TechnicalReport97-04,Departmenbf Electrical and ComputerEngineering Universityof Waterloo

Expressing and Analyzing
Timing Constraints in
Message Sequence Chart Specifications
Hanéne Ben-Abdallah and Stefan Leue
Electrical and Computer Engineering

University of Waterloo
Waterloo, Ontario N2 3G1, Canada

Technical Report 97-04

(© Hanéne Ben-Abdallah and Stefan Leue, 1997

hanene|sleue@swen.uwaterloo.ca

April 1997

Konstanze©Online-Publikations-Syste(KOPS)
URL: http://www.ub.uni-konstanz.de/kops/volltexte/2008/6511/
URN: http://nbn-resolving.de/urn:nbn:de:bsz:352-opus-65113

http://nbn-resolving.de/urn:nbn:de:bsz:352-opus-65113
http://www.ub.uni-konstanz.de/kops/volltexte/2008/6511/

Abstract

Message Sequence Charts (MSCs) are increasingly supported in software engineering tools
and methodologies for communication systems. The last Z.120 standard extends MSCs with
operators to organize them in a compositional, hierarchical fashion to describe systems with
non-trivial sizes. When dealing with timing constraints, the standard is still evolving along with
several proposals. This paper first reviews proposed extensions of MSCs to describe timing con-
straints. Secondly, the paper describes an analysis technique for timing consistency in iterating
and branching MSC specifications. The analysis extends efficient current techniques for timing
analysis of MSCs with no loops or branchings. Finally, we use an example to illustrate our
analysis technique.

ii

Contents
1 Introduction

2 Timing Constraints in Basic MSCs
2.1 Syntax e
2.2 Timing Analysis Based on Timers and Delay Intervals
2.3 Summary and Open Issues Lo

3 Interpreting Timing Constraints in MSC Specifications
3.1 Interpreting Iterations
3.2 Interpreting Branchings Lo

5.3 Process Divergence in Timed MSC Specifications
6 ATM Example
7 Conclusion
A Proofs

Timed MSC Specifications

4.1 Syntax
4.2 SemantiCsS e e e e e

Timing Analysis of MSC Specifications

5.1 Timing Consistency of bMSCs
5.2 Timing Consistency of hMSCs

iii

11
11
12
14

15

18

20

List of Figures

= © 00 ~J O U i W

MSC specification example: basic MSCs (left) and high-level MSC (right) 1
Timing constraints expressed through a 7Z.120 timer 3
(a) Event-associated Timing constraints; (b) Trace-associated Timing constraints . . 4
Timing constraints expressed through a 7Z.120 timer and delay intervals 4
Timing constraints in an iterating MSC specification 7
Timed MSC Specification e 8
Timed basic MSC (left) and the corresponding temporal graph (right) 12
High-level MSC for the ATM example 15
Basic MSCs in the ATM example 16
Paths inside the temporal graph of M; e Moe My e My 21

v

1 Introduction

Various flavours of Message Sequence Charts (MSCs) have been used in software engineering of
telecommunications systems as well as object-oriented analysis and design notations. The graphi-
cal constructs in MSCs provide for an intuitive description of the interactions, protocols and services
between a system’s components. MSCs are used to document system requirements that guide the
system design [17], describe test cases and scenarios [13, 7, 8|, express system properties that are
verified against SDL specifications [1], visualize sample behavior of a simulated system specifica-
tion [17, 1], and to express legacy specifications in an intermediate representation that helps in
software maintenance and reengineering [10].

Recently, the intuitive, graphical notation of MSCs increased their popularity within the soft-
ware engineering community and motivated a standardization effort. The MSC standard as defined
by the ITU-T in Recommendation Z.120 [12] introduces two basic concepts: basic MSCs (bMSCs)
and High-Level MSCs (hMSCs). A bMSC consists of a set of processes that run in parallel and
exchange messages in a one-to-one, asynchronous fashion. An hMSC graphically combines refer-
ences to basic MSCs to describe parallel, sequential, iterating, and non-deterministic execution of
basic MSCs. In addition, an hMSC can describe a system in a hierarchical fashion by combining
hMSCs within an hMSC. We call the combination of a set of bMSCs and an hMSC describing their
composition an MSC specification. MSC specifications describe potentially iterating and branching
system behaviours. Figure 1 shows an example of MSC specification that describes a simple con-

msc MSC1 v
P1 P2 P3
Creq
CR MSC1
msc MSC2 msc MSC3

P1 P2 P3 P1 P2 P3 {

1 v S

Figure 1: MSC specification example: basic MSCs (left) and high-level MSC (right)

nection establishment protocol in a telecommunication system. The basic MSC MSC1 describes a
connection request, the basic MSC MSC2 describes the successful establishment of the connection,
and the basic MSC MSC3 describes an unsuccessful establishment of the connection. Process P1
is a service provider, process P2 is a local and process P3 is a remote protocol machine. Within
the hMSC, the iterating branch describes a repeated request to establish the connection. The
non-iterating branch describes a successful connection establishment.

The semantics of an MSC essentially consists of sequences (or traces) of messages that are sent
and received among the concurrent processes in the MSC [14]. The order of communication events
(i.e. message sent or received) in a trace is deduced from the visual partial order determined by
the flow of control within each process in the MSC along with a causal dependency between the
events of sending and receiving a message.

To facilitate the specification of real-time systems, a few extensions to MSCs have been proposed

to express timing constraints: timers [12], interval delays [2, 15] and timing markers [7, 6]. The
proposed extensions evolved independently and differ in terms of their expressiveness and support
for analysis. Further, all proposed analysis of MSCs with timing constraints have been so far limited
to basic MSCs.

In an effort to help consolidate the best of the proposed timing extensions possibly within the
standard, in this paper we first review the various proposed syntactic annotations of basic MSCs
with timing constraints. For each of the proposed timing extensions, we highlight the syntactic
features, expressiveness and limitations, and we discuss ambiguities that must be addressed when
bMSCs are composed within an hMSC.

Another motivation for this paper is to extend the timing consistency analysis for bMSCs to
deal with iterating and branching MSC specifications. The analysis technique we present has been
implemented within our prototype toolset for requirements engineering based on MSCs [3]. In
addition, in this paper we extend our syntactic analysis of the process divergence problem in MSC
specifications [5, 4] in the presence of timing constraints. We use the example of an automatic teller
machine system to illustrate our chosen timing extension and the presented timing analysis.

2 Timing Constraints in Basic MSCs

We focused on three issues when reviewing current work that deals with timing constraints in
MSCs: how they extend MSCs to express timing constraints; how they interpret timed MSCs; and
what kind of timing analysis they offer.

2.1 Syntax

There are essentially four classes of syntactic constructs to express timing constraints in MSCs and
MSC reminiscient notations: 1) timers [12, 2], 2) delay intervals [2, 15], 3) drawing rules [7, 6], and
4) other timing markers [7, 6].

Timers. Recommendation Z.120 provides timers to express timing constraints in a basic MSC.
Within a single process (‘instance’ in Z.120 terminology), a timer can be set to a value, reset to
zero, and observed for timeout. A timer cannot be shared among concurrent processes in an MSC.
Figure 2 shows an example of a basic MSC with timing constraints expressed through two timers.
In this example, process P3 first sets the timer T3.1 say to five time units, it then sends message
e, receives message b, and sends message c before T3.1 times out. In other words, process P3 must
exchange its messages within at most five time units relative to the timer setting event. Process
P1 first sets the timer T1.1 say to three time units, receives message a, then resets its timer. Since
process P1 does not see a timeout event, the implicit assumption here is that the timer does not
expire before it is reset. As the example illustrates, a timer can be used to express either a minimal
delay between two consecutive events in one process, or a maximal delay between two or more
consecutive events in one process.

