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Topological insulators are materials with spectral bands associated with an integer-valued index, manifesting
through quantized bulk phenomena and robust boundary effects. In this Rapid Communication, we demonstrate
that higher-order topological insulators are descendants from a high-dimensional chiral semimetal. Specifically,
we apply dimensional reduction to an ancestor four-dimensional Chern insulator, and obtain two-dimensional
(2D) second-order topological insulators when the former becomes chiral. Correspondingly, we derive the
quantized charge accumulation at the corners of the 2D descendants and relate it to the topological index—the
second Chern number—of the ancestor model. Our results provide a clear connection between the boundary
states of higher-order topological insulators and topological pumps—the latter being dynamical realizations of
the quantum Hall effect in high dimensions.
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Over the past decades, the unique properties of topological
insulators (TIs) led to many theoretical and experimental
advances [1–3]. TIs have energy bands that are characterized
by a nonlocal quantity, a topological index, which determines
the bulk and boundary properties. The quantization of the
topological index usually relies on local symmetries [4–6],
symmorphic or nonsymmorphic crystalline symmetries [7,8],
or even quasiperiodic order [9–12]. The resulting TIs are
extensively studied and classified according to the presence
or absence of such symmetries [4–6,13,14] using a plethora
of methods, such as K theory [4,15,16], nonlinear σ -model
analysis [5,6,17], and dimensional reduction [2].

A paradigmatic example of a TI is the Chern insulator
(CI), appearing in even dimensions. CIs exhibit quantized
bulk transport responses [18,19] proportional to the topo-
logical indices (Chern numbers) characterizing their spectra.
Interestingly, using dimensional reduction, a CI in d dimen-
sions is mapped to a family of models in d − m dimen-
sions, dubbed the “descendant pump family”. A periodic and
adiabatic scan over the descendant pump family similarly
results in quantized bulk transport that is proportional to the
Chern numbers of the ancestor CI. Archetypical examples of
such mapping are the [two-dimensional to one-dimensional
(2D → 1D)] reduction of a 2D CI to Thouless’s 1D topolog-
ical pump [20–24] and the [four-dimensional (4D) → 2D]
reduction of a 4D CI to 2D topological pumps [18,25,26],
see Table I.

The topological bulk responses of the ancestor CI have
associated boundary phenomena where dispersive states of
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co-dimension h cross the gap, i.e., states localized in h dimen-
sions but extended in the remaining. Crucially, under dimen-
sional reduction, the boundary states of the CI are mapped to
the boundaries of the descendant pump family. For example,
the Chern numbers of a 4D CI imply boundary states with co-
dimensions h = 1 and h = 2 that, after dimensional reduction,
are mapped to the edges and corners of the descendant 2D
pump family [26].

Although CIs and topological pumps share equivalent
Chern numbers, a relationship between topological indices in
different classes and dimensions is obtained by imposing sym-
metry constraints when performing dimensional reduction.
For example, the [4D → three-dimensional (3D)] reduction
of a 4D CI yields 3D Z2 TIs when time-reversal (T.R.)
symmetry is imposed [27], see Table I. This allows for the
derivation of a Z2 index, characterizing the descendant 3D
family, directly from the second Chern number of the ancestor
4D model. Correspondingly, the surface states of the 3D Z2

TI descend from the h = 1 boundary states of the 4D ancestor
model, i.e., the boundary states related to the second Chern
number.

Recently, zero-dimensional (0D) boundary states, i.e.,
states of co-dimension h = 2, carrying a quantized charge
±1/2 were predicted in 2D materials [26,28–41]. This led
to a new class of TIs, dubbed “higher-order TIs” where a
d-dimensional insulator has nontrivial boundary phenomena
manifesting at its d − h boundary with h > 1. The appearance
of such states was explained using the modern theory of po-
larization, which was extended to higher multipole moments,
and charge quantization was imposed by the underlying sym-
metries of the system [32].

In this Rapid Communication, we reveal a connection
among higher-order TIs, descendant pump families, and high-
dimensional CIs. Specifically, we show that 2D second-order
TIs are the 2D descendants of a 4D chiral semimetal. We do
so by first defining an ancestor 4D CI with well-defined first
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TABLE I. Mapping between models in different dimensions and
symmetry classes.

