
Expressing and AnalyzingTiming Constraints inMessage Sequence Chart Speci�cationsHanêne Ben-Abdallah and Stefan LeueElectrical and Computer EngineeringUniversity of WaterlooWaterloo, Ontario N2L 3G1, CanadaTechnical Report 97-04c
 Hanêne Ben-Abdallah and Stefan Leue, 1997hanene|sleue@swen.uwaterloo.caApril 1997

http://nbn-resolving.de/urn:nbn:de:bsz:352-opus-65113
http://www.ub.uni-konstanz.de/kops/volltexte/2008/6511/

AbstractMessage Sequence Charts (MSCs) are increasingly supported in software engineering toolsand methodologies for communication systems. The last Z.120 standard extends MSCs withoperators to organize them in a compositional, hierarchical fashion to describe systems withnon-trivial sizes. When dealing with timing constraints, the standard is still evolving along withseveral proposals. This paper �rst reviews proposed extensions of MSCs to describe timing con-straints. Secondly, the paper describes an analysis technique for timing consistency in iteratingand branching MSC speci�cations. The analysis extends e�cient current techniques for timinganalysis of MSCs with no loops or branchings. Finally, we use an example to illustrate ouranalysis technique.

ii

Contents1 Introduction 12 Timing Constraints in Basic MSCs 22.1 Syntax . 22.2 Timing Analysis Based on Timers and Delay Intervals 52.3 Summary and Open Issues . 53 Interpreting Timing Constraints in MSC Speci�cations 63.1 Interpreting Iterations . 63.2 Interpreting Branchings . 84 Timed MSC Speci�cations 94.1 Syntax . 94.2 Semantics . 105 Timing Analysis of MSC Speci�cations 115.1 Timing Consistency of bMSCs . 115.2 Timing Consistency of hMSCs . 125.3 Process Divergence in Timed MSC Speci�cations . 146 ATM Example 157 Conclusion 18A Proofs 20

iii

List of Figures1 MSC speci�cation example: basic MSCs (left) and high-level MSC (right) 12 Timing constraints expressed through a Z.120 timer 33 (a) Event-associated Timing constraints; (b) Trace-associated Timing constraints . . 44 Timing constraints expressed through a Z.120 timer and delay intervals 45 Timing constraints in an iterating MSC speci�cation 76 Timed MSC Speci�cation . 87 Timed basic MSC (left) and the corresponding temporal graph (right) 128 High-level MSC for the ATM example . 159 Basic MSCs in the ATM example . 1610 Paths inside the temporal graph of M1 �M2 �M1 �M2 21

iv

1 IntroductionVarious
avours of Message Sequence Charts (MSCs) have been used in software engineering oftelecommunications systems as well as object-oriented analysis and design notations. The graphi-cal constructs in MSCs provide for an intuitive description of the interactions, protocols and servicesbetween a system's components. MSCs are used to document system requirements that guide thesystem design [17], describe test cases and scenarios [13, 7, 8], express system properties that areveri�ed against SDL speci�cations [1], visualize sample behavior of a simulated system speci�ca-tion [17, 1], and to express legacy speci�cations in an intermediate representation that helps insoftware maintenance and reengineering [10].Recently, the intuitive, graphical notation of MSCs increased their popularity within the soft-ware engineering community and motivated a standardization e�ort. The MSC standard as de�nedby the ITU-T in Recommendation Z.120 [12] introduces two basic concepts: basic MSCs (bMSCs)and High-Level MSCs (hMSCs). A bMSC consists of a set of processes that run in parallel andexchange messages in a one-to-one, asynchronous fashion. An hMSC graphically combines refer-ences to basic MSCs to describe parallel, sequential, iterating, and non-deterministic execution ofbasic MSCs. In addition, an hMSC can describe a system in a hierarchical fashion by combininghMSCs within an hMSC. We call the combination of a set of bMSCs and an hMSC describing theircomposition an MSC speci�cation. MSC speci�cations describe potentially iterating and branchingsystem behaviours. Figure 1 shows an example of MSC speci�cation that describes a simple con-
MSC1

MSC2 MSC3
P1 P2 P3

msc MSC2

CC

Cind

P1 P2 P3
msc MSC3

Dind

DR

msc MSC1
P1 P2 P3

CR

Creq

Figure 1: MSC speci�cation example: basic MSCs (left) and high-level MSC (right)nection establishment protocol in a telecommunication system. The basic MSC MSC1 describes aconnection request, the basic MSC MSC2 describes the successful establishment of the connection,and the basic MSC MSC3 describes an unsuccessful establishment of the connection. Process P1is a service provider, process P2 is a local and process P3 is a remote protocol machine. Withinthe hMSC, the iterating branch describes a repeated request to establish the connection. Thenon-iterating branch describes a successful connection establishment.The semantics of an MSC essentially consists of sequences (or traces) of messages that are sentand received among the concurrent processes in the MSC [14]. The order of communication events(i.e. message sent or received) in a trace is deduced from the visual partial order determined bythe
ow of control within each process in the MSC along with a causal dependency between theevents of sending and receiving a message.To facilitate the speci�cation of real-time systems, a few extensions to MSCs have been proposed1

to express timing constraints: timers [12], interval delays [2, 15] and timing markers [7, 6]. Theproposed extensions evolved independently and di�er in terms of their expressiveness and supportfor analysis. Further, all proposed analysis of MSCs with timing constraints have been so far limitedto basic MSCs.In an e�ort to help consolidate the best of the proposed timing extensions possibly within thestandard, in this paper we �rst review the various proposed syntactic annotations of basic MSCswith timing constraints. For each of the proposed timing extensions, we highlight the syntacticfeatures, expressiveness and limitations, and we discuss ambiguities that must be addressed whenbMSCs are composed within an hMSC.Another motivation for this paper is to extend the timing consistency analysis for bMSCs todeal with iterating and branching MSC speci�cations. The analysis technique we present has beenimplemented within our prototype toolset for requirements engineering based on MSCs [3]. Inaddition, in this paper we extend our syntactic analysis of the process divergence problem in MSCspeci�cations [5, 4] in the presence of timing constraints. We use the example of an automatic tellermachine system to illustrate our chosen timing extension and the presented timing analysis.2 Timing Constraints in Basic MSCsWe focused on three issues when reviewing current work that deals with timing constraints inMSCs: how they extend MSCs to express timing constraints; how they interpret timed MSCs; andwhat kind of timing analysis they o�er.2.1 SyntaxThere are essentially four classes of syntactic constructs to express timing constraints in MSCs andMSC reminiscient notations: 1) timers [12, 2], 2) delay intervals [2, 15], 3) drawing rules [7, 6], and4) other timing markers [7, 6].Timers. Recommendation Z.120 provides timers to express timing constraints in a basic MSC.Within a single process (`instance' in Z.120 terminology), a timer can be set to a value, reset tozero, and observed for timeout. A timer cannot be shared among concurrent processes in an MSC.Figure 2 shows an example of a basic MSC with timing constraints expressed through two timers.In this example, process P3 �rst sets the timer T3.1 say to �ve time units, it then sends messagee, receives message b, and sends message c before T3.1 times out. In other words, process P3 mustexchange its messages within at most �ve time units relative to the timer setting event. ProcessP1 �rst sets the timer T1.1 say to three time units, receives message a, then resets its timer. Sinceprocess P1 does not see a timeout event, the implicit assumption here is that the timer does notexpire before it is reset. As the example illustrates, a timer can be used to express either a minimaldelay between two consecutive events in one process, or a maximal delay between two or moreconsecutive events in one process.The process algebraic, standard semantics [11] treats a timer's setting, resetting, and timeoutas special events. This semantics uses an untimed model, and therefore has no notion of time. Inaddition, it o�ers no timing analysis. The partial order semantics de�ned by Alur et al [2] treats2