The process algebraic, standard semantics [11] treats a timer’s setting, resetting, and timeout
as special events. This semantics uses an untimed model, and therefore has no notion of time. In
addition, it offers no timing analysis. The partial order semantics defined by Alur et al [2] treats

msc M1
L 2 3
TLIY a T3.1
5 e
b _
B C
d N

Figure 2: Timing constraints expressed through a Z.120 timer

timer events as “regular” events and provides timing consistency analysis. This work incorporates
7.120 timers with delay intervals; we therefore discuss its results shortly.

Delay Intervals. Besides the 7Z.120 timers, delay intervals have been proposed to express timing
constraints in a basic MSC. Depending on how delay intervals annotate a bMSC, they express three
types of timing constraints:

1. Event-associated timing constraints [15], which are denoted as an interval that is associated
with an event in the basic MSC.

2. Message delivery delays [2, 15], which are expressed as a time interval over a message arrow.

3. Processor’s speed constraints [2, 15|, which are expressed as time intervals between two con-
secutive events in a process.

An event-associated timing constraint is a global constraint on the timed occurrence of an event:
the event must occur within the specified minimal and maximal time delays with respect to any
previous event, whenever it occurs in a trace. Figure 3 (a) shows sample event-associated timing
constraints.

In the message delivery and processor’s speed constraints, a delay interval is delimited with
respect to the occurrence of the two consecutively, visually ordered events it constrains. Figure 4
augments the timing constraints in Figure 2 with message delays (i.e., intervals on message arrows)
and processor’s speed constraints (i.e., intervals on vertical lines). In this version, message b takes
between two and three time units from the time it is sent by process P1 to the time it is received
by process P3. In addition, process P3 requires that message b be received between one and two
time units from the time it sends message e.

In [15], the author generalizes the message delivery and processor’s delay intervals (called trace-
associated timing constraints) by using a semantic notion of consecutive events: two events are
consecutive if they can be executed one after the other. In addition, this work extends the use
of trace-associated timing constraints to express timing constraints between events that are not
related. For this, the syntax of bMSCs is extended with precedence edges that connect unrelated
events. The user can then annotate the extended bMSC with timing constraints to impose on un-
related events. Figure 3 (b) shows sample trace-associated timing constraints where the precedence

msc M2
P1 P2 P3 P3
—/—— —/—— —— —/——
[1,2] |-
23] [€
»([12] = (2
B C = C
h 134 PP gl IR
(341 d 1.2 PEEH s Z
] |]]] |

(a) (b)

Figure 3: (a) Event-associated Timing constraints; (b) Trace-associated Timing constraints

msc M4
P1 P2 P3
—— —— ——
TLLY | _ua @
e e T3.1
b B [2,3]}[1,2]
24 <[1,3] C
d [1,3]}[1.2]
—— —— ——

Figure 4: Timing constraints expressed through a 7.120 timer and delay intervals

edges are drawn with dashed-line, bidirected edges. As this example illustrates, while precedence
edges allow the expression of more timing constraints, they may result in a cumbersome graph.

Drawing rules and timing markers. Sequence diagrams within the Unified Modeling Lan-
guage [6] extend the Z.120 MSCs with additional information, e.g., focus of control to show the
time when a process has a thread of control. Timing constraints are represented in a sequence
diagram in two ways: the drawing rules of message arrows and timing markers. A horizontal mes-
sage arrow indicates the simultaneous occurrence of the send and receive events of the message. A
downward slanted message arrow, on the other hand, indicates a required delay between the send
and receive events of the message. In addition, within each object outgoing message arrows can
be drawn at a single point to indicate the simultaneous sending of a message. (Incoming message
arrows are not allowed to meet at the same point within an object.)

To describe more quantitative timing constraints, timing markers are attached to a sequence
diagram. Timing markers are boolean expressions placed in braces and attached to the diagram [6].
The boolean expressions can constrain particular events or the whole diagram.
neither the precise syntax of timing markers nor their formal semantics is defined, we cannot

However, since

completely assess their expressiveness. In addition, no formal analysis of timing constraints has
been proposed within the Unified Modeling Language.

2.2 Timing Analysis Based on Timers and Delay Intervals

Timing analysis consists of validating a timing assignment and verifying timing consistency. A
timing assignment is essentially a time-stamp function that associates with the MSC events occur-
rence times with respect to a global clock. A timing assignment is valid if it respects the timing
constraints in the MSC. A bMSC is timing consistent if there is at least one valid timing assignment
that allows the MSC to have a behavior where the events occur according to the specified timing
constraints.

For bMSCs extended with timers and timing delays, using the temporal constraint network
techniques in [9], timing analysis reduces to computing all-pairs-shortest-paths in a labeled directed
graph [15, 2]. In the worst case, this can be computed in O(n®) time where n is the number of
events in the bMSC. We will discuss timing consistency analysis with this technique in detail in
Section 5.

The MSC analyzer tool by Bell Labs [2] offers in addition to the above timing analysis for
bMSCs, timed analysis based on a semantics that accounts for the queueing strategies in a bMSC:

1. Visual conflict, which occurs when two events e and f are visually such that e occurs before
f, but every timing assignment makes f occur before e. This analysis is reduced to finding a
path from e to f with a negative cost.

2. Timing conflict, which occurs when two events are inferred to occur in one order, but there
is a timing assignment that violates the inferred timing delay between the two events. This
analysis is reduced to finding the cost of the shortest path between the two events in question.

To analyze MSC specifications within this tool, the user would have to select the various bMSCs
that compose one sequential path in the hMSC and analyze each path separately. However, in the
presence of loops in the hMSC, this tool offers no hints on how many times the user is supposed to
unfold a loop to conclude timing consistency of the loop. Further, analysis based on path selection
should resolve certain issues about the usage of timer events and the interpretation of the timing
constraints in the MSC specification.

2.3 Summary and Open Issues

e 7.120 suggests the use of timers added to basic MSCs in order to express either maximum
delay constraints for a set of events, or minimum and maximum delays for consecutive events
withing one process. Processor speed timing constraints as suggested in [2, 15] provide the
same expressiveness for consecutive events. Unlike timers, time intervals cannot express delays
between more than two consecutive events.

e Several timing properties are expressed in terms of delays between the sending and receiving
a message. Since messages are sent and received by different, concurrent processes, message
delivery delays can not be expressed via timers. Annotating message arrows with delay

intervals as suggested in [2, 15] is an intuitive extension to the Z.120 basic MSCs. Timing
interval-based analysis of basic MSCs has been proven practical in [2].

e To express timing constraints between events in one bMSC that are neither within the same
process nor related by message arrwos, [15] suggests the use of time-annotated precedence
edges. Timing analysis is feasible, but may involve potentially exponential model construc-
tion.

e To express more general timing constraints, e.g., to relate events within different basic MSCs,
the current notation must be further extended. This can be done either by directly annotating
the events within an MSC specification (e.g., through timer markers [7, 6]), or by augment-
ing an MSC specification with temporal predicates that describe the timing requirements.
To provide an expressive notation, the first alternative could sacrifice the simple, graphical
systax of bMSCs. On the other hand, the second alternative can result in a gap within a
specification and would often require model-based analysis to examine the consistency of the
timing constraints.

