RESEARCH ARTICLE

Long-time asymptotics for a coupled thermoelastic plate–membrane system

Bienvenido Barraza Martínez¹ | Robert Denk² | Jonathan González Ospino¹ | Jairo Hernández Monzón¹ | Sophia Rau²

¹Departamento de Matemáticas y Estadística, Universidad del Norte, Barranquilla, Colombia
²Fachbereich Mathematik und Statistik, Universität Konstanz, Konstanz, Germany

Correspondence
Robert Denk, Fachbereich Mathematik und Statistik, Universität Konstanz, Germany.
Email: robert.denk@uni-konstanz.de

Communicated by: J. Muñoz Rivera

Funding information
Minciencias (formerly Colciencias), Grant/Award Number: 121571250194

In this paper, we consider a transmission problem for a system of a thermoelastic plate with (or without) rotational inertia term coupled with a membrane with different variants of damping for the plate and/or the membrane. We prove well-posedness of the problem and higher regularity of the solution and study the asymptotic behavior of the solution, depending on the damping and on the presence of the rotational term.

KEYWORDS
exponential stability, polynomial stability, thermoelastic plate-membrane system, transmission problem

MSC CLASSIFICATION
35M33; 35B35; 35B40; 74K15; 74K20

1 | INTRODUCTION

Transmission problems appear frequently in different fields of physics and engineering, for example, in solid mechanics of composite materials, in processes of electromagnetism on ferromagnetic materials with dielectric constants, in the vibration of membranes, and in coupled plates (see Borsuk¹). Structures compound by a finite number of interconnected flexible elements, such as beams, plates, shells, membranes, and combinations of them were studied in different settings in Ammari and Nicaise,² Balmès and Germès,³ Denk and Kammerlander,⁴ Kleinmann and Martin,⁵ Lagnese and Leugering⁶, Leissa,⁷ Muñoz Rivera and Naso,⁸ and Roy et al.⁹

The classical linear model of thermoelastic plates due to Kirchhoff is given by

\[
\begin{align*}
\rho_1 u_{tt} - \gamma \Delta u_{tt} + \beta_1 \Delta^2 u + \mu \Delta \theta & = 0 \text{ in } \Omega_1 \times (0, \infty), \\
\rho_0 \theta_t - \beta_0 \Delta \theta - \mu \Delta u_t & = 0 \text{ in } \Omega_1 \times (0, \infty),
\end{align*}
\]

where \(\rho_0, \rho_1, \beta_0, \beta_1,\) and \(\mu\) are positive constants and \(\gamma \geq 0\). Here, \(\Omega_1 \subset \mathbb{R}^2\) is the region occupied by the middle surface of the plate, \(u\) represents the transverse displacements of the points on the middle surface of the plate, and \(\theta\) is the difference of temperature on the plate with respect to a reference temperature. For the physical model and the deduction of the these equations, see Lagnese and Lions.¹⁰
In the present paper, we study the situation where the thermoelastic plate in Ω_1 is coupled with an elastic membrane in the region Ω_2. To fix the geometric situation of the problem, we consider two non-empty, open, connected, and bounded subsets Ω and Ω_2 of \mathbb{R}^2, with boundary of class C^4 such that $\overline{\Omega_2} \subset \Omega$. We denote $\Omega_1 := \Omega \setminus \overline{\Omega_2}$, $\Gamma := \partial \Omega$ and $I := \partial \Omega_2$. Note that $\partial \Omega_1 = \Gamma \cup I$. The plate–membrane system of interest is composed of a thermoelastic plate in Ω_1 and a membrane, occupying in equilibrium the region Ω_2, as shown in Figure 1.

Denoting by $u(x, t), v(x, t)$, the vertical displacements of the points on the middle surface of the plate and on the membrane with coordinates x at time t, respectively, and by $\theta(x, t)$, the temperature difference on the plate, the mathematical model for the structure is given by the equations

$$\rho_1 u_{tt} - \gamma \Delta u_{tt} + \beta_1 \Delta^2 u - \rho \Delta u_t + \mu \Delta \theta = 0 \text{ in } \Omega_1 \times (0, \infty),$$ \hspace{1cm} (1)

$$\rho_0 \theta_t - \beta_0 \Delta \theta - \mu \Delta u_t = 0 \text{ in } \Omega_1 \times (0, \infty),$$ \hspace{1cm} (2)

$$\rho_2 v_{tt} - \beta_2 \Delta v + \mu v_t = 0 \text{ in } \Omega_2 \times (0, \infty),$$ \hspace{1cm} (3)

where $\rho_i, \beta_i (i = 0, 1, 2)$ and μ are positive constants depending on the properties of the materials and γ, ρ, β and m are non-negative constants. The coefficient $\gamma > 0$ represents the rotational inertia of the filaments of the plate and is proportional to the square of the plate thickness. Consequently, it is usual to consider this thickness very small (the case $\gamma = 0$ corresponds to a thin plate). The coefficient $m \geq 0$ describes the damping (or the absence of damping) for the wave equation (3), whereas ρ in (1) describes a structural damping on the plate. We will also include the situation when thermal effects for the plate are not taken into account by setting $\mu = 0$ in (1) and omitting (2).

We will assume that the plate is clamped at the exterior boundary Γ, namely,

$$u = \frac{\partial u}{\partial v} = 0 \text{ on } \Gamma \times (0, \infty),$$ \hspace{1cm} (4)

where v represents the outward pointing unit normal vector to the boundary of Ω_1 and, consequently, $-v$ is the corresponding outward unit normal vector to the boundary of Ω_2.

Due to the lack of thermal effects in the membrane, we will assume that the difference of temperature in the interface is zero. We will also assume that the plate satisfies Newton's cooling law. This leads to the boundary conditions

$$\theta = 0 \text{ on } I \times (0, \infty) \text{ and } \frac{\partial \theta}{\partial v} + \kappa \theta = 0 \text{ on } \Gamma \times (0, \infty),$$ \hspace{1cm} (5)

for some constant $\kappa > 0$.

In addition, we consider the following transmission conditions on the interface:

$$u = v, \frac{\partial u}{\partial v} = 0 \text{ on } I \times (0, \infty),$$ \hspace{1cm} (6)

$$\beta_1 \frac{\partial \Delta u}{\partial v} + \beta_2 \frac{\partial v}{\partial v} + \mu \frac{\partial \theta}{\partial v} = 0 \text{ on } I \times (0, \infty),$$ \hspace{1cm} (7)

and the initial conditions

$$u(\cdot, 0) = u_0, \ v(\cdot, 0) = v_0, \ \theta(\cdot, 0) = \theta_0,$$

$$u_t(\cdot, 0) = u_1, \ \nu_t(\cdot, 0) = v_1.$$ \hspace{1cm} (8)
In (6), the condition \(u = v \) on \(I \) is necessary for the continuity of the solution, and the condition \(\partial u / \partial v = 0 \) on \(I \) has the following interpretation: the transversal force caused by the tension and the one originated by the shear stress between the plate and the membrane cancel each other, which forces the horizontal displacements on the interface to be zero (compare with Hassine\(^1\)). The aim of the present paper is to study well-posedness, regularity, and asymptotic behavior of the solution of (1)–(8), in dependence on the parameters \(m, \rho, \gamma, \) and \(\mu \).