Reduction Ancestor Model Descendant family

2D→1D chiral
2D Chern Insulator
2D Chiral Semimetal

1D pump
1D -insulator

4D→3D T.R.
4D Chern Insulator
4D T.R. Insulator

3D pump
3D 2-insulator

4D→2D chiral
4D Chern Insulator
4D Chiral Semimetal

2D pump
2D second-order TI

and second Chern numbers and then applying (4D → 2D) re-
duction to obtain the descendant 2D pump family [18,25,26].
We, then, show that the topological index, associated bulk
responses, and the corresponding boundary phenomena of
the 4D CI directly imply the properties of second-order TIs
in the limit where the former becomes chiral. Respectively,
we show that the descendant 2D family is divided into re-
gions in parameter space separated by (bulk- or edge-) gap
closures; these regions are distinguished by the appearance
of midgap 0D states, localized at the corners. We derive the
quantization of corner charge by extending the formula of
Jackiw-Rebbi [42] to the 2D descendants and connecting it
to the second Chern flux of the ancestor 4D Hamiltonian.
Finally, using dimensional reduction, we generate various
higher-order TIs solely via flux insertions through different
planes of the ancestor model, leading to a simple procedure
for finding new models for material realizations.

We consider a tight-binding model describing spinless
charged particles moving on a 4D hypercubic lattice in the
presence of a magnetic field [see Fig. 1(a)],

Ĥ4D =
∑

m

[
Ĥxz(m) + Ĥyw(m) + �Ĥb

xy(m)
]
, (1)

where m = (mx, my, mz, mw ) is a 4D lattice vector and
Ĥμν (m) describes a 2D Creutz lattice [10,43,44] on the μν

plane [cf. Figs. 1(a) and 1(b)]. In the Landau gauge, each
Creutz model is written as Ĥμν (m) = T̂μν + T̂ †

μν with

T̂μν = tμν

(
e−iπmμc†

m+eμ+eν
cm + eiπmμc†

m+eμ−eν
cm

)
+ tμc†

m+eμ
cm , (2)

where eμ is a lattice unit vector in direction μ, tμ is the
nearest-neighbor hopping amplitude, tμν is the next-nearest-
neighbor hopping amplitude, and the magnetic flux is incorpo-
rated using Peierls’ substitution [45]. The third term in Eq. (1)
denotes the threading of b flux through each xy plaquette,

�Ĥb
xy(m) = (eimxb − 1)T̂yw + H.c. (3)

Finally, a potential V̂ (m) = (−1)mx+myV0c†
mcm with V0 as a

constant (similarly when tz �= 0 �= tw) gaps the spectrum, and
the 4D model is a CI with well-defined first and second Chern
numbers.

The chosen gauge in Eq. (2) leaves the Hamiltonian Ĥ4D

invariant under lattice translations in the z and w directions.
We can, therefore, write Eq. (1) in terms of the quasimomenta

FIG. 1. Ancestor model and (2D → 1D) reduction. (a) The 4D
model [cf. Eq. (1)] made out of 2D Creutz lattices. Each triangular
(and parallelogram) plaquette is threaded with a π flux [cf. Eq. (2)].
(b) The energy spectrum of Ĥxz [cf. Eq. (2)], showing two Dirac
cones. (c) The bulk dipole Px (kz ) (dashed line), associated with
ĥx (kz ) and its derivative ∂kz Px (kz ) (solid line). The total area under
∂kz Px (kz ) is equal to the first Chern number c1 of the ancestor model.
(d) The open boundary spectrum of ĥx (kz ) as a function of kz. Bulk
(boundary) states are shown in gray (purple). In (c) and (d), we used
tx = t, txz/tx = 0.45 [cf. Eq. (5)] and tz/tx = 0.03 to open a gap [43].
The inset shows the spectrum for tz/tx = 0. (e) The area S enclosing
the interface between a nontrivial 1D TI and the vacuum (top) and the
domain wall configuration in the kz-parameter space that describes it
(bottom). In addition, the charge density ρ at half-filling is sketched.

k̃ = (kz, kw ),

Ĥ4D =
∑
m̃,k̃

[
Ĥxz(m̃, k̃) + Ĥyw(m̃, k̃) + �Ĥb

xy(m̃, k̃)
]
, (4)

where m̃ = (mx, my),

Ĥμν (m̃, k̃) = J−
μνc†

m̃+eμ,k̃
cm̃,k̃ + J+

μνc†
m̃−eμ,k̃

cm̃,k̃, (5)

�Ĥb
xy(m̃, k̃) = (eimxb − 1)J−

ywc†
m̃+ey,k̃

cm̃,k̃

+ (e−imxb − 1)J+
ywc†

m̃−ey,k̃
cm̃,k̃, (6)

and J±
μν = tμ ± (−1)mμ2tμν cos(kν ).