When basic MSCs are composed within an hMSC, serveral issues pertinent to timers must be
addressed: 1) syntactic well-formedness of hMSCs when timer events are split across basic MSCs;
2) how to interprete timers inside iterations; and 3) how to determine timing consistency in the
presence of branchings. We address these issues in the next sections.

3 Interpreting Timing Constraints in MSC Specifications

An MSC specification connects basic MSCs to describe sequential, possibly iterating and non-
deterministic behavior. In the presence of timing constraints, iterations and non-determinism
require a special attention for one essential reason: timing constraints can be spread across sequen-
tially connected basic MSCs. We next illustrate how the Z.120 standard syntax [11] is ill-defined
when timers are used in hMSCs, and outline possible choices of interpreting timing constraints
in hMSCs. We assume that timing constraints are expressed through timers as suggested by the
7.120 standard syntax [11]. However, the arguments we present also hold when in addition delay
intervals are used.

3.1 Interpreting Iterations

Current analyses of iterations in an hMSC rely on unfolding loops a finite number of times and
analyze the resulting basic MSC. As we show in [5], in the case of untimed behavior, this technique
misses anomalous behavior such as process divergence. In the case of timed behavior, this technique
raises several questions about: 1) interpreting multiple occurrences of the set event of the same
timer, 2) resolving the correspondence between several timers’ set and timeout events, and overall
3) the syntactic well-formedness of basic MSCs with timers.

Consider the MSC specification of Figure 5 where the timer T1.1 is set in the basic MSC M1
and its timeout is detected in the basic MSC M3. As control iterates through the basic MSCs M1
and M2, it is unclear whether the system generates a new instance of the timer, or uses the same

msc M1
P1 P2 P3 V
] e
DA
>
msc M2 msc M3 Y
P1 P2 P3 P1 P2 P3
T12 T DC Creq T
. Dind e

Figure 5: Timing constraints in an iterating MSC specification

timer during all iterations. Both interpretations can be justified by the common interpretation of
a loop in an hMSC through a finite unfolding to a basic MSC.

More specifically, consider the following execution scenario of the MSC specification of Figure 5:
M1, M2, M1, M2, and then M3. (Using loop unfolding, this sequence of basic MSCs represents a
syntactically legal basic MSC.) When a loop is interpreted through a finite unfolding operation, it
seems that a new timer is generated each time M1 is executed. Therefore, we need to resolve the
association of the timeout event in M3 with the timer setting events. The choice affects the possible
behavior of the MSC specification, i.e., its timing consistency analysis. Let us consider a uniform
treatment of timers and events: The semantics in [14] intreprets events such that multiple sends
of a message are deactivated by one receive of the message, based on an argument showing that
MSC specifications are finite-state devices!. In the case of timers, this translates to associating the
timeout event with any of the two timer setting events. A more reasonable choice is to associate
it with the first timer since it would time out first. For T1.1 set to 5 and T1.2 set to 3, this
intrepretation makes the above execution scenario timing inconsitent.

A second alternative is to associate the timeout event with the last timer set. This alternative
coincides with the second interpretation where the same timer is reset then reused during all
iterations. In this case, the same execution scenario for the example of Figure 5 is timing consistent
in the sense that the last timer set does not expire before sending the event Crq; however, such an
analysis is misleading when the overall behavior is considered: the first time the message Dreq was
sent and sending the event Crq are separated by at least 6 time units and thus one timeout event,
i.e., deadline was obviously missed.

The above ambiguity in interpreting timers within loops results from the ill-defined syntax of
hMSCs when timers are involved. The Z.120 syntax of an hMSC assumes the well-formedness of the
bMSCs used in the hMSC. The Z.120 syntax of bMSCs only restricts the usage of timers such that
a reset or timeout event may occur only after a timer is set [11]; that is, this syntax neither forces
the reset or timeout event to occur after a timer set event, nor does it restrict multiple occurrences
of a timer set event prior to its reset or timeout event. As the above example illustrates, this
relaxed syntax of bMSCs can lead to ambiguities when a loop in an hMSC contains bMSCs where
one timer is set but neither its timeout nor reset event occurs in the loop.

'The standard Z.120 semantics [12] does not deal with iterations.

In a broader context, the above example raises a fundmental question about what an MSC
specification means: does it describe all behaviors of a system, or does it describe a set of sample
behaviors of a system? In the first case, the standard syntax must be further restricted to disallow
the above example. In the second case, the above example should be allowed and interpreted
according to the second alternative; that is, timers may expire without explicitly being modeled in
the MSC specification. However, this interpretation may create practical difficulties since timers’
expirations are usually implemented as interrupts and thus can not be ignored in some occasions
and handled at other times.

3.2 Interpreting Branchings

An MSC specification can compose bMSCs in a non-deterministic fashion. This is described through
nodes in its hMSC that have multiple successor nodes. Non-determinism in an MSC specification
raises the following question: How can we determine whether the timing constraints in the MSC
specification are satisfiable? This can be achieved in two ways:

1. Local semantics: select one path at a time and analyze its timing requirements, independently
of other paths that may branch out of the selected path. This interpretation of timing
constraints allows the derivation of several timing assignments, one for each path in the hMSC.
In other words, any particular basic MSC that is shared by different paths may have different
timed behavior depending on both the past and future behavior of the system. This approach
has the advantage of producing possibly looser timing constraints. Current approaches which
rely on interpreting bMSCs [2] adopt a local semantics for timing constraints.

2. Global semantics: all paths must be analyzed simultaneously. This analysis technique assumes
that any timing assignment for the hMSC must be valid along all shared portions of all paths in
the hMSC. In this approach, each basic MSC will have the same timed behavior independently
of the execution path on which it resides, hence independently of the future behavior of the
system. This approach produces tighter timing constraints. However, it may conclude the
timing inconsistency of an hMSC when one path can in fact be timing consistent.

msc MSC1
P1 P2

Creq T V

CR
(1.2

3

22 [0.0]
msc MSC2 msc MSC3
P1 P2 p3| | P1 P2]
02 [27 4, 6]
cc
cind [TTIL 1 Dind

Figure 6: Timed MSC Specification

Example. To illustrate the differences between the two approaches, consider the timed, non-
iterating variant of the MSC specification in Figure 1 shown in Figure 6. Table 1 shows two timed
execution traces derived from the two possible paths in the hMSC taken independently. Thus, the
MSC specification in Figure 1 is locally timing consistent. However, there is no timing assignment
for the common prefix of execution traces I and II, i.e. <!CR, ?CR>, that allows both traces to
be continued in a timing consistent fashion: timing consistency of path I requires that ?CR not
to happen later than at time 1, whereas timing consistency of path II requires that ?CR not to
happen before time 2, relative to the time of occurrence of !CR. The MSC specification in Figure 6
is therefore not globally timing consistent.

Execution # | !CR | ?7CR | !CC | ?CC | !DR | 7DR
| 0 1 3 4 - -
11 0 2 - - 5 6

Table 1: Consistent timed executions

4 Timed MSC Specifications

Before we present our timing consistency analysis for MSC specification, we next define the syntax
we use to describe timing constraints.