For the case \(\gamma = 0 \), we refer to Ammari and Nicaise,\(^2\) Hassine,\(^11\) Barraza Martínez et al,\(^12\) Hernández Monzón,\(^13\) and Liu and Su\(^14\) where structures formed by a plate and a membrane were studied. In Hernández Monzón,\(^13\) the author models a system composed by an elastic thin plate coupled with an elastic membrane and shows existence and uniqueness of weak solutions. In Liu and Su,\(^14\) the authors study undamped plate–membrane systems, where the plate and the membrane are two layers occupying the same region in the plane. In Ammari and Nicaise,\(^2\) a coupled system of a wave equation and a plate equation with damping on the boundary without thermal effects is studied. Hassine\(^11\) studies a transmission problem with the configuration presented in Figure 1, but with the plate being surrounded by the membrane. In Barraza Martínez et al,\(^12\) the plate is isothermal. Most of these references study some kind of stability for the solution, but only a few of them deal with regularity.

Regarding the rotational inertia term (\(\gamma > 0 \)), we mention Avalos and Lasiecka,\(^15\) Chueshov and Lasiecka,\(^16\) Dell’Oro et al,\(^17\) Fernández Sare et al,\(^18\) Lasiecka et al,\(^19\) Lasiecka and Triggiani,\(^20\) Muñoz Rivera and Portillo Oquendo,\(^21\) and Muñoz Rivera and Vega\(^22\). From these, only in Muñoz Rivera and Portillo Oquendo,\(^21\) a transmission problem is analyzed, and it is of the thermoelastic plate–plate type. There seem to be few results for the structure (1)–(8), even for the case \(\gamma = 0 \).

The principal results of this work state the existence and uniqueness of the solution of problem (1)–(8) and its continuous dependence on the data (i.e., the well-posedness). It is also proved that the solution for the case \(\gamma \geq 0 \) (i.e., with or without rotational inertia term) and \(m \geq 0 \) (i.e., with or without damping over the membrane) has higher regularity. In particular, the boundary and transmission conditions hold in the strong sense of traces if the initial values are smooth enough. Furthermore, we study the asymptotic behavior of the solution in terms of the stability of the associated semigroup in different situations. For a damped membrane (\(m > 0 \)), we show that exponential stability holds if \(\rho > 0 \) (Theorem 4.1) or if \(\rho = \gamma = 0 \) (Theorem 4.4). For the undamped membrane (\(m = 0 \)), we have no exponential stability (Theorem 5.1) but polynomial stability (Theorem 5.2) under some geometric condition.

The paper is organized as follows: In Section 2, we define the basic spaces and operators and prove the generation of a \(C_0 \)-semigroup of contractions, which implies the well-posedness of problem (1)–(8). In Section 3, we show some spectral properties of the operator defined by the weak formulation of the transmission problem, and we also show the regularity of the solution using the theory of parameter-elliptic boundary value problems and some ideas from Barraza Martínez et al,\(^12\) where the authors study a plate–membrane transmission problem with \(\gamma = 0 \) and without thermal effect over the plate. In Section 4, we prove exponential stability for the damped membrane, whereas in Section 5, we study the undamped membrane.

In the following, the letter \(C \) stands for a generic constant which may vary in each time of appearance. We will also use the notation \(\chi_A \) for the characteristic function of the set \(A \), that is, \(\chi_A(x) = 1 \) for \(x \in A \) and \(\chi_A(x) = 0 \) else. If \(X \) and \(Y \) are Banach spaces, we write \(X \subset Y \) for the continuous embedding, that is, if \(X \) is a subset of \(Y \) and if \(\text{id} : X \to Y \) is continuous. The space of all bounded linear operators in \(H \) will be denoted by \(\mathcal{L}(H) \).

2 | WELL-POSEDNESS

Following the standard approach, we will formulate (1)–(8) as an abstract Cauchy problem and study the associated semigroup. We define \(w = (w_j)_{j=1,...,5} := (u, u, \theta, v, v_t)^T \) and write (1)–(3), with the initial conditions (8), formally as a first order system

\[
M(D)\partial_t w(t) - A(D)w(t) = 0 \quad (t > 0), \quad w(0) = w_0\tag{9}
\]

with the diagonal matrix

\[
M(D) := \begin{pmatrix}
1 & \rho_1 - \rho \Delta & \rho_0 \\
\rho_1 - \rho \Delta & \rho_0 & 1 \\
\rho_0 & 1 & \rho_2
\end{pmatrix}
\]
and with
\[
A(D) := \begin{pmatrix}
0 & 1 & 0 & 0 & 0 \\
-\beta_1 \Delta^2 & \rho \Delta & -\mu \Delta & 0 & 0 \\
0 & \mu \Delta & \beta_0 \Delta & 0 & 0 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & \beta_2 \Delta & -m
\end{pmatrix}
\]
and \(w_0 = (u_0, u_1, \theta_0, v_0, v_1)^T\).

We start with the definition of the related operators in a weak Hilbert space setting. Here, we have to distinguish the case \(\gamma > 0\) (presence of rotational inertia term) from the case \(\gamma = 0\). For \(\gamma > 0\), the Hilbert space \(H_\gamma\) is defined as the space of all complex-valued functions
\[
w = (w_1, \ldots, w_5)^T \in H^2(\Omega_1) \times H^1(\Omega_1) \times L^2(\Omega_1) \times H^1(\Omega_2) \times L^2(\Omega_2)
\]
satisfying the boundary and transmission conditions
\[
w_1 = \partial_{\nu} w_1 = w_2 = 0 \text{ on } \Gamma,
\]
\[
w_1 = w_4, \partial_{\nu} w_1 = 0 \text{ on } I.
\]
For \(\gamma = 0\), we modify this definition by replacing the condition \(w_2 \in H^1(\Omega_1)\) by \(w_2 \in L^2(\Omega_1)\) and omitting the boundary condition \(w_2 = 0\) on \(\Gamma\). We endow the space \(H_\gamma\) for all \(\gamma \geq 0\) with a scalar product, which is adapted to the transmission problem. For \(w, \phi \in H_\gamma\), we set
\[
\langle w, \phi \rangle_{H_\gamma} := \beta_1 \langle \Delta w_1, \Delta \phi_1 \rangle_{L^2(\Omega_1)} + \rho_1 \langle w_2, \phi_2 \rangle_{L^2(\Omega_1)} + \gamma \langle \nabla w_2, \nabla \phi_2 \rangle_{L^2(\Omega_1)} + \rho_0 \langle w_3, \phi_3 \rangle_{L^2(\Omega_1)} + \rho_2 \langle \nabla w_4, \nabla \phi_4 \rangle_{L^2(\Omega_2)} + \rho_2 \langle w_5, \phi_5 \rangle_{L^2(\Omega_2)}.
\]

Lemma 2.1. For \(\gamma > 0\), the norm in \(H_\gamma\) is equivalent to the standard norm in \(H^2(\Omega_1) \times H^1(\Omega_1) \times L^2(\Omega_1) \times H^1(\Omega_2) \times L^2(\Omega_2)\). For \(\gamma = 0\), the norm in \(H_0\) is equivalent to the standard norm in \(H^2(\Omega_1) \times L^2(\Omega_1) \times H^1(\Omega_2) \times L^2(\Omega_2)\).

