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Animal-attached devices have transformed our understanding of vertebrate

ecology. To minimize any associated harm, researchers have long advocated

that tag masses should not exceed 3% of carrier body mass. However, this

ignores tag forces resulting from animal movement. Using data from

collar-attached accelerometers on 10 diverse free-ranging terrestrial species

from koalas to cheetahs, we detail a tag-based acceleration method to clarify

acceptable tag mass limits. We quantify animal athleticism in terms of frac-

tions of animal movement time devoted to different collar-recorded

accelerations and convert those accelerations to forces (acceleration × tag

mass) to allow derivation of any defined force limits for specified fractions

of any animal’s active time. Specifying that tags should exert forces that

are less than 3% of the gravitational force exerted on the animal’s body for

95% of the time led to corrected tag masses that should constitute between

1.6% and 2.98% of carrier mass, depending on athleticism. Strikingly, in

four carnivore species encompassing two orders of magnitude in mass (ca

2–200 kg), forces exerted by ‘3%’ tags were equivalent to 4–19% of carrier

body mass during moving, with a maximum of 54% in a hunting cheetah.

This fundamentally changes how acceptable tag mass limits should be deter-

mined by ethics bodies, irrespective of the force and time limits specified.

1. Introduction
The use of animal-attached devices is transforming our understanding of wild

animal ecology and behaviour [1,2]. Indeed, tags containing multiple sensors

and position-determining systems have been used across scales of time and
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space to measure everything from the extraordinary details of

high performance hunts in cheetahs [3], to vast cross-taxon

comparisons of animal behaviour and space-use over whole

oceans (e.g. [1,4]). A critical proviso is, however, that such

devices do affect survival or change the behaviour of their car-

riers, for both animal welfare issues as well as for scientific

rigor [5]. Defining acceptable device loads for animals is criti-

cal because even diminishingly small tags can cause

detriment. For example, Saraux et al. [6] showed that the

addition of flipper rings to penguins can affect their popu-

lations, with adults having a survival rate 16% lower than

untagged conspecifics and producing 39% fewer chicks, pre-

sumed to be because of the tags increasing the drag force in

these fast-swimming birds. Performance is relevant in this

case because drag-dependent energy expenditure to swim

increases with the cube of the speed [7].

Although consideration of the physics of drag has been

shown to be a powerful framework with which to understand

tag detriment in aquatic animals (e.g. [8,9]), drag is negligible

in terrestrial (though not aerial) systems even though tag det-

riment in terrestrial animals has been widely reported and is

multi-facetted [10]. Reported issues range from minor behav-

ioural changes [11] through skin-, subcutaneous- and muscle

damage with ulceration [12,13] to reduced movement speed

[14] and dramatically increased mortality [15]. As with drag,

we advocate that a force-based framework is necessary to

help understand such detriment. Indeed, force is implicit in

ethics-based recommendations for acceptable tag loads

because, for example, a central tenet is that animal tag mass

should never exceed 3% or 5% of the animal-carrier body

mass [16], this being based on early observations that tags

weighing less than 5% of animal body masses apparently

caused no change in behaviour [17]. Importantly though,

there are now numerous studies that have reported highly

variable impacts of animals carrying tags of masses less than

the 3–5% limit [18–21] for reasons that are not always clear

[20–22]. Implicit in this limit is that consequences, most par-

ticularly the physical forces experienced by animals owing to

tags, are similarly limited. This cannot be true because

Newton showed that mass, force and acceleration are linked

via F =ma, so animal performance, specifically their accelera-

tion, will affect the tag forces applied to the carriers. Tag

forces on the animal carrier can therefore be assessed by

measuring acceleration experienced by the tag as the animal

moves. Specifically, reference to Newton’s force/mass accelera-

tion formulation shows that any time the tag acceleration

exceeds 1 g (corresponding to Earth’s gravity), the carrier

animal will be subject to correspondingly higher tag-derived

forces. We note here though, that this necessitates gathering

on-animal data because simple consideration of acceleration

from rigid-non-living bodies is inappropriate for living

systems composed of multiple interacting segments [23].