4.1 Syntax

In this paper, we use a subset of the Z.120 language for untimed bMSCs that comprises message
exchanges only. To express timing constraints we use the Z.120 timer events together with (non-
standard) timing delay intervals. A timer event can be: setting a timer, resetting a timer or a
timeout. We assume that a timer can be set to a positive integer value, and rest to zero. In
compliance with the Z.120 standard [11], a reset and timeout event must be preceeded by a timer
setting event. In addition, a timer is private to a process and thus its events can be used by a
single process only. Further, to distinguish between timers, we assume that each timer has a unique
identifier associated with it.

A timing delay interval is a label over either a message arrow, or a control flow segment, i.e.,
a portion in a process’s line that is delimited by two consecutive events. (We use the generic term
event to denote one of the following types of events: the start of a process, the end of a process,
sending a message, receiving a message, or a timer event.) A delay interval labelling a message
arrow denotes the relative minimal and maximum delays between the events of sending the message
and receiving it. A delay interval labelling a control flow segment denotes the relative minimal and
maximal delays between the events delimiting the control flow segment. Delay intervals can be of
the form [a, b], [a,b), or (a,b] where a € N and b € N U{oo}. For an example of a timed bMSC
according to this syntax see Figure 4.

An MSC specification is a structure S = (B, V, suc, ref) where

e B is a finite set of bMSCs;

e V =TUIU.Lis a finite set of nodes partitioned into the three sets of: singleton-set of start
node, intermediate nodes, and end nodes, respectively;

e suc C (TUI) x V the relation which reflects the connectivity of the hMSC of S such that all
nodes in V' are reachable from the start node; and

e ref : I 1— B a function that maps each intermediate node to a bMSC in B2.

A path in an MSC specification S = (B, V, suc,ref) is a sequence of intermediate nodes (i.e.,
bMSCs), by, by, -+, such that (b;,b;11) € suc for i > 1. A path is simple if all its nodes are distinct.
A loop in S is a path by, by, - - -, b, with (b,,b1) € suc, and a loop is called simple if all its nodes are
distinct.

In compliance with the Z.120 we allow timer events to be split across bMSCs in an hMSC.
The Z.120 restriction that each timeout and timer resetting event must be preceeded by a timer
setting event in bMSCs is extended to paths in the MSC specifications, i.e. in every path timeout
and timer resetting events must be preceded by a timer setting. However, to avoid the ambiguities
described in the previous section, we require that every simple loop in an MSC specification has
matched timer events:

1. every timer setting event in the loop must be followed by either a timeout or reset event; and
2. every timeout event must be preceeded by a timer setting event in the loop.

The first restriction disallows the example in Figure 5. Note that this restriction is for loops only;
that is, it does not force the use of a timeout or reset event in non-looping paths. As we see in the
next section, our timing analysis will ensure that the absence of these events does not mean the
specification is incomplete. The second restriction disallows the possibility that time ellapes in the
loop making the timeout event obsolete.

4.2 Semantics

In accordance with earlier work [14], we interpret an MSC specification as the set of all execution
traces that are consistent with the (visual) partial order of events specified in the bMSCs composing
the MSC specification. That is, a trace o of a bMSC M is a finite sequence of communication (i.e.,
send and receive message) and timer events in M such that the events in o are ordered according to
the visual ordering of events in M. To account for time, a timed trace of a bMSC M is a trace o of
M together with a timing assignment T : E, — R that assigns to each event e in o a time-stamp
T'(e) from the set of positive real numbers such that the timing constraints in M are met. Since
events are partially ordered in M, and since there can be several possible timing assignments for a
given trace of M, the behavior of M is the set of all its possible timed traces.

*We assume that an MSC specification contains one level of nesting; however, the definitions and results presented
in this paper can be easily extended to deal with MSC specifications where nodes refer to other hMSCs.

10

5 Timing Analysis of MSC Specifications

In this section, we first augment the timing analysis for bMSCs presented in [15, 2] to handle the
possibility that a timer is set in a bMSC but no reset nor timeout event follows the timer setting
in the bMSC. We then extend it to to analyze MSC specifications with branchings and iterations.

5.1 Timing Consistency of bMSCs

To determine the timing consistency of a basic MSC, we adopt an approach similar to the ones
presented in [15, 2]. First the bMSC is translated into a directed, labeled graph that we call
temporal constraint graph. The vertices and edges in the graph reflect the control low and message
exchanges in the bMSC. The edge labels represent the timing constraints in the bMSC. Once a
temporal constraint graph is constructed, to verify that the bMSC is timing consistent, we just
check that the temporal constraint graph has no cycles with a negative cost [9, 15, 2].

Since it is unclear whether the informal translation presented in [2] handles the possibility that
a timer is set but no reset nor timeout event is explicitly included in the bMSC, we next present
the translation we assume in our analysis of timing consistency of MSC specifications.

From a bMSC to a temporal constraint graph. An edge in the temporal constraint graph
is labeled with either the lower or upper bound of the delay interval imposed on the corresponding
“edge” in the bMSC. To extract the bounds of a delay interval I with bounds a,b € N U {00}
(a <b), we use the functions £(I) and U(I) defined as follows:

T [a,b] | (a,b] | [a,b) (a,b)
L(I)|a a” a a

b= if b # oo b if b# oo
Uy | b b { oo otherwise { oo otherwise

It is straightforward to represent a bMSC a directed, labeled graph (c.f. basic Message Flow
Graph [14]). A node in the graph represents one of the following events: the start of a process,
the end of a process sending a message, receiving a message, or setting, resetting or timeout a
timer. An edge in the graph can have one of three types that represent the dependencies between
events: 1) a “signal” edge (x,y) represents sending a message from one process to another; 2) a
“next event” edge (z,y) represents the control flow within a process where event z appears before
event y on the vertical line of the process; and 3) a “temporal” edge (x,y) connects a timer setting
event x with a timer reset or timeout event y. The label of an edge is the timing delay and, for a
signal edge, the message type. (For details, the reader is referred to [14] where basic MSCs without
timing constraints are represented as Message Flow Graphs. This translation is easily augmented
with the temporal edges to represent timing constraints.)

Given a bMSC M, its temporal graph 7,(M) is obtained as follows:

e each node in M is represented by a node in 7, (M);

e each next event edge, each signal edge and each temporal edge (e, e’) with timing label I in
M is represented by two labeled edges in 7,(M): 1) edge (e, ') with label L £(I); and 2) edge
(e',e) with label U(I).

11

e for each process P; in M, for each of its set timer event e; with value ¢ and no matching reset
or timeout event, the following two edges are added in T,(M): 1) (e;, e;) with label L¢; and
2) (e, e) with label ¢, where the node €} is the node that corresponds to the bottom node of
process P; in M.