We first illustrate the (2D → 1D) reduction of the 2D
Creutz model Ĥμν (m̃, k̃) to the 1D Hamiltonian ĥμ(kν ) =∑

mμ
Ĥμν (m̃, k̃), where kν is treated as an external param-

eter [46]. The descendant Hamiltonian ĥμ(kν ) defines a 1D
chain with a unit cell with two degrees of freedom, identical
to the Su-Schrieffer-Heeger (SSH) chain [47]. The topological
index pertaining to the 1D SSH model is the bulk dipole
moment Pμ(kν ) (also known as polarization), which can be
calculated using the Wilson loop formalism [32,48]. As a
function of kν , the bulk dipole Pμ(kν ) mod 1 takes two val-
ues of 0 and 1/2 with the quantization imposed by chiral
symmetry; this ensures the existence of gap closing points in
the (kμ, kν )-parameter space, i.e., at the 2D Dirac cones [cf.
Fig. 1(b)]. An on-site potential (−1)mμV0c†

mcm (or similarly a
nonzero hopping tν [43] in the Creutz model) breaks chiral
symmetry and gaps the spectrum. As a consequence, the
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(kμ, kν )-parameter space acquires a well-defined first Chern
number c1 = ∫ 2π

0 dkν∂kν
Pμ(kν ), given by the integral of the

change in dipole over the entire descendant 1D family ĥμ(kν ),
see Fig. 1(c) [21,24,49]. Subsequently, the adiabatic evolution
of ĥμ[kν (t )] along kν dynamically realizes the 2D quan-
tum Hall effect, dubbed topological pumping [10,21,24], see
Table I.

A nonvanishing bulk dipole Pμ(kν ) �= 0 has correspond-
ing boundary effects where 0D subgap states appear at the
material’s boundary, see Fig. 1(d) [49]. Using the formula
of Jackiw-Rebbi [42], we calculate the charge qS accumu-
lated in a region S enclosing the boundary [see Fig. 1(e)]
by linearizing the dynamics around zero energy to obtain
the low-energy Hamiltonian ĥ(kν ) = ∑

|kμ|�� d · σ where d =
{v(kν )kμ, μ1(kν ), μ0(kν )} is a real-valued vector [50], σ =
{σy, σx, σz} are three anticommuting matrices {σi, σ j} = 2δi j ,
and � is a cutoff energy scale. The accumulated charge qS is

qS = 1

2π

∫
S̃

d̂ · (
∂kμ

d̂ × ∂rμ
d̂
)
dkμdrμ, (7)

where d̂ = d
|d| and S̃ = S[−�,�] is the integration domain.

The interface between two insulators in real space is equiv-
alent to a domain wall in the kν-parameter space [49], see
Fig. 1(e). Thus, Eq. (7) is the first Chern (Berry) flux attached
to the region defined by S̃ in the 2D Brillouin zone (BZ) of
the ancestor model. Importantly, S̃ does not cover the entire
2D BZ of the ancestor model. Hence, in the limit where chiral
symmetry is restored, |qS| becomes quantized to two values
of 1/2 or 0, that correspond to encircling or not encircling
a singularity with ±1/2 Berry flux. As a consequence, the
1D family ĥμ(kν ) is divided into a trivial and a nontrivial
region with qS = 0 or 1/2, respectively, in accord with the
value of the bulk dipole qS = ∫

S ∂rμ
Pμdrμ, cf. Fig. 1(c). This

is known as the bulk-boundary correspondence of 1D Z TIs,
i.e., the relation between the quantized bulk dipole and the
charge at the boundary [50]. Note that Eq. (7) also describes
the accumulation of nontopological charge at the boundary
between two insulators (Tamm states), arising from surface
polarizability [51].

In similitude to the (2D → 1D) reduction above, the
main goal of this Rapid Communication is to demonstrate
that the 4D Hamiltonian (1) leads to 2D second-order
TIs. A (4D → 2D) reduction of Eq. (1) yields the 2D
descendant family ĥb

xy(k̃) = ∑
m̃[Ĥxz(m̃, k̃) + Ĥyw(m̃, k̃) +

�Ĥb
xy(m̃, k̃)], describing a square lattice on the xy plane

made out of SSH chains [cf. Eq. (5)] in both the x and
the y directions and where each xy plaquette is threaded
by a magnetic flux b, see Fig. 2(a). Assuming b = π , the
topological invariant of the resulting 2D descendant ĥπ

xy(k̃)
is associated with a quantized bulk quadrupole moment Qxy

(either 0 or ± 1
2 ), which can be calculated using nested Wilson

loops [32,38,52], see Fig. 2(b). Breaking chiral symmetry
with an on-site potential V̂ (m) [similarly with hopping tz �=
0 �= tw in Eq. (1)] results in a 4D CI with a well-defined
second Chern number [53] c2 = ∫