Proof. Let \(\gamma > 0\). Obviously, all terms in the norm \(\| \cdot \|_{H_\gamma}\) can be estimated by the standard norm in \(H := H^2(\Omega_1) \times H^1(\Omega_1) \times L^2(\Omega_1) \times H^1(\Omega_2) \times L^2(\Omega_2)\), so we only have to show \(\| \cdot \|_{H_\gamma} \geq C \| \cdot \|_H\).

Let \(w \in H_\gamma\). Then \(w_1\) is a solution of the boundary value problem
\[
\Delta u = f \text{ in } \Omega_1,
\]
\[
\partial_{\nu} u = 0 \text{ on } \partial \Omega_1
\]
with \(f := \Delta w_1 \in L^2(\Omega_1)\). By elliptic regularity (see Agranovich,23 Theorem 7.1.3) we get
\[
\|w_1\|_{H^2(\Omega_1)} \leq C \left(\|\Delta w_1\|_{L^2(\Omega_1)} + \|w_1\|_{L^2(\Omega_1)} \right) .
\] (10)

Due to the boundary and transmission conditions \(w_1 = 0\) on \(\Gamma\) and \(w_1 = w_4\) on \(I\), the function \(\chi_{\Omega_1} w_1 + \chi_{\Omega_2} w_4\) belongs to \(H^1_0(\Omega)\). With Poincaré’s inequality, we obtain
\[
\|w_1\|_{L^2(\Omega_1)}^2 + \|w_4\|_{L^2(\Omega_2)}^2 \leq C \left(\|\nabla w_1\|_{L^2(\Omega_1)}^2 + \|\nabla w_4\|_{L^2(\Omega_2)}^2 \right) .
\] (11)

As \(w_1 = 0\) on \(\Gamma\) and \(\partial_{\nu} w_1 = 0\) on \(\partial \Omega_1\), we can apply Poincaré’s inequality, integration by parts, and Young’s inequality to see that for every \(\epsilon > 0\) there exists a \(C_\epsilon > 0\) such that
\[
\|w_1\|_{L^2(\Omega_1)}^2 \leq C \|w_1\|_{L^2(\Omega_1)}^2 = -C \langle \Delta w_1, w_1 \rangle_{L^2(\Omega_1)} \leq \epsilon C \|w_1\|_{L^2(\Omega_1)}^2 + CC_\epsilon \|\Delta w_1\|_{L^2(\Omega_1)}^2,
\]
Choosing \(\epsilon \) with \(\epsilon C \leq 1/2 \), we can estimate \(\|w_1\|_{L^2(\Omega_1)} \leq C\|\Delta w_1\|_{L^2(\Omega_1)} \). Combining this with (11) and (10), we obtain

\[
\|w_1\|^2_{H^2(\Omega_1)} + \|w_4\|^2_{H^2(\Omega_2)} \leq C \left(\|\Delta w_1\|^2_{L^2(\Omega_1)} + \|\nabla w_4\|^2_{L^2(\Omega_2)} \right).
\]

By definition of the norms in \(H_r \) and the standard norm in \(H \), this yields \(\|w\|_H \leq C\|w\|_{H_r} \).

The same arguments show that also for \(\gamma = 0 \), the norm in the space \(H_0 \) is equivalent to the standard norm in \(H^2(\Omega_1) \times L^2(\Omega_1) \times L^2(\Omega_2) \times H^2(\Omega_2) \).

To formulate the transmission problem (9) in a weak setting, we formally apply the operator \(\beta_1 \Delta^2 \) to the first component and \(-\beta_2 \Delta \) to the fourth component. We obtain

\[
\tilde{M}(D)\partial_t w(t) - \tilde{A}(D)w(t) = 0 \quad (t > 0), \quad w(0) = w_0
\]

with

\[
\tilde{M}(D) := \begin{pmatrix}
\beta_1 \Delta^2 & \rho_1 - \gamma \Delta & \rho_0 & -\beta_2 \Delta \\
\rho_1 - \gamma \Delta & \rho_0 & -\beta_2 \Delta & \rho_2 \\
\rho_0 & -\beta_2 \Delta & \rho_0 & 0 \\
-\beta_2 \Delta & \rho_2 & 0 & 0
\end{pmatrix}
\]

and

\[
\tilde{A}(D) := \begin{pmatrix}
0 & \beta_1 \Delta^2 & 0 & 0 & 0 & 0 \\
-\beta_1 \Delta^2 & \rho_0 & -\mu \Delta & 0 & 0 \\
\rho_0 & -\mu \Delta & \rho_0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & -\beta_2 \Delta \\
0 & 0 & 0 & -\beta_2 \Delta & -m
\end{pmatrix}.
\]

In this way, the weak formulation is adapted to the definition of the Hilbert space \(H_r \) and to the boundary and transmission conditions. Let \(H_r' \) denote the antidual space of \(H_r \), that is, the space of all continuous conjugate linear functionals on \(H_r \). We define the operator \(\tilde{M} : H_r \to H_r' \) by

\[
\langle \tilde{M}w, \phi \rangle_{H_r' \times H_r} := \langle w, \phi \rangle_{H_r}(w, \phi \in H_r).
\]

To define the operator related to \(\tilde{A}(D) \) in a weak setting, we introduce the space

\[
H^{2.1} := \{(u, v)^T \in H^2(\Omega_1) \times H^2(\Omega_2) : u = \partial_\nu u = 0 \text{ on } \Gamma, u = v, \partial_\nu u = 0 \text{ on } I\}
\]

with inner product

\[
\langle (u, v), (u', v') \rangle_{H^{2.1}} := \beta_1 \langle \Delta u, \Delta u' \rangle_{L^2(\Omega_1)} + \beta_2 \langle \nabla v, \nabla v' \rangle_{L^2(\Omega_2)}.
\]

We have seen in the proof of Lemma 2.1 that this norm is equivalent to the standard norm in \(H^2(\Omega_1) \times H^2(\Omega_2) \). Note that in the definition of \(H_r \), we have \((w_1, w_4)^T \in H^{2.1} \). We define the subspace \(\mathcal{V} \subset H_r \) by

\[
\mathcal{V} := \{w \in H_r : (w_2, w_5)^T \in H^{2.1}, w_3 \in H^1(\Omega_1), w_3 = 0 \text{ on } I\}
\]

with inner product

\[
\langle w, \phi \rangle_{\mathcal{V}} := \langle (w_1, w_4), (\phi_1, \phi_4) \rangle_{H^{2.1}} + \langle (w_2, w_5), (\phi_2, \phi_5) \rangle_{H^{2.1}} + \beta_0 \langle \nabla w_3, \nabla \phi_3 \rangle_{L^2(\Omega_1)} + \beta_0 \langle \nabla w_3, \nabla \phi_3 \rangle_{L^2(\Gamma)}.
\]