Here, we examine the forces exerted by collar-mounted

tags on moving animals. We investigate four species within

the order Carnivora in detail; lions Panthera leo, European

badgers Meles meles, pine martens Martes martes and a chee-

tah Acinonyx jubatus (with body masses roughly spanning

2–200 kg) equipped with accelerometers undertaking their

normal activities in the wild for 1–21 days. In particular,

because gait is known to affect acceleration in body-mounted

tags [24] we examined how walking, trotting and bounding

affected the forces imposed on the animals by the tags. We

also equipped six other species of mammal from diverse

animal families (a cercopithecid, a phascolarctid, a phala-

gerid, a bovid, a cervid and a suid) with different lifestyles

with accelerometers in situ for periods between 7 and 168

days to examine the general patterns of forces they exhibited

and compared them to the carnivores.

Because the act of travelling is known to produce particu-

larly high forces [25], we also carried out controlled trials

with 12 domestic dogs Canis familiaris (2–45 kg) equipped

with the same tags moving at defined speeds to investigate

how movement speed, body mass and tag mass interact to

affect tag forces.

We document how the forces imposed by the collars chan-

ged with activity across all these species and conditions. Based

on this, we propose a method based on acceleration data that

allows researchers to define the breadth of forces exerted by

tags on animals and their relative frequency of occurrence.

We show how this information can then be used to derive

appropriately force-based acceptable limits for tag masses,

recognizing the effect of animal lifestyle and athleticism.

2. Material and methods

(a) Tag deployments on free-ranging species
We selected four species of free-living carnivores for detailed

analysis, exemplifying about two orders of magnitude of mass;

10 lions Panthera leo (mean mass ca 152 kg), one cheetah Acinonyx

jubatus (mass ca 41 kg), 10 badgers Meles meles (mean mass ca

9.1 kg) and five pine martens Martes martes (mean mass 1.9 kg),

and fitted them with collar-mounted tri-axial accelerometers

(‘Daily Diaries—Wildbyte Technologies (http://www.wildbyte-

technologies.com/); measurement range 0–16 g (resolution

0.49 mg), recording frequency 40 Hz), all of which constituted

less than 3% of the mass of the animal carriers (electronic

supplementary material, table S1). Owing to the weighting of

the loggers, and more particularly their associated batteries,

the units and sensors were positioned on the underside of the

collar although during movement the collars could rotate,

which could occasionally, temporarily bring the measuring

system off the ventral position. After being equipped, the ani-

mals roamed freely, behaving normally, for periods ranging

between 3 and 21 days before the devices were recovered.

In addition to these, we also deployed collar-mounted acceler-

ometers constituting less than 3% of the carrier mass (electronic

supplementary material, table S1) on six select free-ranging

animal species. We chose these species by capitalizing on

available data from animals equipped with high temporal resol-

ution acceleration tags on collars from different mammal families

with varying lifestyles for comparison with the carnivores. The

species and lifestyles were: a savannah-dwelling monkey—the

olive baboon Papio Anubis (mean mass 15 kg, n = 5); an arboreal

herbivorous marsupial—the koala Phascolarctos cinereus (mean

mass 10.3 kg, n = 5); a nocturnal, semi-arboreal, herbivorous mar-

supial—the mountain brushtail possum Trichosurus cunninghami

(mean mass 3.2 kg, n = 5); a grass-eating, desert-dwelling bovid—

the Arabian oryx Oryx leucoryx (mean mass 74 kg, n = 5); a grass-

eating, wood- and moor-dwelling cervid—the red deer Cervus ela-

phus (meanmass 135 kg, n = 5); and a forest-dwelling, omnivorous

pig—the wild boar Sus scrofa (mean mass 67 kg, n = 5). Extensive

details on species-specific tagging procedures are included in the

electronic supplementary material.

(b) Trials with domestic dogs
Twelve domestic dogs (Canis lupus domesticus) of seven different