d
c

msc M1
P1 P3P2

a

b
e

T1.1 T3.1

Figure 2: Timing constraints expressed through a Z.120 timertimer events as \regular" events and provides timing consistency analysis. This work incorporatesZ.120 timers with delay intervals; we therefore discuss its results shortly.Delay Intervals. Besides the Z.120 timers, delay intervals have been proposed to express timingconstraints in a basic MSC. Depending on how delay intervals annotate a bMSC, they express threetypes of timing constraints:1. Event-associated timing constraints [15], which are denoted as an interval that is associatedwith an event in the basic MSC.2. Message delivery delays [2, 15], which are expressed as a time interval over a message arrow.3. Processor's speed constraints [2, 15], which are expressed as time intervals between two con-secutive events in a process.An event-associated timing constraint is a global constraint on the timed occurrence of an event:the event must occur within the speci�ed minimal and maximal time delays with respect to anyprevious event, whenever it occurs in a trace. Figure 3 (a) shows sample event-associated timingconstraints.In the message delivery and processor's speed constraints, a delay interval is delimited withrespect to the occurrence of the two consecutively, visually ordered events it constrains. Figure 4augments the timing constraints in Figure 2 with message delays (i.e., intervals on message arrows)and processor's speed constraints (i.e., intervals on vertical lines). In this version, message b takesbetween two and three time units from the time it is sent by process P1 to the time it is receivedby process P3. In addition, process P3 requires that message b be received between one and twotime units from the time it sends message e.In [15], the author generalizes the message delivery and processor's delay intervals (called trace-associated timing constraints) by using a semantic notion of consecutive events: two events areconsecutive if they can be executed one after the other. In addition, this work extends the useof trace-associated timing constraints to express timing constraints between events that are notrelated. For this, the syntax of bMSCs is extended with precedence edges that connect unrelatedevents. The user can then annotate the extended bMSC with timing constraints to impose on un-related events. Figure 3 (b) shows sample trace-associated timing constraints where the precedence3

d
c

P1 P3P2
a

msc M2

b
e

[1,2]

[2,3]

[3,4] [1,2]

[1,2]

(a) d
c

P1 P3P2
a

msc M3

b
[2,3]

[1,2]

[3,4]
[1,2]

[1,2]

[1,2]

e

(b)Figure 3: (a) Event-associated Timing constraints; (b) Trace-associated Timing constraints
d

c

P1 P3P2
a[1,2]

(2,4]

[1,3] [1,2]

[1,3]

[2,4)

[2,3]b
[1,2] e

[1,2]

T3.1
T1.1

msc M4

Figure 4: Timing constraints expressed through a Z.120 timer and delay intervalsedges are drawn with dashed-line, bidirected edges. As this example illustrates, while precedenceedges allow the expression of more timing constraints, they may result in a cumbersome graph.Drawing rules and timing markers. Sequence diagrams within the Uni�ed Modeling Lan-guage [6] extend the Z.120 MSCs with additional information, e.g., focus of control to show thetime when a process has a thread of control. Timing constraints are represented in a sequencediagram in two ways: the drawing rules of message arrows and timing markers. A horizontal mes-sage arrow indicates the simultaneous occurrence of the send and receive events of the message. Adownward slanted message arrow, on the other hand, indicates a required delay between the sendand receive events of the message. In addition, within each object outgoing message arrows canbe drawn at a single point to indicate the simultaneous sending of a message. (Incoming messagearrows are not allowed to meet at the same point within an object.)To describe more quantitative timing constraints, timing markers are attached to a sequencediagram. Timing markers are boolean expressions placed in braces and attached to the diagram [6].The boolean expressions can constrain particular events or the whole diagram. However, sinceneither the precise syntax of timing markers nor their formal semantics is de�ned, we cannot4

completely assess their expressiveness. In addition, no formal analysis of timing constraints hasbeen proposed within the Uni�ed Modeling Language.2.2 Timing Analysis Based on Timers and Delay IntervalsTiming analysis consists of validating a timing assignment and verifying timing consistency. Atiming assignment is essentially a time-stamp function that associates with the MSC events occur-rence times with respect to a global clock. A timing assignment is valid if it respects the timingconstraints in the MSC. A bMSC is timing consistent if there is at least one valid timing assignmentthat allows the MSC to have a behavior where the events occur according to the speci�ed timingconstraints.For bMSCs extended with timers and timing delays, using the temporal constraint networktechniques in [9], timing analysis reduces to computing all-pairs-shortest-paths in a labeled directedgraph [15, 2]. In the worst case, this can be computed in O(n3) time where n is the number ofevents in the bMSC. We will discuss timing consistency analysis with this technique in detail inSection 5.The MSC analyzer tool by Bell Labs [2] o�ers in addition to the above timing analysis forbMSCs, timed analysis based on a semantics that accounts for the queueing strategies in a bMSC:1. Visual con
ict, which occurs when two events e and f are visually such that e occurs beforef , but every timing assignment makes f occur before e. This analysis is reduced to �nding apath from e to f with a negative cost.2. Timing con
ict, which occurs when two events are inferred to occur in one order, but thereis a timing assignment that violates the inferred timing delay between the two events. Thisanalysis is reduced to �nding the cost of the shortest path between the two events in question.To analyze MSC speci�cations within this tool, the user would have to select the various bMSCsthat compose one sequential path in the hMSC and analyze each path separately. However, in thepresence of loops in the hMSC, this tool o�ers no hints on how many times the user is supposed tounfold a loop to conclude timing consistency of the loop. Further, analysis based on path selectionshould resolve certain issues about the usage of timer events and the interpretation of the timingconstraints in the MSC speci�cation.2.3 Summary and Open Issues� Z.120 suggests the use of timers added to basic MSCs in order to express either maximumdelay constraints for a set of events, or minimum and maximum delays for consecutive eventswithing one process. Processor speed timing constraints as suggested in [2, 15] provide thesame expressiveness for consecutive events. Unlike timers, time intervals cannot express delaysbetween more than two consecutive events.� Several timing properties are expressed in terms of delays between the sending and receivinga message. Since messages are sent and received by di�erent, concurrent processes, messagedelivery delays can not be expressed via timers. Annotating message arrows with delay5