T2 ∂kz∂kw
Qxy(k̃)d2k̃, see

Fig. 2(b). Hence, an adiabatic evolution of ĥπ
xy(k̃) over a

closed surface in the k̃-parameter space dynamically realizes

FIG. 2. The descendant 2D family. (a) The descendant model
ĥπ

xy(k̃). Single (double) lines denote hopping amplitude J−
μ (J+

μ ).
The area C enclosing the interface of the 2D material with the
vacuum (purple square) as well as the corresponding domain-wall
configuration in k̃ are shown. (b) The quadrupole moment Qxy(k̃)
of ĥπ

xy(k̃) and the curvature ∂kz ∂kw
Qxy(k̃) associated with the second

Chern number c2; the total area under the curvature is an integer.
(c) The open boundary spectrum of ĥπ

xy(k̃) for a selected path in
k̃. Depicted are bulk bands (gray), upper/lower edge states (blue),
right/left edge states (green), and corner states (purple). The top
(bottom) spectrum has broken (preserved) chiral symmetry with
tz = tw = 0.03t (tz = tw = 0). (d) The charge density of ĥπ

xy(k̃) at
half-filling and k̃ = (0, 0) has ±1/2 charge deviation at the corners.
In (b)–(d), we used tx = t, tx/ty = 1, and txz/tx = tyw/ty = 0.45. In
(b), we used tz = tw = 0.001t to minimally open the gap.

the 4D quantum Hall effect, dubbed 2D topological pump-
ing [18,25,26], see Table I.

The bulk responses of the descendant 2D pump family
have associated boundary phenomena [26] where: (i) 1D
edge states, i.e., states of co-dimension h = 1, appear in the
spectrum, and (ii) 0D corner states, i.e., states of co-dimension
h = 2, disperse as a function of k̃, see Figs. 2(c) and 2(d). We
generalize Eq. (7) and derive [53] the charge accumulation
qC in a region C enclosing the corner of the 2D material
[cf. Fig. 2(a)] with low-energy Hamiltonian ĥ(k̃) = ∫

|k|��
d ·

�d2k, where d = {μ0(k̃), μ1(k̃), μ2(k̃), vx(k̃)kx, vy(k̃)ky} is a
real-valued vector [53], � = {
0, . . . , 
4} are five anticom-
muting matrices {
μ, 
ν} = 2δμν , and � is a cutoff energy
scale. We obtain

qC =
∫

C̃
d̂ · (

∂kx d̂ × ∂ky d̂ × ∂rx d̂ × ∂ry d̂
)
d2k d2r, (8)

where d̂ = d
|d| and C̃ = C × [−�,�]2 is the integration do-

main. Since the corner of the material can be expressed as
the intersection of two edges, i.e., two domain walls in the k̃-
parameter space [cf. Fig. 2(a)], qC is equivalent to the second
Chern flux attached to the region defined by C̃ in the 4D
BZ of the ancestor Hamiltonian. Note that C̃ does not cover
the entire 4D BZ of the ancestor CI. Hence, in the limit
where chiral symmetry is restored, |qC | becomes quantized
to 1/2 or 0, corresponding to encircling or not encircling
a 4D singularity with ± 1

2 second Chern flux. For the 2D
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descendant ĥπ
xy(k̃), we find that the k̃-parameter space is

divided into trivial regions with |qC | = 0 and nontrivial re-
gions with |qC | = 1/2; the latter exhibiting zero-energy states
localized at the corners, in accord with the value of the bulk
quadrupole qC = ∫

C ∂rx ∂ry Qxyd2r, cf. Figs. 2(b)–2(d).
The connection between charge accumulation at the corner

and the second Chern flux is a key outcome of this Rapid
Communication. In general, such charges can arise due to bulk
properties as well as due to boundary effects. The charge ac-
cumulation qC in a finite macroscopic 2D material interfaced
with another material, e.g, the vacuum, can be calculated
using the electric multipole moments [32],

qC =
∫

C
(ρbulk + ρ∂ + ρ∂∂ )d2r, (9)

where ρbulk = −∇ · �P + 1
2∂rμ

∂rν
Qμν are the contributions due

to the bulk dipole �P and quadrupole Qxy densities, ρ∂ = �̂n ·
�P|∂ − n̂μ∂rν

Qμν |∂ are the contributions due to a “free” edge
dipole �̂n · �P|∂ and quadrupole n̂μ∂rν

Qμν |∂ densities, and ρ∂∂ =
1
2 n̂α

μn̂β
ν Qμν is the contribution due to a point charge created by

a free quadrupole density at the intersection of two edges with
normal vectors �̂nα and �̂nβ . Hence, a nontrivial value of qC can
originate from a combination of bulk and surface terms [53].