Now we can define \(\mathcal{A} : \mathcal{V} \to \mathcal{V}' \) by

\[
\langle \mathcal{A}w, \phi \rangle_{\mathcal{V}' \times \mathcal{V}} := -\langle (w_1, w_4), (\phi_2, \phi_3) \rangle_{H^{2.1}} + \langle (w_2, w_5), (\phi_1, \phi_4) \rangle_{H^{2.1}} - \mu \langle w_3, \Delta \phi_2 \rangle_{L^2(\Omega_1)} + \mu \langle \Delta w_2, \phi_3 \rangle_{L^2(\Omega_1)} - \rho \langle \nabla w_2, \nabla \phi_2 \rangle_{L^2(\Omega_1)} - \beta_0 \langle \nabla w_3, \nabla \phi_3 \rangle_{L^2(\Omega_1)} - \beta_0 \langle \nabla w_3, \nabla \phi_3 \rangle_{L^2(\Gamma)} - m \langle w_5, \phi_5 \rangle_{L^2(\Omega_2)}
\]

for \(w, \phi \in \mathcal{V} \).
Remark 2.2. (a) The norm in \(V \) is equivalent to the standard norm in \(H^2(\Omega_1) \times H^2(\Omega_1) \times H^2(\Omega_2) \times H^2(\Omega_2) \). In fact, we have already seen that the norm in \(H^{2,1} \) is equivalent to the norm in \(H^2(\Omega_1) \times H^2(\Omega_2) \), and for the component \(w_3 \), we have \(\|w_3\|_{H^2(\Omega_1)} \leq C\|\nabla w_3\|_{L^2(\Omega_1)} \) by Poincaré’s inequality and \(\|w_3\|_{L^2(\Omega_1)} \leq \|w_3\|_{H^{2,1}(\Omega_1)} \) by trace results.

(b) From the definition, we immediately see that \(M \in \mathcal{L}(H_f, H'_f) \) and \(A \in \mathcal{L}(V, V') \). Moreover, \(M \) is defined as the scalar product in the Hilbert space \(H_f \) and therefore is an isometric isomorphism from \(H_f \) to \(H'_f \).

Based on Remark 2.2(b), we can define the \(H_f \)-realization of the transmission problem as the operator \(A : H_f \supset D(A) \to H_f \) by

\[
D(A) := \{ w \in V : Aw \in H'_f \}, \quad Aw := M^{-1}Aw.
\]

We consider the abstract Cauchy problem

\[
\partial_t w(t) - Aw(t) = 0 \quad (t > 0), \quad w(0) = w_0
\]

with \(w_0 := (u_0, u_1, \theta_0, v_0, v_1)^T \). The following remark shows that this Cauchy problem is in fact the weak formulation of the transmission problem (1)–(8).

Remark 2.3. (a) We have \(\Lambda w = \tilde{A}(D)w \) for all \(w \in D(A) \) and \(Mw = \tilde{M}(D)w \) for all \(w \in H_f \) in the sense of distributions. This follows immediately from the definitions of the operators and integration by parts, when we choose \(\phi \in \mathcal{D}(\Omega_1)^3 \times \mathcal{D}(\Omega_2)^3 \), where \(\mathcal{D}(\Omega_1) \) stands for the infinitely smooth functions with compact support in \(\Omega_1 \). Consequently, a function \(w \in C^1([0, \infty), D(A)) \) is a classical solution of (13) if and only if \(w \) satisfies (1)–(3) in the distributional sense.

(b) Let \(w \in D(A) \) be of the higher regularity \(w \in H^3(\Omega_1) \times H^3(\Omega_2) \times H^3(\Omega_2) \times H^3(\Omega_2) \). Then \(w \) satisfies the boundary and transmission conditions (4)–(7) in the strong sense, that is, as equality of the traces of the functions on \(\Gamma \) and \(I \), respectively.

To see this, we only have to show that the second equality in (5) and equality (7) holds, as the other conditions are already included in the definition of \(V \). Setting \(\phi = (0, 0, \phi_3, 0)^T \), we obtain by (a)

\[
\langle \Lambda w, \phi \rangle_{V \times V} = \langle \mu \Delta w_2 + \beta_0 \Delta w_3, \phi_3 \rangle_{L^2(\Omega_1)}.
\]

Comparing this with the definition of \(\Lambda \), we obtain, using integration by parts, that

\[
\int_{\Gamma} (\kappa w_3 + \partial_\nu w_3) \phi_3 \, dS = 0
\]

holds for all \(\phi_3 \in H^1(\Omega_1) \) with \(\phi_3 = 0 \) on \(I \). Therefore, \(\kappa w_3 + \partial_\nu w_3 = 0 \) holds on \(\Gamma \) in the strong sense, that is, as equality in the trace space \(H^{1/2}(\Gamma) \). In the same way, one can prove that (7) holds in the strong sense.

To show well-posedness, we will also need the following result.

Lemma 2.4. The space \(V \) is dense in \(H_f \), and therefore, we have the dense embeddings

\[
V \subset H_f \subset (L^2(\Omega_1))^3 \times (L^2(\Omega_2))^2 \subset H'_f \subset V'.
\]

Proof. (i) In a first step, we show that

\[
V(\Omega_1) := \{ \phi \in H^2(\Omega_1) : \phi = \partial_\nu \phi = 0 \text{ on } \Gamma, \partial_\nu \phi = 0 \text{ on } I \}
\]

is dense in \(H^1_{\Gamma}(\Omega_1) := \{ u \in H^1(\Omega_1) : u = 0 \text{ on } \Gamma \} \). For this, let \(u \in H^1_{\Gamma}(\Omega_1) \). We choose a function \(\tilde{\phi} \in C^\infty(\Omega_1) \) with \(\tilde{\phi} = 1 \) near \(I, \tilde{\phi} = 0 \) near \(\Gamma \), and \(0 \leq \tilde{\phi} \leq 1 \) in \(\Omega_1 \). We set \(\phi := \tilde{\phi}^2 \). Note that \((1 - \phi)u \in H^1_{\Gamma}(\Omega_1) \) and \(\tilde{\phi}u \in H^1(\Omega_1) \). As the test functions are dense in \(H^1_{\Gamma}(\Omega_1) \), there exists a sequence \((\phi_n^{(1)})_{n \in \mathbb{N}} \subset \mathcal{D}(\Omega_1) \) such that \(\phi_n^{(1)} \to (1 - \phi)u \) in \(H^1(\Omega_1) \) for \(n \to \infty \). Moreover, as the domain of the Neumann Laplacian

\[
D(\Delta_N) := \{ u \in H^2(\Omega_1) : \partial_\nu u = 0 \text{ on } \partial \Omega_1 \}
\]
is dense in $H^1(\Omega)$ (see Ouhabaz,24, Lemma 1.25) there exists a sequence $(\phi_n^{(2)})_{n \in \mathbb{N}} \subseteq D(\Delta \Omega)$ with $\phi_n^{(2)} \rightarrow \phi u$ in $H^1(\Omega)$. Now, setting $\phi_n^{(2)} := \tilde{\phi} \phi_n^{(2)} \in V(\Omega_1)$ for $n \in \mathbb{N}$, we get $\phi_n := \phi_n^{(1)} + \phi_n^{(2)} \rightarrow (1 - \phi) u + \tilde{\phi}^2 u = u$ in $H^1(\Omega_1)$.