breed combinations and three main body types (small, racers and

2



northern breeds), ranging 2–45 kg in body mass (electronic sup-

plementary material, table S2), were volunteered by their owners

and the Royal Society for the Prevention of Cruelty to Animals

(RSPCA) Llys Nini Wildlife Centre (Penllergaer, Wales) to take

part in this study. Dog body masses were obtained from the

most recent measurements taken by a veterinarian, or the

RSPCA, and we measured body length, forelimb length and

hindlimb length to the nearest cm. Two leather dog collars

(short and long) of the same width were used to cover the

range in dog neck size. Combinations of pre-prepared lead

plates (up to 10 cm in length) and varying in mass (25, 35, 45,

50, 100, 150 and 175 g) were fashioned into collar loads equival-

ent to 1, 2 and 3% of each carrier dog’s body mass. The lead

plates were stacked, the longest of them (for the greatest

masses) being bent to replicate a 10 cm section of the collar cir-

cumference and attached securely to the ventral collar along

their full-length using Tesa® tape. A tri-axial accelerometer and

its supporting battery (3.2 V lithium ion) were taped securely

to the load. The tag and battery combined weighed 11.9 g and,

in the absence of any additional load, were considered negligible

in mass and used as a control (0% carrier body mass). All trials

were approved by the Swansea University Animal Welfare

Ethical Review Body (ethical approval number IP-1617-21D).

Each dog was encouraged to traverse along a 25 m stretch of

level, short-cut grass at slow (walk/amble), moderate (pace/trot)

and fast (canter/gallop) speeds (because gait affects acceleration

signatures substantially [24]) wearing collar-tags equivalent to 0,

1, 2 and 3% of their body mass (12 gait and tag mass combi-

nations) and trial order was randomized. Posts were spaced

every 5 m along the track. A stopwatch was used to record the

time taken (to the nearest s) for a dog to travel 20 m in order

to calculate an average speed of travel (m s−1).

(c) Data processing
In all cases of animals equipped with accelerometers, the three

channels of raw acceleration data were converted to a single

metric by calculating the vectorial sum of the acceleration follow-

ing Vect sum ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(a2x þ a2y þ a2z )
q

, where a is the instantaneous

acceleration and the subscripts denote the different (orthogonally

placed) acceleration axes. We chose to use the Vect sum rather

than dynamic body acceleration (DBA) metrics [26] because

DBA values do not represent peak accelerations owing to the

gravity-based component being removed [27]. The specifics of

the surge, heave and sway accelerations were not considered sep-

arately owing to some collar roll. In the case of the free-living

carnivores, we examined how travel gait affected the Vect sum

by plotting the cumulative frequency distribution from each

species during periods of walking, trotting and bounding.

For the domestic dogs, we selected the maximum four peak

accelerations in the Vect sum from the gait waveforms using the

peak analysis tool in ORIGINLAB (2020) to examine them as a func-

tion of average speed, gait, body mass and tag mass as a

percentage of carrier body mass. We standardized the use of

four peaks because at the highest speeds some dogs only had

four full waveforms during the test stretch. The relative forces

(% body mass) exerted by the tags on their animal carriers were

calculated using F =ma, where m is the mass of the tag plus

collar as a percentage of carrier mass and a is the acceleration (g).

(d) Tag-based acceleration method
Finally, in a full cross-species comparison of the free-living

animals, we plotted the cumulative frequency distribution of

the Vect sum from each species during periods when they

were active (by excluding periods where the acceleration signals

were constant) to define the vector sum of the acceleration at

species-specific 95% and 99% limits.

(e) Statistical analyses
Linear mixed-effects models were conducted in R (v. 4.0.3, [28])

within the ‘lme4’ package (v. 1.1-26) in order to investigate how

the period between acceleration peaks, gait and body mass influ-

enced peak accelerations across four species of wild carnivores,

and separately in domestic dogs. Additionally, we investigated

how travel speed (covariate), body mass (covariate), collar mass

as a percentage of carrier body mass (fixed factor with four

levels) and gait (fixed factor with three levels for slow, moderate

and fast gaits) influenced peak accelerations and consequent

forces exerted by the tags. Dog identity was included as a

random factor in all models to account for repeated measures. All

potential interaction effects were first investigated and a step-wise

back-deletion of non-significant interaction terms was conducted.

Standard model diagnostics were conducted in order to ensure

that model assumptions were met (examining quantile-quantile

plots and plotting the residuals against fitted values) and data

transformations were conducted in order to meet assumptions

where appropriate. The F statistic and marginal and conditional

R2 were determined using the ‘car (3.0-5)’ and ‘MuMIn (1.46.6)’

packages, respectively. Coefficients for best-fit lines in the figures

were extracted from the final outputs of the models.