intervals as suggested in [2, 15] is an intuitive extension to the Z.120 basic MSCs. Timinginterval-based analysis of basic MSCs has been proven practical in [2].� To express timing constraints between events in one bMSC that are neither within the sameprocess nor related by message arrwos, [15] suggests the use of time-annotated precedenceedges. Timing analysis is feasible, but may involve potentially exponential model construc-tion.� To express more general timing constraints, e.g., to relate events within di�erent basic MSCs,the current notation must be further extended. This can be done either by directly annotatingthe events within an MSC speci�cation (e.g., through timer markers [7, 6]), or by augment-ing an MSC speci�cation with temporal predicates that describe the timing requirements.To provide an expressive notation, the �rst alternative could sacri�ce the simple, graphicalsystax of bMSCs. On the other hand, the second alternative can result in a gap within aspeci�cation and would often require model-based analysis to examine the consistency of thetiming constraints.When basic MSCs are composed within an hMSC, serveral issues pertinent to timers must beaddressed: 1) syntactic well-formedness of hMSCs when timer events are split across basic MSCs;2) how to interprete timers inside iterations; and 3) how to determine timing consistency in thepresence of branchings. We address these issues in the next sections.3 Interpreting Timing Constraints in MSC Speci�cationsAn MSC speci�cation connects basic MSCs to describe sequential, possibly iterating and non-deterministic behavior. In the presence of timing constraints, iterations and non-determinismrequire a special attention for one essential reason: timing constraints can be spread across sequen-tially connected basic MSCs. We next illustrate how the Z.120 standard syntax [11] is ill-de�nedwhen timers are used in hMSCs, and outline possible choices of interpreting timing constraintsin hMSCs. We assume that timing constraints are expressed through timers as suggested by theZ.120 standard syntax [11]. However, the arguments we present also hold when in addition delayintervals are used.3.1 Interpreting IterationsCurrent analyses of iterations in an hMSC rely on unfolding loops a �nite number of times andanalyze the resulting basic MSC. As we show in [5], in the case of untimed behavior, this techniquemisses anomalous behavior such as process divergence. In the case of timed behavior, this techniqueraises several questions about: 1) interpreting multiple occurrences of the set event of the sametimer, 2) resolving the correspondence between several timers' set and timeout events, and overall3) the syntactic well-formedness of basic MSCs with timers.Consider the MSC speci�cation of Figure 5 where the timer T1.1 is set in the basic MSC M1and its timeout is detected in the basic MSC M3. As control iterates through the basic MSCs M1and M2, it is unclear whether the system generates a new instance of the timer, or uses the same6

Dind

M1

M2

M3

P1 P2 P3

RC

Creq
P1 P2 P3

DC

msc M3msc M2

T1.2

P1 P2 P3

DA

Dreq

msc M1

T1.1

T1.1Figure 5: Timing constraints in an iterating MSC speci�cationtimer during all iterations. Both interpretations can be justi�ed by the common interpretation ofa loop in an hMSC through a �nite unfolding to a basic MSC.More speci�cally, consider the following execution scenario of the MSC speci�cation of Figure 5:M1, M2, M1, M2, and then M3. (Using loop unfolding, this sequence of basic MSCs represents asyntactically legal basic MSC.) When a loop is interpreted through a �nite unfolding operation, itseems that a new timer is generated each time M1 is executed. Therefore, we need to resolve theassociation of the timeout event in M3 with the timer setting events. The choice a�ects the possiblebehavior of the MSC speci�cation, i.e., its timing consistency analysis. Let us consider a uniformtreatment of timers and events: The semantics in [14] intreprets events such that multiple sendsof a message are deactivated by one receive of the message, based on an argument showing thatMSC speci�cations are �nite-state devices1. In the case of timers, this translates to associating thetimeout event with any of the two timer setting events. A more reasonable choice is to associateit with the �rst timer since it would time out �rst. For T1.1 set to 5 and T1.2 set to 3, thisintrepretation makes the above execution scenario timing inconsitent.A second alternative is to associate the timeout event with the last timer set. This alternativecoincides with the second interpretation where the same timer is reset then reused during alliterations. In this case, the same execution scenario for the example of Figure 5 is timing consistentin the sense that the last timer set does not expire before sending the event Crq; however, such ananalysis is misleading when the overall behavior is considered: the �rst time the message Dreq wassent and sending the event Crq are separated by at least 6 time units and thus one timeout event,i.e., deadline was obviously missed.The above ambiguity in interpreting timers within loops results from the ill-de�ned syntax ofhMSCs when timers are involved. The Z.120 syntax of an hMSC assumes the well-formedness of thebMSCs used in the hMSC. The Z.120 syntax of bMSCs only restricts the usage of timers such thata reset or timeout event may occur only after a timer is set [11]; that is, this syntax neither forcesthe reset or timeout event to occur after a timer set event, nor does it restrict multiple occurrencesof a timer set event prior to its reset or timeout event. As the above example illustrates, thisrelaxed syntax of bMSCs can lead to ambiguities when a loop in an hMSC contains bMSCs whereone timer is set but neither its timeout nor reset event occurs in the loop.1The standard Z.120 semantics [12] does not deal with iterations.7

In a broader context, the above example raises a fundmental question about what an MSCspeci�cation means: does it describe all behaviors of a system, or does it describe a set of samplebehaviors of a system? In the �rst case, the standard syntax must be further restricted to disallowthe above example. In the second case, the above example should be allowed and interpretedaccording to the second alternative; that is, timers may expire without explicitly being modeled inthe MSC speci�cation. However, this interpretation may create practical di�culties since timers'expirations are usually implemented as interrupts and thus can not be ignored in some occasionsand handled at other times.3.2 Interpreting BranchingsAnMSC speci�cation can compose bMSCs in a non-deterministic fashion. This is described throughnodes in its hMSC that have multiple successor nodes. Non-determinism in an MSC speci�cationraises the following question: How can we determine whether the timing constraints in the MSCspeci�cation are satis�able? This can be achieved in two ways:1. Local semantics: select one path at a time and analyze its timing requirements, independentlyof other paths that may branch out of the selected path. This interpretation of timingconstraints allows the derivation of several timing assignments, one for each path in the hMSC.In other words, any particular basic MSC that is shared by di�erent paths may have di�erenttimed behavior depending on both the past and future behavior of the system. This approachhas the advantage of producing possibly looser timing constraints. Current approaches whichrely on interpreting bMSCs [2] adopt a local semantics for timing constraints.2. Global semantics: all paths must be analyzed simultaneously. This analysis technique assumesthat any timing assignment for the hMSCmust be valid along all shared portions of all paths inthe hMSC. In this approach, each basic MSC will have the same timed behavior independentlyof the execution path on which it resides, hence independently of the future behavior of thesystem. This approach produces tighter timing constraints. However, it may conclude thetiming inconsistency of an hMSC when one path can in fact be timing consistent.
MSC1

MSC2 MSC3

msc MSC1
P1 P2 P3

P1 P2 P3
msc MSC2

P1 P2 P3
msc MSC3

CC
Dind

DR
[3, 6][4, 6]

Cind

Creq

[0, 0][2, 2]

[1, 1][1, 1]

[2, 2][0, 2]

[1, 2]
CR

Figure 6: Timed MSC Speci�cation8

Example. To illustrate the di�erences between the two approaches, consider the timed, non-iterating variant of the MSC speci�cation in Figure 1 shown in Figure 6. Table 1 shows two timedexecution traces derived from the two possible paths in the hMSC taken independently. Thus, theMSC speci�cation in Figure 1 is locally timing consistent. However, there is no timing assignmentfor the common pre�x of execution traces I and II, i.e. <!CR, ?CR>, that allows both traces tobe continued in a timing consistent fashion: timing consistency of path I requires that ?CR notto happen later than at time 1, whereas timing consistency of path II requires that ?CR not tohappen before time 2, relative to the time of occurrence of !CR. The MSC speci�cation in Figure 6is therefore not globally timing consistent.Execution # !CR ?CR !CC ?CC !DR ?DRI 0 1 3 4 - -II 0 2 - - 5 6Table 1: Consistent timed executions4 Timed MSC Speci�cationsBefore we present our timing consistency analysis for MSC speci�cation, we next de�ne the syntaxwe use to describe timing constraints.4.1 SyntaxIn this paper, we use a subset of the Z.120 language for untimed bMSCs that comprises messageexchanges only. To express timing constraints we use the Z.120 timer events together with (non-standard) timing delay intervals. A timer event can be: setting a timer, resetting a timer or atimeout. We assume that a timer can be set to a positive integer value, and rest to zero. Incompliance with the Z.120 standard [11], a reset and timeout event must be preceeded by a timersetting event. In addition, a timer is private to a process and thus its events can be used by asingle process only. Further, to distinguish between timers, we assume that each timer has a uniqueidenti�er associated with it.A timing delay interval is a label over either a message arrow, or a control
ow segment, i.e.,a portion in a process's line that is delimited by two consecutive events. (We use the generic termevent to denote one of the following types of events: the start of a process, the end of a process,sending a message, receiving a message, or a timer event.) A delay interval labelling a messagearrow denotes the relative minimal and maximum delays between the events of sending the messageand receiving it. A delay interval labelling a control
ow segment denotes the relative minimal andmaximal delays between the events delimiting the control
ow segment. Delay intervals can be ofthe form [a; b], [a; b), or (a; b] where a 2 NN and b 2 NN [f1g. For an example of a timed bMSCaccording to this syntax see Figure 4.An MSC speci�cation is a structure S = (B;V; suc; ref) where� B is a �nite set of bMSCs; 9