(ii) Now we show that \mathcal{V} is dense in \mathcal{H}_1. Comparing the definitions of \mathcal{V} and \mathcal{H}_1, and noting that test functions are dense in L^2 spaces, we only have to consider the case $\gamma > 0$ and to show that the embedding

$$H^{2,1} \subset H^1_0(\Omega_1) \times L^2(\Omega_2)$$

is dense. Therefore, we fix $u \in H^1_0(\Omega_1), v \in L^2(\Omega_2)$, and $\varepsilon > 0$. Using step (i), we find a function $\phi_1 \in V(\Omega_1)$ with $\|u - \phi_1\|_{H^1(\Omega_1)} < \varepsilon / 2$. Now, let $\phi_3 \in H^1(\Omega_2)$ such that $\phi_1 \in \phi_3$ on I and choose $\phi_2, \phi_3 \subset \mathcal{D}(\Omega_2)$ with $\|\phi_1 - \phi_2\|_{L^2(\Omega_2)} < \varepsilon / 4$ and $\|v - \phi_3\|_{L^2(\Omega_2)} < \varepsilon / 4$. Then we obtain $(\phi_1, \phi_1 - \phi_2 + \phi_3) \in H^{2,1}$ and

$$\|(u, v) - (\phi_1, \phi_1 - \phi_2 + \phi_3)\|_{H^1(\Omega_1) \times L^2(\Omega_2)} < \varepsilon.$$

Note that the embedding $\mathcal{V} \subset \mathcal{H}_1$ is dense and injective, and the same holds for the embedding of \mathcal{H}_1 into $(L^2(\Omega_1))^3 \times (L^2(\Omega_2))^2$. Therefore, all embeddings stated in the lemma are dense.

Theorem 2.5. For all $\gamma, \rho, m \geq 0$, the operator A generates a C_0-semigroup $(S(t))_{t \geq 0}$ of contractions on \mathcal{H}_1. Therefore, for any $w_0 \in D(A)$, there exists a unique classical solution $w \in C^1([0, \infty), \mathcal{H}_1) \cap C([0, \infty), D(A))$ of (13).

Proof. Following a standard approach, we show that A is dissipative and $1 - A$ is surjective and apply the theorem of Lumer–Phillips.

Let $w \in D(A)$. As $\mathcal{M} : \mathcal{H}_1 \rightarrow \mathcal{H}_1'$ is defined by $\langle \mathcal{M}w, \phi \rangle_{\mathcal{H}_1' \times \mathcal{H}_1} = \langle w, \phi \rangle_{\mathcal{H}_1}$, we get

$$\langle Aw, w \rangle_{\mathcal{H}_1} = \langle \mathcal{M}^{-1} Aw, w \rangle_{\mathcal{H}_1} = \langle \mathcal{M}w, w \rangle_{\mathcal{H}_1'}.$$ \hspace{1cm} (14)

By the definition of \mathcal{M} in (12), we immediately obtain

$$\text{Re}(\mathcal{M}w, w)_{\mathcal{H}_1'} = -\rho \| \nabla w_3 \|^2_{L^2(\Omega_1)} - \beta_0 \| \nabla w_5 \|^2_{L^2(\Omega_2)} - \beta_0 \| w_3 \|^2_{L^2(I)} - m \| w_5 \|^2_{L^2(\Omega_2)} \leq 0,$$

which shows that A is dissipative.

To show that $1 - A$ is surjective, it suffices by Remark 2.2 (b) to show that $\mathcal{M} - A : D(A) \rightarrow \mathcal{H}_1'$ is surjective. Let $f \in \mathcal{H}_1'$. We have to find $w \in D(A)$ such that

$$(\mathcal{M} - A)w = \left(\mathcal{M}(D) - A(D) \right) w = f$$ \hspace{1cm} (16)

holds in \mathcal{H}_1' (cf. Remark 2.3). From (16), we obtain

$$\beta_1 \Delta w_1 = \beta_1 \Delta^2 w_1 + f_1,$$
$$\beta_2 \Delta w_4 = \beta_2 \Delta w_5 - f_4$$ \hspace{1cm} (17)

as equality in $(H^{2,1})'$. Replacing this into (16), we get

$$\begin{pmatrix} \rho_1 + \beta_1 \Delta^2 - (\gamma + \rho) \Delta & \mu \Delta & 0 \\ -\mu \Delta & \rho_0 - \beta_0 \Delta & 0 \\ 0 & 0 & \rho_2 + m - \beta_2 \Delta \end{pmatrix} \begin{pmatrix} w_2 \\ w_3 \\ w_5 \end{pmatrix} = \begin{pmatrix} f_2 - f_1 \\ f_3 \\ f_5 - f_4 \end{pmatrix} := \tilde{f}. $$ \hspace{1cm} (18)

We will solve this weakly with respect to the dual pairing $\mathcal{V}_0' \times \mathcal{V}_0$, where \mathcal{V}_0 is the projection of \mathcal{V} to the components (w_2, w_3, w_5), that is,

$$\mathcal{V}_0 := \{(w_2, w_3, w_5)\cong (0, w_2, w_3, 0, w_5) \in \mathcal{V} \}.$$
So we define the sesquilinear form \(b : \mathcal{V}_0 \times \mathcal{V}_0 \to \mathbb{C} \) by
\[
b((w_2, w_3, w_5), (\phi_2, \phi_3, \phi_5)) := \rho_1 \langle w_2, \phi_2 \rangle_{L^2(\Omega)} + \beta_1 \langle \Delta w_2, \Delta \phi_2 \rangle_{L^2(\Omega)} + (\gamma + \rho)\langle \nabla w_2, \nabla \phi_2 \rangle_{L^2(\Omega)} - \mu\langle \nabla w_2, \nabla \phi_3 \rangle_{L^2(\Omega)} + \mu \langle \nabla w_3, \nabla \phi_2 \rangle_{L^2(\Omega)} + \rho_0 \langle w_3, \phi_3 \rangle_{L^2(\Omega)} + \beta_0 \langle \nabla w_3, \nabla \phi_3 \rangle_{L^2(\Omega)} + (\rho_2 + m)\langle w_5, \phi_5 \rangle_{L^2(\Omega)} + \beta_2 \langle \nabla w_5, \nabla \phi_3 \rangle_{L^2(\Omega)}.
\]

Obviously, \(b \) is continuous, and a computation of \(b((w_2, w_3, w_5), (w_2, w_3, w_5)) \) shows that
\[
\text{Re} \ b((w_2, w_3, w_5), (w_2, w_3, w_5)) \geq C\|(w_2, w_3, w_5)\|_{\mathcal{V}_0}^2.
\]

As the right-hand side of (18) belongs to \(\mathcal{V}_0' \), we may apply the theorem of Lax–Milgram to obtain a unique solution \((w_2, w_3, w_5) \in \mathcal{V}_0\) of
\[
b((w_2, w_3, w_5), (\phi_2, \phi_3, \phi_5)) = \tilde{f}((\phi_2, \phi_3, \phi_5)).
\]

By definition of \(\mathcal{V}_0 \), we have \((w_2, w_5) \in \mathcal{H}^{2,1}\). Because
\[
\begin{pmatrix} \beta_1 \Delta^2 & 0 \\ 0 & -\beta_2 \Delta \end{pmatrix} : \mathcal{H}^{2,1} \to (\mathcal{H}^{2,1})'
\]
is an isomorphism due to Remark 2.2 (b), the right-hand side of (17) belongs to \((\mathcal{H}^{2,1})' \). By the same reason, there exists a unique \((w_1, w_4) \in \mathcal{H}^{2,1}\) such that (17) holds in \((\mathcal{H}^{2,1})' \).