3. Results

(a) Changing acceleration according to activity in

carnivores
Accelerometer data for periods when our carnivores tra-

velled, displayed clear peaks in the waveforms with

measurable frequency and, summarized as a frequency distri-

bution of the vectorial sum of the three orthogonal axes,

showed tri-modal distributions except for the pine martens

which were mono-modal. Following [29] and examination

of videos of the study animals engaged in travelling using

different gaits with measurable step frequency, we could

ascertain that these corresponded to walking, trotting and

bounding (e.g. figure 1, which also tallied with our direct

and filmed observations of the domestic dogs below); these

were further exemplified by variation in the amplitude in

this acceleration metric (figure 2). Cumulative frequencies

of all acceleration values showed increasing acceleration

from walking through trotting to bounding and typically

had a roughly logarithmic-type curve for all gaits and ani-

mals (figure 1). The percentage time during which the tags

carried by the carnivores had acceleration exceeding 1 g

during specified activity, varied between a mean minimum

of 31% for walking badgers to 88% for bounding cheetahs

(electronic supplementary material, table S3). Furthermore,

while differences in species acceleration distributions were

not readily apparent for their walking gaits, the percentage

time during which acceleration was in excess of 1 gwas great-

est during bounding, with cheetahs showing the highest

values in this category (green line with circles in figure 1).

Mean peak accelerations per stride across species varied

between 1.37 g (s.d. 0.05) and 6.25 g (s.d. 0.79) for walking

and bounding cheetahs, respectively (electronic supplemen-

tary material, table S4). The maximum recorded value was

18.1 g in a cheetah assumed to be chasing prey.

Across the four species, gait was the main factor dictating

peak acceleration (figure 2) and there were no significant

effects of body mass, nor period between peaks (linear

mixed-effects model: log period: F1,210= 0.01, p = 0.908; gait:
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F2,208= 1083.07, p < 0.0001; body mass: F1,19= 3.00; p = 0.100;

electronic supplementary material, table S5). The period

between acceleration peaks was greater for larger species

during slower gaits, but not for bounding (a linear mixed-

effects model demonstrated a significant interaction effect

between body mass and gait: F2,209= 3.00, p < 0.0001;

electronic supplementary material, table S5).

There was also appreciable variation in the vectorial sum

of the acceleration within gaits and between sexes, as

exemplified by prey chases by lions. Here, mean peak accel-

eration per stride across females and males increased from

about 3 g at the outset to a maximum of about 3.8 g before

decreasing again (figure 3). However, female peak accelera-

tion was approximately 1 g higher than males for the

duration of the chase (figure 3). Given that females and

males were wearing tags that amounted to 0.72% and

1.02% of their mean body masses, respectively (electronic

supplementary material, table S1), this translates to tag-

dependent forces corresponding to greater than 2% and

greater than 4% of the gravitational force exerted on the ani-

mal’s body masses, respectively (figure 3). In the case of the

cheetah, which showed the highest peak vectorial accelera-

tion sum of our study animals, a 3% tag would impose

forces equivalent to 54% of the gravitational force exerted

on the animal’s body at this time.

In dogs, stride peak accelerations increased linearly with

travel speed (electronic supplementary material, figure S2),

but at greater rates with increasing relative tag mass (there

was a significant interaction effect between travel speed and

tag per cent body mass: F3,500.77= 4.34, p = 0.004; electronic

supplementary material, table S6). There was also a signifi-

cant interaction effect between gait and tag per cent body

mass on stride peak accelerations (F6,498.57 = 4.34, p = 0.0002;

electronic supplementary material, table S6). Peak tag accel-

erations ranged from 4 to 18 g during fast category (canter/

gallop) trials in dogs wearing collar tags equivalent to 3%

of their body mass (electronic supplementary material,

figure S3). In this scenario, movement of the tag relative to

the body (flapping/swinging) was exacerbated and, as a con-

sequence, the force exerted by the tags ranged from 20–50%

of the gravitational force exerted on the carrier animal’s

body mass (electronic supplementary material, figure S4).

Stride peak accelerations were largely invariant with

body mass (F1,10.12 = 3.51, p = 0.090; electronic supplementary

material, table S6) across dog breeds for any given gait (elec-

tronic supplementary material, figure S3). Consequently, the

peak forces exerted by the tags were directly proportional

to tag mass and body mass. Accordingly, relative tag forces

(percentage of the gravitational force exerted on the carrier

animal’s body mass) were independent of carrier body
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mass (electronic supplementary material, table S6 and

figure S4).