The above translation could differ from previous translations in the last step. As mentioned
earlier, this additional step allows us to cover the lose Z.120 syntax [11] which does not force a set
timer to have a reset or timeout event in the same bMSC. The analysis of the temporal constraint
graph as constructed above ensures that those timers that were not explicitly reset or timeout,
in fact, did not expire. Hence, the analysis results of the extended temporal constraint graph are
coherent with the implicit assumption that a missing timeout /reset event in a process is interpreted
as the set timer not having expired prior to the process’s end of execution. Figure 7 illustrates the
translation of a timed basic MSC into a temporal graph.

msc M
L P2 3

T1LY s @
[2;4)[121 e T3.1

p 21X~ ”

a_
@4 L3 C

d na_ [1.2]
| | |

Figure 7: Timed basic MSC (left) and the corresponding temporal graph (right)

A bMSC is timing consistent if and only if its temporal constraint graph has no cycles with a
negative cost [9, 15, 2]>. Detecting cycles in the temporal constraint graph can be done through
the Floyd-Warshall’s algorithm which computes all-pairs-shortest paths in the graph [16] in a worst
case time of O(n3) where n is the number of events in the graph. The timing consistency of the
graph in Figure 7 depends on the choice of values for the timers denoted.

5.2 Timing Consistency of hMSCs

Our notion of timing consistency of an MSC specification relies on a local interpretation of the
timing constraints.

Definition 5.1 An MSC specification S is timing consistent if every path that starts from the
start node in S is timing consistent. S is partially timing consistent if some of its paths are timing
consistent. S is timing inconsistent if none of its paths is timing consistent.

The above definition of timing consistency is impractical since in the presence of iterations in
the MSC specification, the number of paths is infinite. We next present a syntactic approach to
determine the consistency of an MSC specification based on a finite subset of its paths.

3 Addition over the natural numbers N is extended over N U N~ U {oo, —oo} in a straigfoward way.

12

In the sequel, we adopt the following notation to ease readability: given two bMSCS, M; and
Ms, we denote the MSC specification that consists of the sequential composition of M; followed by
M2 as M1 [] Mg.

Lemma 5.1 Given two basic MSCs M; and Ms, if M; e M, is timing consistent then M; and My
are also timing consistent.

Proof: See Appendix A |

Lemma 5.2 If the MSC specification M; e My e M; is timing consistent with AM; e Ms having
matched timer events, then the MSC specification M; e M e M; e My is also timing consistent.

Proof: See Appendix A |

The above Lemma allows us to deduce the timing consistency of a loop from the timing con-
sistency of an augmented version of the simple path the loop contains, without unfolding the loop.
Thus, to decide the timing consistency of an MSC specification, we can focus on simple paths and
augmented simple paths that represent loops in the specification. We next define these paths.

Definition 5.2 Let S = (B, TUIU L, suc,ref) be an MSC specification. A sequential component
in S is a simple path nq, no,---,n; in .S such that:

1. (s,n1) € suc for the start node s € T; and

2. either (ng,e) € suc for an end node e € L, or there exists n; € {ni,ng, -, ni} such that
(ng, n;) € suc.

Informally, a sequential component represents either a simple path from the start node to an end
node, or a path that starts with a simple path and ends with a simple loop. We call the first type
finite sequential components, and the second infinite sequential components.

Definition 5.3 Given an MSC specification S, we say that a path ny,no,---,n;,---,ng,n; in S'is
a closed infinite sequential component if ny,n9,---,n;, -+, ny is an infinite sequential component
in S.

Theorem 5.1 An MSC specification S is timing consistent if
1. each finite and each closed infinite sequential component in S is timing consistent; and

2. each infinite sequential component in S has matched timer events.

Proof: See Appendix A |

The condition on the infinite sequential components is stronger because the loop in the com-
ponent allows time to progress an arbitrary amount, and thus possibly missing a timeout event. If
a set timer is missing a reset or timeout event inside the loop, our analysis can not conclude from
one iteration that the timer will never expire. In fact, if a timing consistent, infinite component
has unmatched timer events, then the specification is partially timing consistent is the best we can
predict.

13

Timing Consistency Algorithm

To examine the timing consistency of an MSC specification, we have implemented within our MSC
tool [3] the following algorithm:

Input: an MSC specification S

Output: for each timing inconsistent sequential component in S, the events

involved in a negative cost cycle

1. Find the finite and closed infinite sequential components in S

2. For each sequential component L:

3. construct the temporal constraint graph 7,(L)

4 compute all-pairs-shortest paths in 74(L)

5 report all events involved in a negative cost cycle

End

Step 1 is carried out through a depth-first-search algorithm of the the hMSC of S. To construct
the temporal constraint graph of a sequence of bMSCs, step 3 extends the bMSC to temporal
graph translation of Section 5.1 in a straightforward way based on the following fact: the behavior
of M; e My is equivalent to the behavior of the bMSCs obtained by glueing My after M;, with the
timing delays at the end of a process in M; added to the timing delays of the same process at the
beginning of Ms.
Step 4 uses the Floyd-Warshall’s algorithm on a mtraix representation of the temporal constraint

graph. In step 5 an event is in a cycle with a negative cost if its corresponding diagonal element in
the all-pairs-shortest-path matrix is negative.

5.3 Process Divergence in Timed MSC Specifications

In the presence of loops, an MSC specification may suffer from process divergence: a system
execution where a process sends messages an unbounded number of times ahead of the messages
being received [5]. An MSC specification with a process divergence can be either unimplementable
as it requires message queues with an infinite size, or it can be implementable with discrepencies,
e.g., unexpected deadlocks since message queues are finite and messages must be dropped or over-
written.

In [5], we have syntactically characterized process divergence in untimed MSC specifications by
examining the communication patterns of its processes. Informally, we proved that an (untimed)
MSC specification suffers from process divergence if and only if it has a loop where at least one of
its processes does not depend on, i.e., sends to but never receives directly or indirectly from another
concurrent process in the loop.

In the presence of timing constraints through timers and/or delay intervals, our syntactic char-
acterization of process divergence can be extended as follows.

Theorem 5.2 Given an MSC specification S that has untimed process divergence through the
processes Pp,---, P, in a loop L which can jointly race ahead of the remaining processes. S has
timed process divergence iff either

1. the sum of all minimal delays in the processes Pi,---, P, within L is equal to zero; or

14

| StatTrans |-

1 i

— +

[Withdraw H GetBaance] [EndTrans] O

¥ ' [Proceﬁﬁ'n] [EndTrans]
[

[DispenseCash| [Refusewith |

' r

\ |

Figure 8: High-level MSC for the ATM example

2. the minimum of all maximum delays of the processes receiving messages from P, - -, P,
including delays on the received messages is equal to co.

Proof: See Appendix A |

6 ATM Example

To illustrate our timing analysis, Figure 8 shows the hMSC and Figure 9 shows the referenced basic
MSCs of an MSC specification describing an automatic teller machine (ATM) system. The ATM
system consists of three components: potential customers that are represented by the User process,
the ATM controller which is represented by the ATM process, and a host bank that is represented
by the Bank process. Each one of the bMSCs represents a scenario or ‘use-case’ of the system, and
the hMSC graph specifies a successor relationship between the scenarios.

Initially, the ATM controller waits to receive a message that signals a customer has inserted their
bank card. Once this message is received, the system then behaves in two possible ways: either the
ATM controller receives a request to cancel the transaction within (0, 4) seconds (bMSC EndTrans),
or the ATM receives the customer’s pin number within (5, 60) seconds (bMSC ProcessPin), relative
to the time the message Card was received. Note that since these timing constraint relates two
events in two basic MSCs, GetPin and either EndTrans in the first case or ProcessPin in the
second case, we had to insert an artificial delay of [0, 0] at the end of the ATM process in the bMSC
GetPin.