Altogether, we have found \(w \in \mathcal{V} \) such that (16) holds in \(\mathcal{V}' \), that is,
\[
((\tilde{M} - \tilde{A})w)(\phi) = f(\phi) \quad (\phi \in \mathcal{V}').
\]

As the right-hand side belongs to \(\mathcal{H}' \) and \(\mathcal{V} \) is dense in \(\mathcal{H} \), by Lemma 2.4, also the left-hand side belongs to \(\mathcal{H}' \), and (16) holds in \(\mathcal{H}' \). In particular, \(\tilde{A} w = \tilde{M} w - f \in \mathcal{H}' \), which shows that \(w \in D(A) \). Therefore, \(1 - A \) is surjective, and an application of the theorem of Lumer–Phillips finishes the proof.

\[\square\]

3 Spectral Properties and Regularity of the Solution

In this section, we study properties of the spectrum of the operator \(A \) defined above and show that functions in its domain have higher regularity. We denote by \(\sigma(A) \) and \(\rho(A) \) the spectrum and the resolvent set of \(A \), respectively. Note that due to Theorem 2.5, the operator \(A \) is closed and densely defined.

Proposition 3.1. For all \(\gamma, m, \rho \geq 0 \), we have \(0 \in \rho(A) \).

Proof. We show that \(A : D(A) \to \mathcal{H}_{\gamma} \) is bijective. Let \(f \in \mathcal{H}_{\gamma} \). Then \(\tilde{A} w = f \) is equivalent to
\[
\langle \tilde{A} w, \phi \rangle_{\mathcal{H}'_{\gamma} \times \mathcal{H}_{\gamma}} = \langle \tilde{M} f, \phi \rangle_{\mathcal{H}'_{\gamma} \times \mathcal{H}_{\gamma}} \quad (\phi \in \mathcal{H}_{\gamma}).
\]

Choosing \(\phi = (\phi_1, 0, 0, 0, 0)^T \) and \(\phi = (0, 0, 0, \phi_4, 0)^T \), we obtain \(\beta_1 \Delta^2 w_2 = \beta_1 \Delta^2 f_1 \) and \(-\beta_2 \Delta w_5 = -\beta_2 \Delta f_4 \), respectively, which has the unique solution \(w_2 := f_1 \) and \(w_5 := f_4 \) (see (19)). Now choosing \(\phi = (0, 0, \phi_3, 0, 0) \), we obtain
\[
\rho_0 \langle \nabla w_3, \nabla \phi_3 \rangle_{L^2(\Omega)} + \beta_0 \langle \nabla w_3, \nabla \phi_3 \rangle_{L^2(\Gamma)} = \langle \mu \Delta f_1 - \rho_0 f_3, \phi_3 \rangle_{L^2(\Omega)}
\]
for all \(\phi_3 \in \mathcal{H}^1(\Omega_1) \) with \(\phi_3 = 0 \) on \(I \). As \(\mu \Delta f_1 - \rho_0 f_3 \in L^2(\Omega_1) \), the right-hand side is a continuous conjugate linear functional of \(\phi_3 \). Let us denote the left-hand side of (21) by \(b(w_3, \phi_3) \). Then \(b \) is a continuous sesquilinear form in the Hilbert space \(\{w_3 \in \mathcal{H}^1(\Omega_1) : w_3 = 0 \text{ on } I\} \). From Remark 2.2 (a), we know that the left-hand side is equivalent to the \(\mathcal{H}^1(\Omega_1) \)-norm, which shows that \(b(\cdot, \cdot) \) is coercive. Now an application of the theorem of Lax–Milgram yields the existence of a unique solution \(w_3 \) of (21).
For the remaining components \(w_1\) and \(w_4\), we choose \(\phi = (0, \phi_2, 0, \phi_5)^T\) in (20) and obtain

\[
-\langle (w_1, w_4), (\phi_2, \phi_5) \rangle_{H^2_1} = \mu \langle w_1, \Delta \phi_2 \rangle_{L^2(\Omega)} + \rho \langle \nabla w_1, \nabla \phi_5 \rangle_{L^2(\Omega)} + m \langle w_4, \phi_5 \rangle_{L^2(\Omega)} + p \langle f_2, \phi_2 \rangle_{L^2(\Omega)} + \gamma \langle \nabla f_2, \nabla \phi_2 \rangle_{L^2(\Omega)} + \rho_2 \langle f_5, \phi_5 \rangle_{L^2(\Omega)}
\]

(22)

Because of \((\phi_2, \phi_5) \in H^{2,1}\), the conjugate linear functional \(R : H^{2,1} \rightarrow \mathbb{C}\) is well-defined and continuous. By the theorem of Riesz, there exists a unique solution \((w_1, w_4) \in H^{2,1}\) of (22). Setting \(w := (w_1, \ldots, w_5)^T\), we obtain \(w \in \mathcal{V}\) (note here that \((w_2, w_5)^T = (f_1, f_4)^T \in H^{2,1}\) and \(w\) is a solution of (20). In particular, \(\Delta w \in H^1_0\) by construction, so we have \(w \in D(A)\), and \(A\) is surjective. As the solution \(w\) constructed above is unique, we also obtain the injectivity of \(A\). As \(A : D(A) \rightarrow H^1\) is bijective and closed, we get \(0 \in \rho(A)\). □

For the proof of higher regularity of the solution \(w\), we need a priori estimates from the theory of parameter-elliptic boundary value problems as developed, for example, in Agranovich and Vishik. We recall the main definitions and results (see Agranovich, Section 7.1). Let \((A(D), B_1(D), \ldots, B_m(D))\) be a boundary value problem in some domain \(\Omega \subset \mathbb{R}^n\) with \(A(D) = \sum_{|\alpha| \leq 2m} a_{\alpha} \partial^\alpha\) and \(B_j(D) = \sum_{|\beta| \leq m_j} b_{J_{\beta}} \partial^\beta\), where \(a_{\alpha}, b_{J_{\beta}} \in \mathbb{C}\) and \(m_j < 2m\). Then the principal symbols of \(A\) and \(B_j\) are defined by \(A(i\xi) := \sum_{|\alpha| = 2m} a_{\alpha}(i\xi)^\alpha\) and \(B_j(i\xi) := \sum_{|\beta| = m_j} b_{J_{\beta}}(i\xi)^\beta\), respectively. The operator \(A(D)\) is called parameter-elliptic if its principal symbol satisfies

\[
\lambda - A(i\xi) \neq 0 \quad (\text{Re} \lambda \geq 0, \xi \in \mathbb{R}^n, (\lambda, \xi) \neq 0).
\]

The boundary value problem is \((A, B_1, \ldots, B_m)\) is called parameter-elliptic if \(A(D)\) is parameter-elliptic and if the following Shapiro–Lopatinskii condition holds:

Let \(x_0 \in \partial \Omega\), and rewrite the boundary value problem in the coordinate system associated with \(x_0\), which is obtained from the original one by a rotation after which the positive \(x_n\)-axis has the direction of the interior normal vector to \(\partial \Omega\) at \(x_0\). Then the trivial solution \(w = 0\) is the only stable solution of the ordinary differential equation on the half-line

\[
(\lambda - A(i\eta', \partial_n)) w(x_n) = 0 \quad (x_n \in (0, \infty)),
\]

\[
B_j(i\eta', \partial_n) w(0) = 0 \quad (j = 1, \ldots, m)
\]

for all \(\eta' \in \mathbb{R}^{n-1}\) and \(\text{Re} \lambda \geq 0\) with \((\eta', \lambda) \neq 0\).