� V = >[I [? is a �nite set of nodes partitioned into the three sets of: singleton-set of startnode, intermediate nodes, and end nodes, respectively;� suc � (>[I)� V the relation which re
ects the connectivity of the hMSC of S such that allnodes in V are reachable from the start node; and� ref : I 7�! B a function that maps each intermediate node to a bMSC in B2.A path in an MSC speci�cation S = (B;V; suc; ref) is a sequence of intermediate nodes (i.e.,bMSCs), b1; b2; � � � ; such that (bi; bi+1) 2 suc for i � 1. A path is simple if all its nodes are distinct.A loop in S is a path b1; b2; � � � ; bn with (bn; b1) 2 suc, and a loop is called simple if all its nodes aredistinct.In compliance with the Z.120 we allow timer events to be split across bMSCs in an hMSC.The Z.120 restriction that each timeout and timer resetting event must be preceeded by a timersetting event in bMSCs is extended to paths in the MSC speci�cations, i.e. in every path timeoutand timer resetting events must be preceded by a timer setting. However, to avoid the ambiguitiesdescribed in the previous section, we require that every simple loop in an MSC speci�cation hasmatched timer events:1. every timer setting event in the loop must be followed by either a timeout or reset event; and2. every timeout event must be preceeded by a timer setting event in the loop.The �rst restriction disallows the example in Figure 5. Note that this restriction is for loops only;that is, it does not force the use of a timeout or reset event in non-looping paths. As we see in thenext section, our timing analysis will ensure that the absence of these events does not mean thespeci�cation is incomplete. The second restriction disallows the possibility that time ellapes in theloop making the timeout event obsolete.4.2 SemanticsIn accordance with earlier work [14], we interpret an MSC speci�cation as the set of all executiontraces that are consistent with the (visual) partial order of events speci�ed in the bMSCs composingthe MSC speci�cation. That is, a trace � of a bMSC M is a �nite sequence of communication (i.e.,send and receive message) and timer events inM such that the events in � are ordered according tothe visual ordering of events in M . To account for time, a timed trace of a bMSCM is a trace � ofM together with a timing assignment T : E� 7! RR+ that assigns to each event e in � a time-stampT (e) from the set of positive real numbers such that the timing constraints in M are met. Sinceevents are partially ordered in M , and since there can be several possible timing assignments for agiven trace of M , the behavior of M is the set of all its possible timed traces.2We assume that an MSC speci�cation contains one level of nesting; however, the de�nitions and results presentedin this paper can be easily extended to deal with MSC speci�cations where nodes refer to other hMSCs.
10

5 Timing Analysis of MSC Speci�cationsIn this section, we �rst augment the timing analysis for bMSCs presented in [15, 2] to handle thepossibility that a timer is set in a bMSC but no reset nor timeout event follows the timer settingin the bMSC. We then extend it to to analyze MSC speci�cations with branchings and iterations.5.1 Timing Consistency of bMSCsTo determine the timing consistency of a basic MSC, we adopt an approach similar to the onespresented in [15, 2]. First the bMSC is translated into a directed, labeled graph that we calltemporal constraint graph. The vertices and edges in the graph re
ect the control
ow and messageexchanges in the bMSC. The edge labels represent the timing constraints in the bMSC. Once atemporal constraint graph is constructed, to verify that the bMSC is timing consistent, we justcheck that the temporal constraint graph has no cycles with a negative cost [9, 15, 2].Since it is unclear whether the informal translation presented in [2] handles the possibility thata timer is set but no reset nor timeout event is explicitly included in the bMSC, we next presentthe translation we assume in our analysis of timing consistency of MSC speci�cations.From a bMSC to a temporal constraint graph. An edge in the temporal constraint graphis labeled with either the lower or upper bound of the delay interval imposed on the corresponding\edge" in the bMSC. To extract the bounds of a delay interval I with bounds a; b 2 NN [f1g(a � b), we use the functions L(I) and U(I) de�ned as follows:I [a; b] (a; b] [a; b) (a; b)L(I) a a� a a�U(I) b b (b� if b 6=11 otherwise (b� if b 6=11 otherwiseIt is straightforward to represent a bMSC a directed, labeled graph (c.f. basic Message FlowGraph [14]). A node in the graph represents one of the following events: the start of a process,the end of a process sending a message, receiving a message, or setting, resetting or timeout atimer. An edge in the graph can have one of three types that represent the dependencies betweenevents: 1) a \signal" edge (x; y) represents sending a message from one process to another; 2) a\next event" edge (x; y) represents the control
ow within a process where event x appears beforeevent y on the vertical line of the process; and 3) a \temporal" edge (x; y) connects a timer settingevent x with a timer reset or timeout event y. The label of an edge is the timing delay and, for asignal edge, the message type. (For details, the reader is referred to [14] where basic MSCs withouttiming constraints are represented as Message Flow Graphs. This translation is easily augmentedwith the temporal edges to represent timing constraints.)Given a bMSC M , its temporal graph Tg(M) is obtained as follows:� each node in M is represented by a node in Tg(M);� each next event edge, each signal edge and each temporal edge (e; e0) with timing label I inM is represented by two labeled edges in Tg(M): 1) edge (e; e0) with label �L(I); and 2) edge(e0; e) with label U(I). 11

� for each process Pi in M , for each of its set timer event ei with value t and no matching resetor timeout event, the following two edges are added in Tg(M): 1) (ei; e0i) with label �t; and2) (e0i; e) with label t, where the node e0i is the node that corresponds to the bottom node ofprocess Pi in M .The above translation could di�er from previous translations in the last step. As mentionedearlier, this additional step allows us to cover the lose Z.120 syntax [11] which does not force a settimer to have a reset or timeout event in the same bMSC. The analysis of the temporal constraintgraph as constructed above ensures that those timers that were not explicitly reset or timeout,in fact, did not expire. Hence, the analysis results of the extended temporal constraint graph arecoherent with the implicit assumption that a missing timeout/reset event in a process is interpretedas the set timer not having expired prior to the process's end of execution. Figure 7 illustrates thetranslation of a timed basic MSC into a temporal graph.
d

c
T2.1

P1 P3P2
a[1,2]

[2,4)
[1,2] e

[1,2]

T1.1

msc M

[1,3] [1,2]

[1,3](2,4]

[2,3]b

T3.1

[1,2]