(b) Using accelerometry to derive an over-arching

tag-force rule
Although travelling is a major component across species,

animal activity across all behaviours contributes to the accel-

eration, and therefore the tag force profiles, that animals

experience. We produced cumulative frequency curves of

the vectorial sum of the acceleration (cf. figure 1) for all 10

study species for periods when animals were considered

active and these all showed a characteristic sigmoid pattern

(figure 4a). These relationships were displaced further to

the right as higher acceleration activities accounted for an

increasing proportion of any animal’s time (figure 4a). In

order to have a scientifically robust acceptable threshold to

limit the forces produced by a tag on an animal carrier, we

suggest a tag-based acceleration method; that researchers

should derive a similar cumulative acceleration profile for

their study species and use a minimum of the 95% limits

on the plot (although higher limits may be more appropri-

ate). Assuming, in the case of our study animals, that these

limits were intended to cater for a tag that should exert

forces that are less than 3% of the gravitational force exerted

on the animal’s body, this limit would lead to corrected tag

masses constituting between 1.6% and 2.98% of our study

animals’ masses (figure 4b). We note, however, that even

these corrected tag masses would effectively exceed the 3%

rule conditions for one-twentieth of the animals’ active

periods: the difference between the 95% and 99% thresholds

for our study species indicates the extent of the force develop-

ment for this period with some, such as the koalas, showing

virtually no difference, whereas badgers, baboons and mar-

tens exhibited substantial differences (figure 4b).

Importantly though, this method would allow researchers

to define any tag force thresholds, not just 3%, and the

times these were exceeded by the animal, not just 95%.

4. Discussion
The subject of detriment caused by tags on animals is com-

plex because the general term ‘detriment’ has many facets

[20], not least because the tag itself may cause the animal

to move in an atypical manner, which may change how a

device would affect an animal that did not respond to the

device. One direct aspect that exemplifies this is, for example,

measurable physical harm to the animal, such as pressure

sores [12], the severity of which might be expected to

depend on movement patterns. However, physical harm

can also effectively occur if tagged animals or their offspring

cannot balance energy budgets owing to compromised fora-

ging stemming from tag interference [6,30,31]. Often, this is

simply a result of higher movement costs or reduced per-

formance in tagged animals as they travel [18]. This also

means though, that precise limb kinematics may be different

in travelling tagged animals, and this will affect acceleration

signals recorded by animal-attached tags, which is relevant

to a study such as ours. So, measurement affects performance

[32] and we must bear this caveat in mind when we advocate

that our tag data represent the norm of untagged animals.

Against this, however, we can and should use proper phys-

ical frameworks to assess tag detriment because this is

precisely what our tagged animals experience, whether

their movement is ‘normal’ or not, because we have specifi-

cally equipped them with the source of detriment. Indeed,

this is the fundamental premise behind our work although

the issue of what untagged animals may experience remains

problematic [5].

A rigid vehicle accelerating in a straight-line only experi-

ences acceleration in the longitudinal axis. By contrast, the

multiple limb-propelled motion of an animal with a flexible

body produces complex three-dimensional trunk accelera-

tions owing to the changing limb accelerations [23] caused

by multiple muscle groups that ultimately transfer mechan-

ical energy and affect shock absorption [33], and the

mechanical work conducted within each stride [34]. Ulti-

mately, the magnitude of trunk accelerations depends on

the combined acceleration of the limbs, and the masses of

those limbs (cf. [23]). Thus, animals engaging in high per-

formance activities are expected to produce high body

accelerations, and have physiological and anatomical adap-

tations to enhance performance, such as fast twitch muscles

[35], and tendons designed for greater storage and release

[36], which will increase this. Through all these complexities,

tags mounted on the trunk of an animal result in greater

forces being imposed that scale linearly with the acceleration

of the tag and its mass. Consideration of animal lifestyle then,

can already inform prospective tag users of the likely scale-up

of the tag forces beyond the 1 g normally considered for tag

detriment because force =mass × acceleration, the repercus-

sions of which are discussed below in terms of potential

detriment. Consequently, the 3–5% mass limits for slow-

moving animals, such as sloths (Bradipodidae) or koalas

(Phascolarctidae) (figure 4), seem most appropriate, though

this does not mean that tags will not affect the animals.