For the 2D Hamiltonian ĥπ
xy(k̃), the only nonvanishing

contributions to the corner charge qC arise from a quantized
bulk quadrupole Qxy. On the other hand, starting from the
4D ancestor Hamiltonian (1) with b = 0 we obtain, using
(4D → 2D) reduction, a 2D descendant ĥ0

xy(k̃) composed of
coupled SSH chains along the x and y directions, see Fig. 3(a).
This model ĥ0

xy(k̃) has zero bulk quadrupole Qxy but nonzero

edge dipoles �P|∂ that result in two distinct phases with qC = 0
or 1/2; the latter having zero-energy states localized at the
corners that merge into the bulk or edge spectrum at gap
closing points [see Figs. 3(b) and 3(c)]. As a third example,
we start from Eq. (1) with b = 0 and thread a π flux through
each xw plaquette. This leads, using (4D → 2D) reduction,
to a 2D descendant family denoted by ĥ0,π

xy (k̃), describing

SSH chains ĥx(kz ) along the x direction, coupled to alternating
SSH chains ĥy(kw + πx) in the y direction, see Fig. 3(d). The
charge qC is now a combination of bulk and surface terms
that sum to quantized values 0 or 1/2, see Fig. 3(e). The
spectrum is separated by bulk- or edge-gap closing points
into regions characterized by the appearance of zero-energy
states localized at the corners, see Fig. 3(f). In all three cases,
the corner charge accumulation is associated with a nontrivial
value of the second Chern flux [53].

The demonstrated relationship between the 4D chiral
semimetal (1) and the 2D second-order TIs offers a plethora
of generalizations. Namely, a wide variety of 4D ancestor
models can be constructed where various planes are threaded
with 2π/q fluxes (where q is an even integer), and different
directions are dimensionally reduced. An even q is crucial
for obtaining a low-energy theory corresponding to decoupled
Dirac cones [20], thus, defining regions in the BZ that are sep-
arated by gap closures. Moreover, our results readily extend to
3D, explaining the appearance of hinge modes and relating
corner states to a six-dimensional CI and its third Chern
number [19,30]. These charges arise from a combination of

FIG. 3. Descendant 2D families and their multipole description.
(a) The model ĥ0

xy(k̃). Single (double) lines denote hopping ampli-
tude J−

μ (J+
μ ). Dashed (solid) lines denote x (y) hopping amplitudes.

(b) The charge qC as a function of k̃, showing two distinct regions
with qC = 0 and qC = 1/2. Discontinuities around kw = π/2 are
due to bulk bands approaching zero energy [cf. (c)]. (c) The open
boundary spectrum of ĥ0

xy(k̃) for a selected path in k̃. Colors denote

bulk/boundary states as in Fig. 2(c). (d) The model ĥ0,π
xy (k̃). Lines

denote hopping amplitudes as in (a). (e) Upper: The contribution to
qC from the quadrupole moment. Lower: The charge qC as a function
of k̃. (f) The open boundary spectrum of ĥ0,π

xy (k̃) for a selected
path in k̃, exhibiting regions with: (i) zero-energy states localized
at the upper/lower left corner, (ii) zero-energy states localized at the
upper/lower right corner, and (iii) no zero-energy solutions. Colors
denote bulk/boundary states as in Fig. 2(c). In (b), (c), (e), and
(f), we have used tx = t, ty/tx = 1/10, txz/tx = tyw/ty = 0.45, and
an on-site staggered mass V0 = 0.001t .

octapole, quadrupole, and dipole moments. Equivalently, our
procedure generates multiple topological pump realizations
where charge transport is proportional to the modulation of
the bulk dipole, quadrupole, and octapole moments. This
naturally explains the appearance of surface, hinge, and corner
modes (cf. Fig. 2(b) and Ref. [18]).

In this Rapid Communication, we reveal a connection
among the physics of high-order TIs, topological pumps, and
Chern insulators using dimensional reduction. This allows
us to define a topological index associated with the charge
accumulation at the corners, leading to a simple unifying un-
derstanding of standard TIs and higher-order TIs. It engenders
a single ancestor high-dimensional insulator and uses dimen-
sional reduction as a tool to find new higher-order TIs, each
with its own low-dimensional description. Comparing our
invariant with the electric multipole expansion, we establish
that corner charges arise from the combination of bulk and
surface multipole moments.
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