In Agranovich and Vishik, Theorem 5.1, the following result was shown:

Theorem 3.2. Let \((A, B_1, \ldots, B_m)\) be parameter-elliptic in \(\Omega\). Then for sufficiently large \(\lambda_0 > 0\), the boundary value problem

\[
(\lambda_0 - A(D)) u = f \quad \text{in} \quad \Omega,
\]

\[
B_j(D) u = g_j \quad \text{on} \quad \partial \Omega, \quad j = 1, \ldots, m,
\]

has a unique solution \(u \in H^{2m}(\Omega)\), and the a priori estimate

\[
\|u\|_{H^{2m}(\Omega)} \leq C \left(\|f\|_{L^2(\Omega)} + \sum_{j=1}^m \|g_j\|_{H^{2m-2,1/2}(\partial \Omega)} \right)
\]

holds with a constant \(C > 0\) which depends on \(\lambda_0\) but not on \(u\) or on the data.

Remark 3.3. (a) We will apply this also in the case \(\Omega = \Omega_1\), where \(\partial \Omega_1 = I \cup \Gamma\). It was shown in Barraza Martínez et al., Remark 4.4, that we may also consider different boundary operators (even with different orders) in \(I\) and \(\Gamma\), respectively. One obtains unique solvability and the above a priori estimate, where now the boundary norm for \(g_j\) is given as the sum \(\|g_j\|_{H^{2m-2,1/2}(I)} + \|g_j\|_{H^{2m-2,1/2}(\Gamma)}\) with \(m'\) and \(m''\) being the order of \(B_j\) on \(I\) and \(\Gamma\), respectively.

(b) It is well-known (see, e.g., Agranovich, Subsection 7.1) that the Laplace operator is parameter-elliptic with Dirichlet boundary condition and with Neumann boundary condition. As only the principal part is involved in the
definition of parameter ellipticity, also Δ with mixed boundary condition $\partial \nu u + \kappa u = 0$ is parameter-elliptic. The same holds for $-\Delta^2$ with boundary conditions $u = \partial \nu u = 0$ (Agranovich, Remark 7.1.2).

Lemma 3.4. The operator $A(D) := -\Delta^2$ in Ω_1, supplemented with the boundary operators $B_1(D)u := \partial \nu u$ and $B_2(D)u := \partial, \Delta u$, is parameter-elliptic.

Proof. Let $\lambda \in \mathbb{C}$, $\xi \in \mathbb{R}^2$ with $\text{Re} \lambda \geq 0$ and $(\lambda, \xi) \neq 0$. Because of $\lambda - A(\xi \lambda) = \lambda + |\xi|^2 \neq 0$, the operator $-\Delta^2$ is parameter-elliptic. For the Shapiro–Lopatinskii condition, we have to solve the ordinary differential equation

\[
(\lambda + (\partial_x^2 - \xi_1^2)^2)w(x_2) = 0 \quad (x_2 > 0),
\]

\[
\partial_{x_2}w(0) = 0,
\]

\[
\partial_{x_2}^2w(0) - \xi_1^2 \partial_{x_2}w(0) = 0.
\]

Note that by (24), we can replace (25) by $\partial_{x_2}^3w(0) = 0$. Let $\tau_{1,2} = -\sqrt{1 + \lambda}$ be the two roots of the polynomial $\lambda - A(\xi \lambda)$ with negative real part. For $\lambda
eq 0$, we have $\tau_1 \neq \tau_2$, and therefore, every stable solution of (23) has the form $w(x_2) = c_1 e^{i \xi x_2} + c_2 e^{\xi x_2}$. Inserting this into the initial conditions, we obtain

\[
\begin{pmatrix}
\tau_1 & \tau_2 \\
\tau_3 & \tau_3
\end{pmatrix}
\begin{pmatrix}
c_1 \\
c_2
\end{pmatrix} = 0.
\]

As the determinant of this matrix equals $\tau_1 \tau_2 (\tau_3^2 - \tau_1^2) \neq 0$, we get $c_1 = c_2 = 0$ and therefore $w = 0$.

If $\lambda = 0$, we have $\tau_1 = \tau_2 = -|\xi_1|$, and $w(x_2) = (c_1 + c_2 x_2) e^{i \xi x_2}$. Now the initial conditions yield

\[
\begin{pmatrix}
\tau_1 & 1 \\
\tau_3 & 3 \tau_3^2
\end{pmatrix}
\begin{pmatrix}
c_1 \\
c_2
\end{pmatrix} = 0,
\]

which implies $w = 0$ again. \qed

In the following, we will show that $D(A)$ is embedded into a tuple of Sobolev spaces of higher regularity. For the continuity of the embedding, we use the following observation.

Lemma 3.5. Let $A : H \supset D(A) \rightarrow H$ be a closed operator in the Hilbert space H and let V be a Hilbert space. If $D(A)$ is a subset of V, then we have the continuous embedding $D(A) \subset V$.

Proof. As A is closed, $D(A)$ with the graph norm is a Hilbert space. We show that $\text{id} : D(A) \rightarrow V \cap H$ is a closed operator. For this, let $(x_n)_{n \in \mathbb{N}} \subset D(A)$ be a sequence with $x_n \rightarrow x$ in $D(A)$ and $x_n \rightarrow y$ in $V \cap H$. Then we obtain $x_n \rightarrow x$ in H by the definition of the graph norm and also $x_n \rightarrow y$ in H by the definition of the norm in $V \cap H$. This yields $x = y$, and $\text{id} : D(A) \rightarrow V \cap H$ is closed, and, by the closed graph theorem, continuous. As the embedding $V \cap H \rightarrow V$ is continuous by the definition of the norms, we obtain the continuity of $\text{id} : D(A) \rightarrow V$. \qed

The elliptic regularity results above are the key for the strong solvability of the transmission problem, that is, for higher regularity of the weak solution.

Theorem 3.6. Let $\gamma, \rho, m \geq 0$. Then the following embeddings are continuous.

(i) $D(A) \subset H^2(\Omega_1) \times H^2(\Omega_1) \times H^2(\Omega_2) \times H^2(\Omega_2) \times H^1(\Omega_2)$,

(ii) $D(A^2) \subset H^4(\Omega_1) \times H^4(\Omega_1) \times H^4(\Omega_2) \times H^4(\Omega_2) \times H^2(\Omega_2)$,

(iii) $D(A) \subset H^4(\Omega_1) \times H^2(\Omega_1) \times H^4(\Omega_2) \times H^2(\Omega_2) \times H^1(\Omega_2)$ for $\gamma > 0$.

In consequence, if $w_0 \in D(A^2)$, then $w(t) := S(t)w_0$ ($t \geq 0$) is the unique solution of problem (1)–(8) and satisfies the boundary and transmission conditions in the strong sense of traces. In the case $\gamma = 0$, we get the same result even for $w_0 \in D(A)$.