-2
2

0

-2

-T1.1

-T2.1

0

0

-T3.1

4

T3.1

0
-4

-1 2

T2.1

T1.1

0

-2

0

0

0

0

-1

2

-1

3

-1

2

-1

3

3

0

0

0 -1

0

0Figure 7: Timed basic MSC (left) and the corresponding temporal graph (right)A bMSC is timing consistent if and only if its temporal constraint graph has no cycles with anegative cost [9, 15, 2]3. Detecting cycles in the temporal constraint graph can be done throughthe Floyd-Warshall's algorithm which computes all-pairs-shortest paths in the graph [16] in a worstcase time of O(n3) where n is the number of events in the graph. The timing consistency of thegraph in Figure 7 depends on the choice of values for the timers denoted.5.2 Timing Consistency of hMSCsOur notion of timing consistency of an MSC speci�cation relies on a local interpretation of thetiming constraints.De�nition 5.1 An MSC speci�cation S is timing consistent if every path that starts from thestart node in S is timing consistent. S is partially timing consistent if some of its paths are timingconsistent. S is timing inconsistent if none of its paths is timing consistent.The above de�nition of timing consistency is impractical since in the presence of iterations inthe MSC speci�cation, the number of paths is in�nite. We next present a syntactic approach todetermine the consistency of an MSC speci�cation based on a �nite subset of its paths.3Addition over the natural numbers NN is extended over NN [NN� [f1;�1g in a straigfoward way.12

In the sequel, we adopt the following notation to ease readability: given two bMSCS, M1 andM2, we denote the MSC speci�cation that consists of the sequential composition of M1 followed byM2 as M1 � M2.Lemma 5.1 Given two basic MSCs M1 andM2, if M1 � M2 is timing consistent then M1 andM2are also timing consistent.Proof: See Appendix ALemma 5.2 If the MSC speci�cation M1 � M2 � M1 is timing consistent with M1 � M2 havingmatched timer events, then the MSC speci�cation M1 � M2 � M1 � M2 is also timing consistent.Proof: See Appendix AThe above Lemma allows us to deduce the timing consistency of a loop from the timing con-sistency of an augmented version of the simple path the loop contains, without unfolding the loop.Thus, to decide the timing consistency of an MSC speci�cation, we can focus on simple paths andaugmented simple paths that represent loops in the speci�cation. We next de�ne these paths.De�nition 5.2 Let S = (B;>[I [?; suc; ref) be an MSC speci�cation. A sequential componentin S is a simple path n1; n2; � � � ; nk in S such that:1. (s; n1) 2 suc for the start node s 2 >; and2. either (nk; e) 2 suc for an end node e 2 ?, or there exists nj 2 fn1; n2; � � � ; nkg such that(nk; nj) 2 suc.Informally, a sequential component represents either a simple path from the start node to an endnode, or a path that starts with a simple path and ends with a simple loop. We call the �rst type�nite sequential components, and the second in�nite sequential components.De�nition 5.3 Given an MSC speci�cation S, we say that a path n1; n2; � � � ; nj; � � � ; nk; nj in S isa closed in�nite sequential component if n1; n2; � � � ; nj; � � � ; nk is an in�nite sequential componentin S.Theorem 5.1 An MSC speci�cation S is timing consistent if1. each �nite and each closed in�nite sequential component in S is timing consistent; and2. each in�nite sequential component in S has matched timer events.Proof: See Appendix AThe condition on the in�nite sequential components is stronger because the loop in the com-ponent allows time to progress an arbitrary amount, and thus possibly missing a timeout event. Ifa set timer is missing a reset or timeout event inside the loop, our analysis can not conclude fromone iteration that the timer will never expire. In fact, if a timing consistent, in�nite componenthas unmatched timer events, then the speci�cation is partially timing consistent is the best we canpredict. 13

Timing Consistency AlgorithmTo examine the timing consistency of an MSC speci�cation, we have implemented within our MSCtool [3] the following algorithm:Input: an MSC speci�cation SOutput: for each timing inconsistent sequential component in S, the eventsinvolved in a negative cost cycle1. Find the �nite and closed in�nite sequential components in S2. For each sequential component L:3. construct the temporal constraint graph Tg(L)4. compute all-pairs-shortest paths in Tg(L)5. report all events involved in a negative cost cycleEndStep 1 is carried out through a depth-�rst-search algorithm of the the hMSC of S. To constructthe temporal constraint graph of a sequence of bMSCs, step 3 extends the bMSC to temporalgraph translation of Section 5.1 in a straightforward way based on the following fact: the behaviorof M1 �M2 is equivalent to the behavior of the bMSCs obtained by glueing M2 after M1, with thetiming delays at the end of a process in M1 added to the timing delays of the same process at thebeginning of M2.Step 4 uses the Floyd-Warshall's algorithm on a mtraix representation of the temporal constraintgraph. In step 5 an event is in a cycle with a negative cost if its corresponding diagonal element inthe all-pairs-shortest-path matrix is negative.5.3 Process Divergence in Timed MSC Speci�cationsIn the presence of loops, an MSC speci�cation may su�er from process divergence: a systemexecution where a process sends messages an unbounded number of times ahead of the messagesbeing received [5]. An MSC speci�cation with a process divergence can be either unimplementableas it requires message queues with an in�nite size, or it can be implementable with discrepencies,e.g., unexpected deadlocks since message queues are �nite and messages must be dropped or over-written.In [5], we have syntactically characterized process divergence in untimed MSC speci�cations byexamining the communication patterns of its processes. Informally, we proved that an (untimed)MSC speci�cation su�ers from process divergence if and only if it has a loop where at least one ofits processes does not depend on, i.e., sends to but never receives directly or indirectly from anotherconcurrent process in the loop.In the presence of timing constraints through timers and/or delay intervals, our syntactic char-acterization of process divergence can be extended as follows.Theorem 5.2 Given an MSC speci�cation S that has untimed process divergence through theprocesses P1; � � � ; Pn in a loop L which can jointly race ahead of the remaining processes. S hastimed process divergence i� either1. the sum of all minimal delays in the processes P1; � � � ; Pn within L is equal to zero; or14

GetPin

EndTrans

StartTrans

TryAgain

ProcessPin

GetBalance

RefuseWith

EndTransWithdraw

DispenseCash

GetOption

ProcessPin

RefusePin

ConfiscateCard

GetPin

RefusePin

EndTrans

Figure 8: High-level MSC for the ATM example2. the minimum of all maximum delays of the processes receiving messages from P1; � � � ; Pnincluding delays on the received messages is equal to 1.Proof: See Appendix A6 ATM ExampleTo illustrate our timing analysis, Figure 8 shows the hMSC and Figure 9 shows the referenced basicMSCs of an MSC speci�cation describing an automatic teller machine (ATM) system. The ATMsystem consists of three components: potential customers that are represented by the User process,the ATM controller which is represented by the ATM process, and a host bank that is representedby the Bank process. Each one of the bMSCs represents a scenario or `use-case' of the system, andthe hMSC graph speci�es a successor relationship between the scenarios.Initially, the ATM controller waits to receive a message that signals a customer has inserted theirbank card. Once this message is received, the system then behaves in two possible ways: either theATM controller receives a request to cancel the transaction within (0; 4) seconds (bMSC EndTrans),or the ATM receives the customer's pin number within (5; 60) seconds (bMSC ProcessPin), relativeto the time the message Card was received. Note that since these timing constraint relates twoevents in two basic MSCs, GetPin and either EndTrans in the �rst case or ProcessPin in thesecond case, we had to insert an arti�cial delay of [0; 0] at the end of the ATM process in the bMSCGetPin. 15