Against this, the 3–5% mass limits may be less appropriate

for pursuit predators, such as wild dogs (Lycaon pictus), reg-

ularly jumping animals like kangaroos (Macropodidae) or

martens (Mustelidae) (figure 4) and rutting ungulates (Ungu-

lata). Beyond that, in our small sample of carnivores at least,

which nonetheless covers about two orders of magnitude in

stride period (s)
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mass, it seems that peak acceleration associated with gait

varies little with mass, although larger animals have longer

stride periods (figure 2, cf. [37]). If these animals were to

carry tags constituting 3% of their normal body mass, mean

peak forces imposed by the tags would constitute ca 4.5%,

6% and 12% of the gravitational forces exerted on the ani-

mals’ bodies for walking, trotting and bounding gaits at

frequencies of between 1.6 and 4 times per second (for walk-

ing lions and trotting badgers, respectively; figure 2;

electronic supplementary material, table S4). We also note

how minor differences in sex-dependent tag masses coupled

with differences in performance affect the forces imposed by

the tags, as exemplified by the lions (figure 3) and how,

were the tags in this study to constitute 3% of the animals’

masses, the tag-based forces would scale up accordingly.

Against all this, we recognize two important trends: (i) that

as animals get larger, deployed tags on them are likely to

be a smaller fraction of their mass anyway; but that

(ii) despite miniaturization advances in tag technology,

researchers continue to deploy systems that are around the

3–5% mass limit on smaller animals [21].

Importantly, tag attachment is relevant in translating the

acceleration experienced by the animal’s trunk into tag-

dependent forces acting on the animal, with collars predicted

to be particularly problematic. A tag that couples tightly with

its carrier’s trunk, such as one attached with tape to a bird

[38] or glue to a marine mammal [39], experiences accelera-

tion that closely matches that of its substrate, so it exerts

forces at a site where most of the animal’s mass lies. By con-

trast, a device on a looser-fitting collar of a moving tetrapod

not only exerts forces on the (less massive) head and neck

areas, rather than the animal’s trunk, but the tag also oscil-

lates between essentially two states: one is analogous to

‘freefall’, which occurs between pulses of animal trunk

acceleration in the stride cycle which project the collar in a

particular direction owing to its inertia and lack of a tight

couple with the neck. The collar is therefore subject to

peaks in acceleration when it interacts with the animal’s

neck, causing greater collar acceleration than would be the

case if it were tightly attached to the animal’s body (cf.

peaks in figure 1). This explains why Dickinson et al. [40]

reported that acceleration signatures from collar-mounted

tags deployed on (speed-controlled) goats Capra aegagrus

became increasingly variable with increasing collar looseness,

and is analogous to the concerns related to injuries sustained

by people in vehicles depending on seatbelt tightness [41].

Partial answers to minimizing such problems may involve

having padded collars that should reduce acceleration

peaks, making sure that the tags themselves project mini-

mally beyond the outer surface of the collar and having

wider collars to reduce the pressure.

Having identified how animal movement changes the 3%

tag rule, it is more problematic to understand how the

identified forces translate into detriment. Within a general

tag detriment framework, heavier tags require that animals

perform more work (J) during movement because work

done = force × distance, which helps clarify why the

additional forces from a tag, on top of the animal weight,

should relate to energy expenditure (cf. [42]). However,

with respect to load carrying, how various tri-axial accelera-

tion metrics such as DBA [26] relate to force and energy

needs further research [43]. A prime effect of vectorially

summed acceleration is that higher associated forces (because

mass is constant) and smaller contact areas will lead to higher

pressure at the tag-animal interface because pressure = force/

area. This can affect anything from fur/feather wear [44] to

changing the underlying tissue [45] and, as would be pre-

dicted, is notably prominent in species wearing thin collars
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Figure 3. Hunting lions experience maximum tag forces mid-chase and show substantial inter-sex differences. Box and whisker plots (bold horizontal bars show

means, boxes inter-quartile ranges (IQR) and whiskers 1.5 × IQR) of the: (a) vectorial sum of the acceleration peaks per bound (cf. figure 1), and (b) the tag-based

forces exerted as a percentage of the gravitational force exerted on the animal’s body (because our tag constituted 1.02% and 0.72% of the female and male body

weights, respectively, see the electronic supplementary material, table S1) for lions chasing prey as a function of the percentage progression into the chase (con-

sidered to have started when bounding began). Red (upper) and blue (lower) lines show grand means for five females and five males, respectively. The maximum

acceleration was 15.1 g, which would equate to a 3% tag exerting a force equivalent to 45.3% of the gravitational force exerted on the animal’s body. (Online

version in colour.)
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(e.g. howler monkeys Alouatta palliatai, where 31% of animals

wearing ball-chain radio-collars constituting just 1.2% of their

mass sustained severe damage extending into the subcu-

taneous neck tissue and muscle [12]). However, pressure-

dependent detriment will also depend on the proportion

and length of time to which an animal is exposed to excessive

forces, with animals that spend large proportions of their

time travelling, such as wild dogs, being particularly

susceptible [46].

