometrische als auch kom-
binatorische Kriterien, um die Stabilität eines quadratischen
Moduls oder einer Präordnung zu entscheiden. Alle diese Kri-
terien sind sehr einfach anzuwenden. Als Hauptergebnis (The-
orem 3.20) erhalten wir, dass für eine gewisse Klasse von semi-
algebraischen Mengen die Nichtexistenz von nichttrivialen be-
schränkten Polynomen die Stabilität jedes korrespondierenden
quadratischen Moduls impliziert.
Das letzte Hauptkapitel der Arbeit (Kapitel 4) ist der Unter-

suchung von PO(f1, . . . , ft)
‡ gewidmet. Wir beantworten die in

[KM, KMS] gestellte Frage, ob

PO(f1, . . . , ft)
‡ = PO(f1, . . . , ft)

∨∨

immer stimmt, mit einem Gegenbeispiel (Abschnitt 4.2). Das
Beispiel zeigt ebenfalls, dass die in [Sm3] gestellte Frage, ob der
oben genannte Fasersatz auch für ‡ anstelle von ∨∨ gilt, negativ
beantwortet werden muss.
Unter stärkeren Voraussetzungen ist es aber möglich, ein Faser-

kriterium für die Zugehörigkeit eines Polynoms zu PO(f1, . . . , ft)
‡

zu geben. Dies ist der Inhalt von Theorem 4.14, dem Hauptsatz
des Kapitels 4. Er erlaubt Anwendungen, die über die bisher
bekannten Fasersätze für Zylinder aus [KM, KMS] hinausgehen
(siehe Abschnitt 4.5).
Die Arbeit endet mit Kapitel 5, in dem eine Sammlung von

zweidimensionalen Beispielen die vorangegangenen Resultate ver-
deutlicht.
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Algebraischen Varietäten, Diplomarbeit, Universität
Duisburg (2004).

[P2] D. Plaumann: Bounded Polynomials, Sums of Squares
and the Moment Problem, Doctoral Thesis, University
of Konstanz (2008).

[PSc] V. Powers, C. Scheiderer: The Moment Problem for
Non-compact Semialgebraic Sets, Adv. Geom. 1 (2001),
71-88.

[PD] A. Prestel, C. N. Delzell: Positive Polynomials,
Springer, Berlin (2001).

[P] M. Putinar: Positive Polynomials on Compact Semial-
gebraic Sets, Indiana Univ. Math. J. 3 43 (1993), 969-
984.

[Ru] W. Rudin: Real and Complex Analysis, 2nd Edition,
McGraw-Hill (1974).

[Schae] H.H. Schaefer: Topological Vector Spaces, 2nd Edition,
Springer, New York (1999).

[Sc1] C. Scheiderer: Sums of Squares of Regular Functions on
Real Algebraic Varieties, Trans. Amer. Math. Soc. 352
No. 3 (2000), 1039-1069.

[Sc2] C. Scheiderer: Sums of Squares on Real Algebraic
Curves, Math. Z. 245 (2003), 725-760.

[Sc3] C. Scheiderer: Positivity and Sums of Squares. A
guide to some recent results, Preprint 2003, available at
www.ihp-raag.org/publications.

[Sc4] C. Scheiderer: Non-existence of Degree Bounds for
Weighted Sums of Squares Representations, Journal of
Complexity 21 (2005), 823-844.



110 ZUSAMMENFASSUNG AUF DEUTSCH

[Sc5] C. Scheiderer: Distinguished Representations of Non-
negative Polynomials, J. Algebra 289 (2005), 558-573.

[Sc6] C. Scheiderer: Sums of Squares on Real Algebraic Sur-
faces, Manuscripta Math. 119 (2006), 395-410.
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[Wö] T. Wörmann: Strikt positive Polynome in der semial-
gebraischen Geometrie, Dissertation, Universität Dort-
mund (1998).


	Text1: Konstanzer Online-Publikations-System (KOPS)
URL: http://www.ub.uni-konstanz.de/kops/volltexte/2008/6737/
URN: http://nbn-resolving.de/urn:nbn:de:bsz:352-opus-67376