PROCESSING

ENTER_PIN T1

User ATM Bank

msc

User

REQ_PIN

ATM Bank

msc StartTrans

User

CARD

ATM Bank

GetPin

[0,0]

msc EndTrans

User ATM Bank

RETURN_CARD

CANCEL

User ATM Bank

msc ProcessPin

VERIFY

(5,60)

msc TryAgain

User Bank

RETURN_CARD

TIMEOUT_MSG

ABORT

ATM

[2,3)

msc GetOption

User ATM Bank

VALID

OPTION

User ATM Bank

INVALID

msc RefusePin

INV_PIN_MSG

msc Withdraw

APPROVE_AMT

WITHDRAWAL

REQ_AMOUNT

ENT_AMOUNT

[0,0]

[0,T1]

msc GetBalance

User ATM Bank

STATEMENT
REQ_BALANCE

BALANCE
PRINT_STMT

[3,5)OPTION
[0,0] OPTION

REQ_BALANCE
BALANCE[0,T1]

PRINT_RECORD

msc DispenseCash
User ATM Bank

AMT_APPROVED

[3,5)

[B1,B2][Q1,Q2]

GIVE_MONEY

msc RefuseWith

User ATM Bank

NOT_APPROVED

NOT_POSSIBLE

OPTION
[Q1,Q2]

[W1,W2]

msc ConfiscateCard

User ATM Bank

TAKE_CARD_MSG

[0,4]

[2,3)

[2,3)

[W1,W2]

T1

T1 T1 T1

T1

T1

Figure 9: Basic MSCs in the ATM exampleIf the ATM receives a request to cancel the transaction (bMSC EndTrans), it returns thecustomer's card and takes between [2; 3) seconds to update its display after which the system returnsto its initial state as described by the bMSC StartTrans. If the ATM receives the customer's pinnumber, it sends a request to the bank to validate the pin number, signals the customer to wait asit is processing the request, and then waits for a reply from the bank. For performance reasons, theATM constrains communication with the bank to take no longer than T1 seconds. In this case, thetiming constraints are describe via the the timer T1 in the bMSC ProcessPin. The next behaviorof the system is described as follows:� In the bMSC TryAgain, the ATM times-out on its wait for a validation reply from the bank. Ittherefore signals the customer to retry later, signals the bank to abort the validation request,returns the customer's card, and then takes between [2; 3) seconds to update its display. Afterthis scenario, the system returns to its initial state.� In the bMSC RefusePin, the ATM receives an invalid reply from the bank within the deadline.It resets the timer T1, signals the customer that the entered pin is invalid, and tries to get anew pin. In this MSC speci�cation, the customer tries to enter a valid pin at most twice, afterwhich the ATM con�scates the customer's card{ see the path from the bMSC RefusePin toConfiscateCard in Figure 8.� In the bMSC GetOption, the ATM receives a valid reply from the bank within the deadline.It therefore resets the timer T1, and signals the user a list of options. From this point on,the customer can make one or more withdraws (bMSC Withdraw), request one or more time16

their account balance bMSC GetBalance), or end the transaction (bMSC EndTrans).The customer expects a withdraw request to be processed (either successfully as in the bMSCDispenseCash, or unsuccessfully as in the bMSC RefuseWith) within [W1;W2] seconds rel-ative to the time they enter an amount. In addition, a customer takes [Q1; Q2] seconds todecide whether to make another transaction while the ATM has their card. This is describedby the combination of two delays: at the end the bMSCs DispenseCash, RefuseWith andGetBalance, the customer process delays the [Q1; Q2] seconds; and at the beginning of thebMSCs Withdraw and bMSC GetBalance, the customer must not delay to start{the [0; 0]before the �rst send message.At the end of the bMSC DispenseCash, the ATM takes [B1; B2] seconds to update its localrecords. In the bMSCs DispenseCash and GetBalance, the ATM takes [3; 5) seconds to printa receipt after receiving the balance information from the bank.In addition to the above timing constraints, we assume that each ATM-customer communication(and vice versa) has a delay of [0; 2) seconds, and that each vertical line without a time delay hasa default delay of [0;1). For simplicity, these delays are not represented in Figure 9.Timing AnalysisIt is easy to check that our MSC speci�cation of the ATM satis�es the syntactic conditions ofTheorem 5.1. We used our analysis tool [3] to verify automatically the timing consistency of thespeci�cation for T1 = 10 and various values of W1;W2; Q1; Q2; B1; and B2. Table 2 shows sampleresults. For the hMSC of Figure 8, the tool generated 43 in�nite closed sequential componentswhose temporal graphs were then examined for cycles with a negative cost.Table 2: Sample results of timing consistency analysisCase # (1) (2) (3) (4) (5) (6)[W1;W2] [0;1) [0; 3] [0; 4] [0; 4] [0; 4] [0; 4][Q1; Q2] [0;1) [0;1) [0;1) [0; 2] [0; 2] [0; 1][B1; B2] [0;1) [0;1) [0;1) [5; 6] [4; 6] [4; 6]Consistent? yes no yes no yes noFor the case (1) in Table 2, the user does not impose any timing constraints on the system.This case in fact makes any value acceptable for the remaining variables. In the case (2), theuser expects the ATM to process their withdraw request with [0; 3] seconds; such a deadline leadsto timing inconsistencies in all sequential components that contain the bMSC Withdraw followedby either DispenseCash or RefuseWith. In all of the timining inconsistent components, the tooldetects the event send ENT AMOUNT as being in a cycle with a negative cost of �1. The cost reportgave us the hint to increase the upper-bound of the delay to 4 and run the veri�cation again.As shown in the case (3), the speci�cation becomes timing consistent. Note that for a value ofW2 < 4, the values of the remaining variables are irrelevant, since they a�ect paths that extendthe problematic paths.In the cases (4) and (5), we examine the a�ects of the book-keeping time [B1; B2] the ATMrequires after dispensing cash (bMSC DispenseCash). In this case, we only needed to vary the17

lower bound B1 since all of the bMSCs composed after DispenseCash require a delay of [0;1)before the �rst event that can be processes by the ATM; hence, for the ATM, the combined delaysbetween the last event in DispenseCash and any next event is [B1;1). In the case (4), the timinginconsistent components all share the bMSC DispenseCash followed by either the bMSC Withdrawor GetBalance. Case (6) proves the dependency between the minimum book-keeping delay B1and the delays between consecutive customer requests while the ATM holds the customer's card,interval [Q1; Q2]. In the above cases, when a timing inconsistency is detected, the cost of the cycleand the involved events reported by the tool helped us to focus on which variables to adjust bywhich amount.7 ConclusionWe have reviewed four proposed extensions of MSCs to express timing constraints and availableanalysis techniques for timing consistency of basic MSCs. The Z.120 standard timers together withdelay intervals as suggested in [15, 2] can describe timing constraints for events within a process andevents that are directly related, i.e., via the control edge or message arrow. From our experience,labeling all control edges and message arrows in a bMSC can however result in a cumbersomegraph; a default assumption about the delays alleviates the problem. In addition, to express moregeneral timing constraints, e.g., to relate events within di�erent basic MSCs or processes, theseextensions must be further augmented either by directly annotating the events within an MSCspeci�cation (e.g., through time markers [7, 6]), or by complementing an MSC speci�cation withtemporal predicates (e.g., boolean expressions [7, 6]) that describe the timing constraints. Toprovide an expressive notation, these alternatives could sacri�ce the simple, graphical syntax ofbMSCs and may result in more expensive analysis techniques.Currently timing analysis is restricted to basic MSCs extended with timers and delay intervals.Following the analysis techniques of temporal constraint networks [9], timing consistency of a basicMSC is reduced to checking cycles with negative cost in a directed graph, which can be automatedin O(n3) where n is the number of events in the basic MSC [15, 2]. To extend this analysis toMSC speci�cations with iterations and branchings, we highlighted syntactic issues that the Z.120standard syntax must address. Based on speci�c syntactic recommendations, we then extended theanalysis of timing consistency of bMSCs with timers and delays to the analysis of MSC speci�cationswith branchings and iterations. To deal with branchings, we adopted a local interpretation of thetiming constraints. To handle iterations, we showed that, under a reasonable assumption, a loopin the MSC speci�cation can be analyzed by analyzing a simple extension of it, hence eliminatingthe need to unfold the loop to examine its timing consistency.Acknowledgements. This work was supported by ObjecTime Limited and the InformationTechnology Research Centre (ITRC).References[1] B. Algayres, Y. Lejeune, F. Hugonment, and F. Hantz. The AVALON project: a validationenvironment for SDL/MSC descriptions. In O. Faergemand and A. Sarma, editors, Proceedings18