15

msc StartTrans msc GetPin msc EndTrans msc ProcessPin
User ATM Bank User ATM Bank User ATM Bank User ATM Bank
= == = =
CARD
REG PIN cancel®dl ENTER PIN___|(®369)71
(0.0] BETURN_CARD VERIFY__
23) _PROCESSING
msc TryAgain msc GetOption msc RefusePin msc Withdraw
User ATM Bank User ATM Bank User ATM Bank g M Benk
T T T T T WITHDRAWAL _
«X VALID INVALID _REQ AMOUNT
RETURN_CARD T:L -)
ABORT X ENT_AMOUNT T1
_TIMEOUT MSG OPTION | INV_PINMSG | (0] APPROVE AMT
- 2% —_ == - -

msc GetBalance

User
—

STATEMENT

ATM

=

Bank
—

REQ BALAN%

BALANCE

[0,T1]
_PRINT_STMT
<OPTION

[3.5)

msc DispenseCash
ATM Bank|

| — | —
AMT_APPROVED
[Wiw2] T1

GIVE_MONEY

User
—

REQ_BALANGE
BALANCE

[3.5)

[0,T1]

PRINT_RECORD
OPTION

[Q1LQ2)

2 [B1B2]
[} [

msc RefuseWith

User
=

wiwz]

ATM Bank
=
NOT_APPROVED

T1

=X

_NOT_POSSIBLE
OPTION

[Q1.Q2

msc ConfiscateCard

User ATM

AKE_CARD_MSG

[23)

Figure 9: Basic MSCs in the ATM example

If the ATM receives a request to cancel the transaction (bMSC EndTrans), it returns the
customer’s card and takes between [2, 3) seconds to update its display after which the system returns
to its initial state as described by the bMSC StartTrans. If the ATM receives the customer’s pin
number, it sends a request to the bank to validate the pin number, signals the customer to wait as
it is processing the request, and then waits for a reply from the bank. For performance reasons, the
ATM constrains communication with the bank to take no longer than 77 seconds. In this case, the
timing constraints are describe via the the timer 77 in the bMSC ProcessPin. The next behavior
of the system is described as follows:

e In the bMSC TryAgain, the ATM times-out on its wait for a validation reply from the bank. It
therefore signals the customer to retry later, signals the bank to abort the validation request,
returns the customer’s card, and then takes between [2, 3) seconds to update its display. After
this scenario, the system returns to its initial state.

e In the bMSC RefusePin, the ATM receives an invalid reply from the bank within the deadline.
It resets the timer 77, signals the customer that the entered pin is invalid, and tries to get a
new pin. In this MSC specification, the customer tries to enter a valid pin at most twice, after
which the ATM confiscates the customer’s card— see the path from the bMSC RefusePin to
ConfiscateCard in Figure 8.

e In the bMSC GetOption, the ATM receives a valid reply from the bank within the deadline.
It therefore resets the timer 737, and signals the user a list of options. From this point on,
the customer can make one or more withdraws (bMSC Withdraw), request one or more time

16

their account balance bMSC GetBalance), or end the transaction (bMSC EndTrans).

The customer expects a withdraw request to be processed (either successfully as in the bMSC
DispenseCash, or unsuccessfully as in the bMSC RefuseWith) within [W7, W5] seconds rel-
ative to the time they enter an amount. In addition, a customer takes [Q1, Q2] seconds to
decide whether to make another transaction while the ATM has their card. This is described
by the combination of two delays: at the end the bMSCs DispenseCash, RefuseWith and
GetBalance, the customer process delays the [Q1, Q2] seconds; and at the beginning of the
bMSCs Withdraw and bMSC GetBalance, the customer must not delay to start—the [0, 0]
before the first send message.

At the end of the bMSC DispenseCash, the ATM takes [By, Bs| seconds to update its local
records. In the bMSCs DispenseCash and GetBalance, the ATM takes [3,5) seconds to print
a receipt after receiving the balance information from the bank.

In addition to the above timing constraints, we assume that each ATM-customer communication
(and vice versa) has a delay of [0,2) seconds, and that each vertical line without a time delay has
a default delay of [0, 00). For simplicity, these delays are not represented in Figure 9.

Timing Analysis

It is easy to check that our MSC specification of the ATM satisfies the syntactic conditions of
Theorem 5.1. We used our analysis tool [3] to verify automatically the timing consistency of the
specification for 77 = 10 and various values of Wy, W5, @1, Q2, B1, and By. Table 2 shows sample
results. For the hMSC of Figure 8, the tool generated 43 infinite closed sequential components
whose temporal graphs were then examined for cycles with a negative cost.

Table 2: Sample results of timing consistency analysis

Case # (1) (2) @) | 4 | ()| (6
[Wla W2] [07 OO) [Oa 3] [07 4] [Oa 4] [Oa 4] [07 4]
[Q1, Q2] [0,00) | [0,00) | [0,00) | [0,2] | [0,2] | [0,1]
[BlaB2] [0,00) [0,00) [0,00) [5a6] [4a6] [476]

‘ Consistent? ‘ yes ‘ no ‘ yes ‘ no ‘ yes ‘ no ‘

For the case (1) in Table 2, the user does not impose any timing constraints on the system.
This case in fact makes any value acceptable for the remaining variables. In the case (2), the
user expects the ATM to process their withdraw request with [0, 3] seconds; such a deadline leads
to timing inconsistencies in all sequential components that contain the bMSC Withdraw followed
by either DispenseCash or RefuseWith. In all of the timining inconsistent components, the tool
detects the event send ENT_AMOUNT as being in a cycle with a negative cost of 1.1. The cost report
gave us the hint to increase the upper-bound of the delay to 4 and run the verification again.
As shown in the case (3), the specification becomes timing consistent. Note that for a value of
Wy < 4, the values of the remaining variables are irrelevant, since they affect paths that extend
the problematic paths.

In the cases (4) and (5), we examine the affects of the book-keeping time [Bj, B2] the ATM
requires after dispensing cash (bMSC DispenseCash). In this case, we only needed to vary the

17

lower bound B; since all of the bMSCs composed after DispenseCash require a delay of [0, co)
before the first event that can be processes by the ATM; hence, for the ATM, the combined delays
between the last event in DispenseCash and any next event is [By, 00). In the case (4), the timing
inconsistent components all share the bMSC DispenseCash followed by either the bMSC Withdraw
or GetBalance. Case (6) proves the dependency between the minimum book-keeping delay B
and the delays between consecutive customer requests while the ATM holds the customer’s card,
interval [@Q1, Q2]. In the above cases, when a timing inconsistency is detected, the cost of the cycle
and the involved events reported by the tool helped us to focus on which variables to adjust by
which amount.

7 Conclusion

We have reviewed four proposed extensions of MSCs to express timing constraints and available
analysis techniques for timing consistency of basic MSCs. The Z.120 standard timers together with
delay intervals as suggested in [15, 2] can describe timing constraints for events within a process and
events that are directly related, i.e., via the control edge or message arrow. From our experience,
labeling all control edges and message arrows in a bMSC can however result in a cumbersome
graph; a default assumption about the delays alleviates the problem. In addition, to express more
general timing constraints, e.g., to relate events within different basic MSCs or processes, these
extensions must be further augmented either by directly annotating the events within an MSC
specification (e.g., through time markers [7, 6]), or by complementing an MSC specification with
temporal predicates (e.g., boolean expressions [7, 6]) that describe the timing constraints. To
provide an expressive notation, these alternatives could sacrifice the simple, graphical syntax of
bMSCs and may result in more expensive analysis techniques.