Perhaps more esoteric, is the extent to which the inertia of

a variable force-exerting tag ‘distracts’ its wearer, aside from

the physical issues of load-bearing by animals, and in this

context, peak forces per stride are liable to be critical. The

tag mass as a percentage of carrier mass did not affect the

gait-specific speeds selected by the domestic dogs in this

study. However, it remains to be seen the extent to which a

typical 30 kg cheetah wearing a collar that is 3% of its body

mass, and therefore experiencing an additional force equival-

ent to up to 16 kg during every bound of a prey pursuit,

might have its hunting capacity compromised. We note that

the survival of such animals is believed to be especially sen-

sitive to the proportion of successful hunts (cf. [47]), which

calls for critical evaluation of performance between tag-

wearing and unequipped animals, or animals equipped

with tags of different masses (cf. [32]).

In the meantime, our suggested approach of setting tag

mass limits based on the overall (corrected) forces being

less than 3% of the gravitational force exerted on the animal’s

body for 95% of the active time should go some way to get-

ting a more realistic assessment of the potential for detriment.

Where researchers adopting this approach do not have

appropriate acceleration data for their study animal, they

could use a surrogate species, perhaps from an online data-

base. Such a resource should define the length of time that

study animals were equipped to derive the acceleration fre-

quency distribution because animal activities (and therefore

the acceleration signals associated with them) occur variously

over time. For this, longer periods are obviously better, but a

pragmatic approach might be to plot cumulative frequencies

of the vectorial sum of the acceleration as a function of

recording time to see how they change or tend towards a

stable value as the monitoring period increases. In this, we

note that seasonal variation in animal behaviours, such as

occurs in rutting ungulates, have potential to affect the distri-

bution substantially, emphasizing the importance of

considering the context under which the data were gathered.

Importantly, we do not advocate the 3% rule as such, but

recognize that it has been widely adopted and could serve

as a useful starting point with which to consider tag detriment

if calculated as we have suggested here. In this, cognizance

should also be given to the extent of tag forces for periods

above the 95% threshold because, where these are excessive,

it may be appropriate to use a 99% threshold or higher to

derive appropriate tag masses. Notably though, even 99%

limits do not highlight the high tag forces developed during

prey pursuits exhibited by the cheetah. We suggest that the

solution to this lies in more detailed consideration of the ani-

mal’s lifestyle; in particular, identifying survival-critical

behaviours with exceptionally high accelerations. Such periods

may persuade ethics bodies to raise their thresholds still

further. Underpinning this will be ongoing miniaturization,

where tags benefit from the sensor revolution in human wear-

ables, which will undoubtedly percolate through to animal

applications: advanced smart phones have greater than 10 sen-

sors, along with significant memory and data transmission

capabilities, and typically weigh 150–200 g or about 0.2% of

average human body mass, although human wearables benefit

from regular contact with charging systems while many wild-

life tag applications are projected for long-term deployments

(e.g. [48]) that either necessitate correspondingly large batteries

or autonomous charging systems, both of which increase the

mass of tags [49].
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Finally, consideration of the acceleration-based forces gen-

erated by animal-attached tags does not cover all forms of

detriment because other forces are at play, such as greater

drag in swimming- and flying species (cf. [6]), and more eso-

teric elements, such as device colour, that affect animal

behaviour [50]. However, our framework should take the cur-

rent ‘one-size-fits-all’ basic 3% rule into an arena where

quantitative assessment of acceleration can be compared to

the myriad of tag-influenced behaviours recognized by the

community to link animal lifestyle to putative detriment.

Most importantly, these considerations should give ethics

bodies a more useful rule of thumb than is currently the

case and enable us to develop systems that minimize force-

based tag effects, to the benefit of both animals and the

science that their studies underpin.
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