of the 6th SDL Forum, SDL'93: Using Objects, October 1993.[2] R. Alur, G. J. Holzmann, and D. Peled. An analyzer for message sequence charts. In T. Mar-garia and B. Ste�en, editors, Tools and Algorithms for the Construction and Analysis of Sys-tems, Lecture Notes in Computer Science, Vol. 1055, pages 35{48. Springer Verlag, 1996.[3] H. Ben-Abdallah and S. Leue. Architecture of a requirements and design tool based on messagesequence charts. Technical Report 96-13, Department of Electrical & Computer Engineering,University of Waterloo, October 1996. 18 p.[4] H. Ben-Abdallah and S. Leue. Syntactic analysis of Message Sequence Chart speci�cations.Tech Report 96-12, Department of Electrical and Computer Engineering, University of Water-loo, November 1996.[5] H. Ben-Abdallah and S. Leue. Syntactic detection of process divergence and non-local choicein message sequence charts. In E. Brinksma, editor, Tools and Algorithms for the Construc-tion and Analysis of Systems, Lecture Notes in Computer Science, Vol. 1217, pages 259{274.Springer Verlag, 1997.[6] G. Booch, I. Jacobson, and J. Rumbaugh. Uni�ed Modeling Language for Object-OrientedDevelopment (Version 0.91 Addendum). RATIONAL Software Corporation, September 1996.[7] G. Booch and J. Rumbaugh. The Uni�ed Method: User Guide Version 0.8. RATIONALSoftware Corporation, October 1995.[8] R.J.A. Buhr and C.S. Casselman. Use Case Maps for Object-Oriented Systems. Prentice Hall,1996.[9] R. Dechter, I. Meiri, and J. Pearl. Temporal constraint networks. Arti�cial Intelligence,49:61{95, 1991.[10] H. Ichikawa, M. Itoh, J. Kato, A. Takura, and M. Shibasaki. SDE: Incremental speci�cationand development of communications software. IEEE Transactions on Computers, 40(4):553{561, Apr. 1991.[11] ITU-T. Recommendation Z.120, Annex B: Algebraic Semantics of Message Sequence Charts.ITU - Telecommunication Standardization Sector, Geneva, Switzerland, 1995.[12] ITU-T. Recommendation Z.120. ITU - Telecommunication Standardization Sector, Geneva,Switzerland, May 1996. Review Draft Version.[13] I. Jacobson and et al. Object-Oriented Software Engineering - A Use-case Driven Approach.Addison-Wesley, 1992.[14] P. B. Ladkin and S. Leue. Interpreting Message Flow Graphs. Formal Aspects of Computing,7(5):473{509, 1995.[15] N. Meng-Siew. Reasoning with timing constraints in Message Sequence Charts. Master'sthesis, University of Stirling, Scotland, U.K., August 1993.19

[16] C.H. Papadimitriou and K. Steiglitz. Combinatorial Optimization: Algorithms and Complexity.Prentice-Hall, Englewood Cli�s, NJ, 1982.[17] B. Selic, G. Gullekson, and P.T. Ward. Real-Time Object-Oriented Modelling. John Wiley &Sons, Inc., 1994.A ProofsProof of Lemma 5.1. We prove that if the sequential composition of two basic MSCs is timingconsistent, then each basic MSC is also timing consistent. Let the MSC speci�cation S =M1 �M2be timing consistent. We show that M1 and M2 are also timing consistent.Recall that the semantics of the sequential composition of M1 followed by M2 is such that thebehavior is the same as glueing the two basic MSCs into one basic MSC. Thus, the temporal graphof S, Tg(S) is obtained from Tg(M1) and Tg(M2) such that:� all nodes except for the bottom nodes of Tg(M1), and all nodes except for the top nodes ofTg(M2) are in Tg(S);� the bottom nodes of Tg(M2) are the bottom nodes of Tg(S);� the additional edges to match timer events inM1 either have target nodes from Tg(M2) (whenthe timers are matched inM2), or now have target nodes as the the bottom nodes of Tg(M2).In other words, there is a corresponding from the nodes and edges of Tg(S) to the edges and nodesof Tg(M1) and Tg(M2). Now, assume that M1 is not timing consistent. Then, Tg(M1) has a cyclewith a negative cost. This can result from two cases:1. the edges in the cycle do not include the additional edges to match timers inM1. This impliesthat the same cycle exists in Tg(S);2. the edges in the cycle include the additional edges to match timers in M1. Assume the cyclehas the edge (nik; nil) which has been added to match a time in process Pi of M1. If thetimer has not been matched in M2, then then same edges are present in Tg(S) connected tothe bottom nodes of Tg(S).If the timer has been matched in M2, then the same edges are present in Tg(S) connectedto some intermediate nodes in Tg(S) that correspond to nodes in Tg(M2). Using graphisomorphism in both cases we can conclude that an isomorphic cycle is present in Tg(S);Each of the above two cases implies that Tg(S) has a cycle with a negative cost; that is, S is timinginconsitent: a contradiction. The caseM2 is timing inconsistent is proven to lead to a contradictionin a similar way.Proof of Lemma 5.2. Let the MSC speci�cation S = M1 � M2 � M1 be timing consistentand assume that M1 �M2 has matched timer events. We show that the MSC speci�cation S0 =M1�M2�M1�M2 is also timing consistent. Assume thatM1�M2�M1�M2 is not timing consistent.Thus, its temporal graph has a cycle with a negative cost. We distinguish four di�erent cases how20

this negative cost cycle can be added, and show a contradiction to the assuption that S is timingconsistent.Case 1: The cycle involves only nodes that correspond to events in the second occurrence of M2.This cycle will have an isomorphic cycle in the temporal graph portion that corresponds tothe �rst occurrence of M1. Using Lemma 5.1 and the timing consistency of S, this leads toa contradiction.Case 2: The cycle involves only nodes that correspond to events in the second occurrence of M1and M2. Using reasoning similar to Case 1, this leads to a contradiction.Case 3: The cycle involves nodes that correspond to events from all of the basic MSCs. Let thecycle be r; � � � ; x; v; � � � ; w; y; � � � ; s; � � � ; rwhere \: : :" means possibly passing through other nodes and the speci�ed nodes are de�nedas follows (see Figure 10):