Currently timing analysis is restricted to basic MSCs extended with timers and delay intervals.
Following the analysis techniques of temporal constraint networks [9], timing consistency of a basic
MSC is reduced to checking cycles with negative cost in a directed graph, which can be automated
in O(n?) where n is the number of events in the basic MSC [15, 2]. To extend this analysis to
MSC specifications with iterations and branchings, we highlighted syntactic issues that the Z.120
standard syntax must address. Based on specific syntactic recommendations, we then extended the
analysis of timing consistency of bMSCs with timers and delays to the analysis of MSC specifications
with branchings and iterations. To deal with branchings, we adopted a local interpretation of the
timing constraints. To handle iterations, we showed that, under a reasonable assumption, a loop
in the MSC specification can be analyzed by analyzing a simple extension of it, hence eliminating
the need to unfold the loop to examine its timing consistency.

Acknowledgements. This work was supported by ObjecTime Limited and the Information
Technology Research Centre (ITRC).

References

[1] B. Algayres, Y. Lejeune, F. Hugonment, and F. Hantz. The AVALON project: a validation
environment for SDL/MSC descriptions. In O. Faergemand and A. Sarma, editors, Proceedings

18

[10]

[11]

[12]

[13]

of the 6th SDL Forum, SDL’93: Using Objects, October 1993.

R. Alur, G. J. Holzmann, and D. Peled. An analyzer for message sequence charts. In T. Mar-
garia and B. Steffen, editors, Tools and Algorithms for the Construction and Analysis of Sys-
tems, Lecture Notes in Computer Science, Vol. 1055, pages 35—48. Springer Verlag, 1996.

H. Ben-Abdallah and S. Leue. Architecture of a requirements and design tool based on message
sequence charts. Technical Report 96-13, Department of Electrical & Computer Engineering,
University of Waterloo, October 1996. 18 p.

H. Ben-Abdallah and S. Leue. Syntactic analysis of Message Sequence Chart specifications.
Tech Report 96-12, Department of Electrical and Computer Engineering, University of Water-
loo, November 1996.

H. Ben-Abdallah and S. Leue. Syntactic detection of process divergence and non-local choice
in message sequence charts. In E. Brinksma, editor, Tools and Algorithms for the Construc-
tion and Analysis of Systems, Lecture Notes in Computer Science, Vol. 1217, pages 259-274.
Springer Verlag, 1997.

G. Booch, I. Jacobson, and J. Rumbaugh. Unified Modeling Language for Object-Oriented
Development (Version 0.91 Addendum). RATIONAL Software Corporation, September 1996.

G. Booch and J. Rumbaugh. The Unified Method: User Guide Version 0.8. RATIONAL
Software Corporation, October 1995.

R.J.A. Buhr and C.S. Casselman. Use Case Maps for Object-Oriented Systems. Prentice Hall,
1996.

R. Dechter, I. Meiri, and J. Pearl. Temporal constraint networks. Artificial Intelligence,
49:61-95, 1991.

H. Ichikawa, M. Itoh, J. Kato, A. Takura, and M. Shibasaki. SDE: Incremental specification
and development of communications software. IEEE Transactions on Computers, 40(4):553—
561, Apr. 1991.

ITU-T. Recommendation Z.120, Annex B: Algebraic Semantics of Message Sequence Charts.
ITU - Telecommunication Standardization Sector, Geneva, Switzerland, 1995.

ITU-T. Recommendation Z.120. ITU - Telecommunication Standardization Sector, Geneva,
Switzerland, May 1996. Review Draft Version.

I. Jacobson and et al. Object-Oriented Software Engineering - A Use-case Driven Approach.
Addison-Wesley, 1992.

P. B. Ladkin and S. Leue. Interpreting Message Flow Graphs. Formal Aspects of Computing,
7(5):473-509, 1995.

N. Meng-Siew. Reasoning with timing constraints in Message Sequence Charts. Master’s
thesis, University of Stirling, Scotland, U.K., August 1993.

19

[16] C.H. Papadimitriouand K. Steiglitz. Combinatorial Optimization: Algorithms and Complezity.
Prentice-Hall, Englewood Cliffs, NJ, 1982.

[17] B. Selic, G. Gullekson, and P.T. Ward. Real-Time Object-Oriented Modelling. John Wiley &
Sons, Inc., 1994.

A Proofs

Proof of Lemma 5.1. We prove that if the sequential composition of two basic MSCs is timing
consistent, then each basic MSC is also timing consistent. Let the MSC specification S = M; e Mo
be timing consistent. We show that M; and M, are also timing consistent.

Recall that the semantics of the sequential composition of M; followed by M> is such that the
behavior is the same as glueing the two basic MSCs into one basic MSC. Thus, the temporal graph
of S, T4(S) is obtained from 7,(M;) and 7,(Mz) such that:

e all nodes except for the bottom nodes of 7,(M;), and all nodes except for the top nodes of
Tg(M3) are in T4(S);

e the bottom nodes of T,(M3) are the bottom nodes of T4(S);

e the additional edges to match timer events in M, either have target nodes from 7,(M3) (when
the timers are matched in Ms), or now have target nodes as the the bottom nodes of 7,(M3).

In other words, there is a corresponding from the nodes and edges of 7,(S) to the edges and nodes
of T4(My) and T4(Mz). Now, assume that M; is not timing consistent. Then, 7,(M;) has a cycle
with a negative cost. This can result from two cases:

1. the edges in the cycle do not include the additional edges to match timers in M;. This implies
that the same cycle exists in 7,(S);

2. the edges in the cycle include the additional edges to match timers in M;. Assume the cycle
has the edge (n;x,n;) which has been added to match a time in process P; of M;. If the
timer has not been matched in My, then then same edges are present in 7,4(S) connected to
the bottom nodes of 7,(.5).

If the timer has been matched in Mj, then the same edges are present in 7,(S) connected
to some intermediate nodes in 7,(S) that correspond to nodes in T,(M3). Using graph
isomorphism in both cases we can conclude that an isomorphic cycle is present in 7,(S);

Each of the above two cases implies that 7,(S) has a cycle with a negative cost; that is, S is timing
inconsitent: a contradiction. The case M is timing inconsistent is proven to lead to a contradiction
in a similar way.

Proof of Lemma 5.2. Let the MSC specification S = M; e My e M; be timing consistent
and assume that M; e My has matched timer events. We show that the MSC specification S’ =
My e Mye My e Ms is also timing consistent. Assume that My e My e My e M5 is not timing consistent.
Thus, its temporal graph has a cycle with a negative cost. We distinguish four different cases how

20

this negative cost cycle can be added, and show a contradiction to the assuption that S is timing
consistent.

Case 1: The cycle involves only nodes that correspond to events in the second occurrence of Ms.
This cycle will have an isomorphic cycle in the temporal graph portion that corresponds to
the first occurrence of M;. Using Lemma 5.1 and the timing consistency of S, this leads to
a contradiction.

Case 2: The cycle involves only nodes that correspond to events in the second occurrence of M;
and M. Using reasoning similar to Case 1, this leads to a contradiction.