Temporal graph for M2

Temporal graph for M1

Temporal graph for M1.M2

c1
c2

Total path costs:

>= - (c1+c2)

>= -c1
>= c1

r s

x

w

y

vFigure 10: Paths inside the temporal graph of M1 �M2 �M1 �M2� r and s two nodes that correspond to events from the �rst occurrence ofM1 and/orM2;� x and y two nodes that correspond to the end events of the second occurrence of M1;� v and w two nodes that correspond to events of the second occurrence of M1. In thecorresponding temporal graphs they are immediate successors of x and y, respecitvely.Now, let c1 be the cost of the path (in the cycle) from y to x via the parts corresponding toM1,M2 and M1. (This path is marked with a solid line in Figure 10.) Let c2 be the accumulatedcost of the two edges (in the cycle) from x to v and from w to y. (These segments are markedwith thick line in Figure 10.) Thus, we have the path (in the cycle)w; y; � � � ; s; � � � ; r; � � � ; x; v21

which has a total cost of c1 + c2.Since M1 �M2 � M1 is timing consistent, then we have every path from x to y inside thetemporal graph of M1 �M2 �M1 has a cost greater than or equal to �c1. (Otherwise, we geta cycle from r; x; y; s back to r with a negative cost.) This also implies that any path from yto x within the second occurrence of M2 has a cost greater than or equal to c1. (Otherwise,we get a cycle with a negative cost within the second occurrence of M2 which, by graphisomorphism, makes M1 �M2 �M1 timing inconsistent.)Now, since M1 �M2 is timing consistent (by Lemma 5.1), we can therefore use graph isomor-phism to infer that the cost of any path from v to w within the second occurrence ofM2 musthave a cost greater than or equal to �(c1 + c2).Thus the cost of the cycle from r back to r is the sum of the costs of the following paths:y; � � � ; s; � � � ; r; � � � ; x followed by x; v followed by v; � � � ; w, and then w; y. This is greater thanor equal to (c1 + c2) + �(c1 + c2) = 0which is a contradiction.Proof of Theorem 5.1. Let S = (B;> [I [?; suc; ref) be a timing inconsistent MSC speci�-cation that satis�es conditions 1 and 2 of the Theorem. By De�nition 5.1, this implies that thereis a path n1; n2; � � � ; nk in S that starts from the start node and is timing inconsistent.Case 1: The timing inconsistent path is simple. It is straightforward to prove that there is asequential component in S that extends the path and which is timing inconsistent. Thiscontradicts the assumption from condition 1 of the Theorem.Case 2: The timing inconsistent path is not simple, i.e., it is obtained through loops in S. Withoutloss of generality, assume that the path is obtained through one loop. That is, the timinginconstent path is of the form:n1; n2; � � � ; (ni; ni+1; � � � ; nj)w; nj+1; � � � ; nkfor an integer constant w � 2, (nj ; ni) 2 suc and distinct n's. This can be the result of thefollowing three cases.Case 2.1: The path n1; n2; � � � ; (ni; ni+1; � � � ; nj)w is timing inconsistent for w � 2 and distinctn's. We use induction on w to generalize Lemma 5.2 and a reasoning similar to the proof ofLemma 5.2 to conclude that the simple path n1; n2; � � � ; (ni; ni+1; � � � ; nj) is timing inconsis-tent, which contradicts the Theorem hypothesis that n1; n2; � � � ; (ni; ni+1; � � � ; nj)ni is timingconsistent.Case 2.2: The path n1; n2; � � � ; (ni; ni+1; � � � ; nj)w is timing consistent for a constant w � 2, butthe path n1; n2; � � � ; (ni; ni+1; � � � ; nj)wni+1; � � � ; nk is timing inconsistent. Thus, there is acycle in the corresponding temporal graph with a negative cost. This can be the result of twocases: 22

Case 2.2.a: The cycle involves only nodes that correspond to events in the wth occurrence ofni; ni+1; � � � ; nj and ni+1; � � � ; nk. Using graph isomorphism (and the assumption that thetimer events are matched in the loop), this implies that an isomorphic cycle exists in thetemporal graph of the simple path n1; n2; � � � ; (ni; ni+1; � � � ; nj)ni+1; � � � ; nk; this reduces toCase 1 where we also get a contradiction.Case 2.2.b: The cycle involves nodes that correspond to events from more than just the wthoccurrence of ni; ni+1; � � � ; nj and ni+1; � � � ; nk. In this case, we use a reasoning similar to theproof of Lemma 5.2, to show that the cycle actually must have a positive cost. (In this case,for Figure 10, the nodes r and s are anywhere in the portion of the graph that corresponds ton1; n2; � � � ; (ni; ni+1; � � � ; nj)w�1; the nodes x and y are the last nodes from the wth occurrenceof ni; ni+1; � � � ; nj ; and the nodes v and w are the �rst nodes from nj+1; � � � ; nk.)The above case analysis can be carried out by induction on the number of loops in the pathto prove that in each case the path is in fact timing consistent.Proof of Theorem 5.2. Let S be an MSC speci�cation with untimed process divergence throughthe processes P1; � � � ; Pn in a loop L which can jointly race ahead of the remaining processes.If part: For the case 1., it is clear that the behavior of S via the loop L is zeno; that is, allevents within the processes P1; � � � ; Pn can be executed in�nitely many times within zero timeunits. In particular, those events sent from P1; � � � ; Pn to other processes can be executedan unbounded number of times in zero time units. Also, in the untimed model these eventscan be sent an unbounded number of times ahead of their corresponding receive events, abehavior that is also acceptable in the timed model. Thus, S also has process divergence inthe timed model.For the case 2., we have the timed behavior of the processes receiving messages from P1; � � � ; Pncan be delayed an 1 time units. Thus, the untimed behavior where the processes P1; � � � ; Pnsend an unbounded number of times messages without being received can be time-stamppedto a timed behavioral for S, without violating any timing constraints in the processes whichreceive events from P1; � � � ; Pn. This establishes that S has a process divergence in the timedmodel.Only part: Assume that in the untimed model, the processes P1; � � � ; Pn within a loop L in Sare involved in a process divergence. Thus, there is an in�nite (untimed) execution of S suchthat these processes send messages an unbounded number of times ahead of the reception ofthese messages; let this sequence be ss1s1s1 � � �.Now, assume that neither case 1 nor 2 of the Theorem holds. Thus, let the sum of of theminimal delays within P1; � � � ; Pn be min 6= 0 and let the minimal of the maxmimum delayswithin the processes receiving messages from P1; � � � ; Pn including messages received fromthese latter be max <1.For the execution ss1s1s1 � � � to be acceptable in the timed model, we must have a timingassignment that satis�es the timing constraints within: 1) the processes P1; � � � ; Pn, and2) those processes which receive events from P1; � � � ; Pn. Assume there is such a timing23

assignment. Thus, the timing assignment for the divergent behavior ss1s1s1 � � � must be suchthat the duration of the in�nite string s1s1s1 � � � is strictly less than max < 1. Since thestring is in�nite, this implies that the duration of s1s1s1 � � � is zero, which contradicts theassumption that min 6= 0.

24

	Text4: Technical Report 97-04, Department of Electrical and Computer Engineering, University of Waterloo
	Text5: Konstanzer Online-Publikations-System (KOPS)
URL: http://www.ub.uni-konstanz.de/kops/volltexte/2008/6511/
URN: http://nbn-resolving.de/urn:nbn:de:bsz:352-opus-65113