Case 3: The cycle involves nodes that correspond to events from all of the basic MSCs. Let the
cycle be
’r"...’x’v,...,w’y’...,s’...”r‘

where “...” means possibly passing through other nodes and the specified nodes are defined

as follows (see Figure 10):

Temporal graph for M1L.M2 |
! Total path costs:

—_~ Cl —.ro>=cl
— 2 « >=-cl
-~ _r >= -(cl+c2)

Temporal graph for M1

Temporal graph for M2

Figure 10: Paths inside the temporal graph of M; e M, e M; e M5

e r and s two nodes that correspond to events from the first occurrence of M; and/or Ma;
e r and y two nodes that correspond to the end events of the second occurrence of My;

e v and w two nodes that correspond to events of the second occurrence of M;. In the
corresponding temporal graphs they are immediate successors of and y, respecitvely.

Now, let ¢; be the cost of the path (in the cycle) from y to x via the parts corresponding to My,
M5 and M;. (This path is marked with a solid line in Figure 10.) Let ¢y be the accumulated
cost of the two edges (in the cycle) from z to v and from w to y. (These segments are marked
with thick line in Figure 10.) Thus, we have the path (in the cycle)

which has a total cost of ¢; + ¢s.

Since M; e My e M; is timing consistent, then we have every path from x to y inside the
temporal graph of M; e M5 e My has a cost greater than or equal to Le;. (Otherwise, we get
a cycle from r, x,y, s back to r with a negative cost.) This also implies that any path from y
to within the second occurrence of Ms has a cost greater than or equal to ¢;. (Otherwise,
we get a cycle with a negative cost within the second occurrence of Ms which, by graph
isomorphism, makes M; e M5 e M; timing inconsistent.)

Now, since M7 e M is timing consistent (by Lemma 5.1), we can therefore use graph isomor-
phism to infer that the cost of any path from v to w within the second occurrence of My must
have a cost greater than or equal to L(c1 + c2).

Thus the cost of the cycle from r back to r is the sum of the costs of the following paths:
Yy, -,8,---,r,---,x followed by z,v followed by v, - - -, w, and then w,y. This is greater than
or equal to

(01 + Cg) + J_(Cl + Cg) =0

which is a contradiction. |

Proof of Theorem 5.1. Let S = (B, T UIU L, suc,ref) be a timing inconsistent MSC specifi-
cation that satisfies conditions 1 and 2 of the Theorem. By Definition 5.1, this implies that there
is a path ny,ne,---,ng in S that starts from the start node and is timing inconsistent.

Case 1: The timing inconsistent path is simple. It is straightforward to prove that there is a
sequential component in S that extends the path and which is timing inconsistent. This
contradicts the assumption from condition 1 of the Theorem.

Case 2: The timing inconsistent path is not simple, i.e., it is obtained through loops in S. Without
loss of generality, assume that the path is obtained through one loop. That is, the timing
inconstent path is of the form:

w
nlan2a"'a(niani+la"'anj) y 41,7, Mg

for an integer constant w > 2, (nj,n;) € suc and distinct n’s. This can be the result of the
following three cases.

Case 2.1: The path ny,ng,---,(ni,nit1,---,n;)" is timing inconsistent for w > 2 and distinct
n’s. We use induction on w to generalize Lemma 5.2 and a reasoning similar to the proof of
Lemma 5.2 to conclude that the simple path ni,ng,---,(n;,nit1,---,n;) is timing inconsis-
tent, which contradicts the Theorem hypothesis that nq,ng,- -, (n;, njt1,- -+, n;)n; is timing
consistent.

Case 2.2: The path ni,ng,---, (ni,niq1,---,n;)" is timing consistent for a constant w > 2, but
the path nq,n9, -+, (ni,nit1, -, nj)"Nip1,---,ng is timing inconsistent. Thus, there is a
cycle in the corresponding temporal graph with a negative cost. This can be the result of two
cases:

22

Case 2.2.a: The cycle involves only nodes that correspond to events in the wth occurrence of
ni,Nit1, - ,n; and niqq,---,n,. Using graph isomorphism (and the assumption that the
timer events are matched in the loop), this implies that an isomorphic cycle exists in the
temporal graph of the simple path ni,no,---,(ni, niy1, -, nj)nit1, - -, ng; this reduces to
Case 1 where we also get a contradiction.

Case 2.2.b: The cycle involves nodes that correspond to events from more than just the wth
occurrence of n;, n;t1,---,n; and n;q1,---,ng. In this case, we use a reasoning similar to the
proof of Lemma 5.2, to show that the cycle actually must have a positive cost. (In this case,
for Figure 10, the nodes r and s are anywhere in the portion of the graph that corresponds to
ni,ng, -+, (i, nit1, -+, n;)" " L; the nodes = and y are the last nodes from the wth occurrence
of nj,nit1, -+, n;; and the nodes v and w are the first nodes from n;4q,---,ng.)

The above case analysis can be carried out by induction on the number of loops in the path
to prove that in each case the path is in fact timing consistent. |

Proof of Theorem 5.2. Let S be an MSC specification with untimed process divergence through
the processes Pj,---, P, in a loop L which can jointly race ahead of the remaining processes.

If part: For the case 1., it is clear that the behavior of S via the loop L is zeno; that is, all

events within the processes Py, - -, P, can be executed infinitely many times within zero time
units. In particular, those events sent from Pi, .-, P, to other processes can be executed
an unbounded number of times in zero time units. Also, in the untimed model these events
can be sent an unbounded number of times ahead of their corresponding receive events, a
behavior that is also acceptable in the timed model. Thus, S also has process divergence in
the timed model.
For the case 2., we have the timed behavior of the processes receiving messages from Py, -+, P,
can be delayed an oo time units. Thus, the untimed behavior where the processes Pi,---, P,
send an unbounded number of times messages without being received can be time-stampped
to a timed behavioral for S, without violating any timing constraints in the processes which
receive events from P, ---, P,. This establishes that S has a process divergence in the timed
model.

Only part: Assume that in the untimed model, the processes Py, -, P, within a loop L in S
are involved in a process divergence. Thus, there is an infinite (untimed) execution of S such
that these processes send messages an unbounded number of times ahead of the reception of
these messages; let this sequence be ssis1s1---.

Now, assume that neither case 1 nor 2 of the Theorem holds. Thus, let the sum of of the
minimal delays within P;,---, P, be min # 0 and let the minimal of the maxmimum delays
within the processes receiving messages from Pi,---, P, including messages received from
these latter be max < oo.

For the execution ss;s;s; - to be acceptable in the timed model, we must have a timing
assignment that satisfies the timing constraints within: 1) the processes Pi,---, P,, and
2) those processes which receive events from Pj,---,P,. Assume there is such a timing

23

assignment. Thus, the timing assignment for the divergent behavior ss;s1s1 - - - must be such
that the duration of the infinite string s1s1s1--- is strictly less than mazr < oco. Since the
string is infinite, this implies that the duration of sys1s1--- is zero, which contradicts the
assumption that min # 0. |

24

	Text4: Technical Report 97-04, Department of Electrical and Computer Engineering, University of Waterloo
	Text5: Konstanzer Online-Publikations-System (KOPS)
URL: http://www.ub.uni-konstanz.de/kops/volltexte/2008/6511/
URN: http://nbn-resolving.de/urn:nbn:de:bsz:352-opus-65113