Proof. (i) Let $w \in D(A)$ and $f := Aw$. First, we show $w_1 \in H^2(\Omega_1)$. As in (20), we get

\[
\langle Aw, \phi \rangle_{H_{\gamma} \times H_{\gamma}} = \langle Mf, \phi \rangle_{H_{\gamma} \times H_{\gamma}} \quad (\phi \in H_{\gamma}).
\]
As we already have seen in (21), for \(\phi_3 \in H^1(\Omega_1) \) with \(\phi_3 = 0 \) on \(I \), we have
\[
\langle g, \phi_3 \rangle_{L^2(\Omega_1)} = \langle \nabla w_3, \nabla \phi_3 \rangle_{L^2(\Omega_1)} + \langle \kappa w_3, \phi_3 \rangle_{L^2(I)},
\]
where \(g := 1/\beta_0 (\mu \Delta w_2 - \rho_0 f_3) \). By Theorem 3.2 and Remark 3.3, there exists some \(\lambda_0 > 0 \) such that the problem
\[
(\lambda_0 - \Delta) \overline{w}_3 = \lambda_0 w_3 + g \quad \text{in} \quad \Omega_1,
\]
\[
\partial_v \overline{w}_3 = -\kappa w_3 \quad \text{on} \quad \Gamma,
\]
\[
\overline{w}_3 = 0 \quad \text{on} \quad I
\]
has a unique solution \(\overline{w}_3 \in H^2(\Omega_1) \). Integration by parts shows that \(z := \overline{w}_3 - w_3 \) satisfies
\[
0 = \langle (\lambda_0 - \Delta) \overline{w}_3 - \lambda_0 w_3 - g, \phi_3 \rangle_{L^2(\Omega_1)} = \lambda_0 \langle z, \phi_3 \rangle_{L^2(\Omega_1)} + \langle \nabla z, \nabla \phi_3 \rangle_{L^2(\Omega_1)}
\]
for all \(\phi_3 \in H^1(\Omega_1) \) with \(\phi_3 = 0 \) on \(I \). Choosing \(\phi_3 = z \), we get \(w_3 = \overline{w}_3 \in H^2(\Omega_1) \).

Now, we prove \(w_4 \in H^2(\Omega_2) \). We choose \(\phi = (0, 0, 0, 0, \phi_3) \) with \(\phi_5 \in H^1_0(\Omega_2) \) in (26). As in (22), we obtain
\[
\langle \nabla w_4, \nabla \phi_5 \rangle_{L^2(\Omega_2)} = \langle \tilde{g}, \phi_5 \rangle_{L^2(\Omega_2)},
\]
where \(\tilde{g} := -1/\beta_2 (m w_5 + \rho_2 f_5) \). By Theorem 3.2 and Remark 3.3 (b), there exists a unique \(\overline{w}_4 \in H^2(\Omega_2) \) such that
\[
-\Delta \overline{w}_4 = \tilde{g} \quad \text{in} \quad \Omega_2
\]
\[
\overline{w}_4 = w_1 \quad \text{on} \quad I.
\]
Therefore, \(z := \overline{w}_4 - w_4 \in H^1_0(\Omega_2) \) fulfills
\[
0 = \langle -\Delta \overline{w}_4 - \tilde{g}, \phi_3 \rangle_{L^2(\Omega_2)} = \langle \nabla z, \nabla \phi_3 \rangle_{L^2(\Omega_2)}
\]
for all \(\phi_5 \in H^1_0(\Omega_2) \). By choosing \(\phi_5 = z \), we obtain \(w_4 = \overline{w}_4 \in H^2(\Omega_2) \).

(ii) Now, let \(w \in D(A^2) \). We show \(w_1 \in H^4(\Omega_1) \). In (26), we can choose \(\phi = (0, \phi_2, 0, 0, 0) \) for all \(\phi_2 \in H^2(\Omega_1) \) with \(\phi_2 = \partial_v \phi_2 = 0 \) on \(\Gamma \) and \(\partial_v \phi_2 = 0 \) on \(I \). Integration by parts yields to
\[
\langle \Delta w_1, \Delta \phi_2 \rangle_{L^2(\Omega_1)} = \frac{1}{\beta_1} \left(-\mu \langle w_3, \Delta \phi_2 \rangle_{L^2(\Omega_1)} - \langle \nabla (\rho w_2 + \gamma f_2), \nabla \phi_2 \rangle_{L^2(\Omega_1)} - \rho_1 \langle f_2, \phi_2 \rangle_{L^2(\Omega_1)} \right)
\]
\[
= \langle g^*, \phi_2 \rangle_{L^2(\Omega_1)} - \langle h, \phi_2 \rangle_{L^2(I)},
\]
where \(g^* := 1/\beta_1 (\Delta (-\mu w_3 + \rho w_2 + \gamma f_2) - \rho_1 f_2) \) and \(h := 1/\beta_1 (\Delta (-\mu w_3 + \rho w_2 + \gamma f_2) - \rho_1 f_2) \). By Theorem 3.2 and Lemma 3.4, there is a \(\lambda_0 > 0 \) such that there exists a unique solution \(\overline{w}_1 \in H^4(\Omega_1) \) of the boundary value problem
\[
(\lambda_0 + \Delta^2) \overline{w}_1 = \lambda_0 w_1 + g^* \quad \text{in} \quad \Omega_1,
\]
\[
\overline{w}_1 = \partial_v \overline{w}_1 = 0 \quad \text{on} \quad \Gamma,
\]
\[
\partial_v (\Delta \overline{w}_1) = h \quad \text{on} \quad I.
\]
Note that \(g^* \in L^2(\Omega_1) \) and \(h \in H^1(\Omega_1) \) since \(w \in D(A^2) \). Therefore, all boundary conditions hold in the trace sense. Using integration by parts, \(z := \overline{w}_1 - w_1 \) fulfills
\[
0 = \langle (\lambda_0 + \Delta^2) \overline{w}_1 - \lambda_0 w_1 - g^*, \phi_2 \rangle_{L^2(\Omega_1)} = \lambda_0 \langle z, \phi_2 \rangle_{L^2(\Omega_1)} + \langle \Delta z, \Delta \phi_2 \rangle_{L^2(\Omega_1)}
\]
for all \(\phi_2 \in H^2(\Omega_1) \) with \(\phi_2 = \partial_v \phi_2 = 0 \) on \(\Gamma \) and \(\partial_v \phi_2 = 0 \) on \(I \). By choosing \(\phi_2 = z \), we obtain \(w_1 = \overline{w}_1 \in H^4(\Omega_1) \).

(iii) Let \(\gamma = 0 \) and \(w \in D(A) \). Following the proof of (ii), we get \(w_1 \in H^4(\Omega_1) \).
Due to Lemma 3.5, all embeddings are continuous.

Remark 3.7. By the last proof, we see that the corresponding assertions of Theorem 3.6 hold true if the plate is isothermal.

Corollary 3.8. For all \(\gamma, \rho, m \geq 0 \), we have the continuous embedding

\[
D(A) \subset H^3(\Omega_1) \times H^2(\Omega_1) \times H^2(\Omega_2) \times H^1(\Omega_2).
\]

Proof. From Theorem 2.5, we know that \(\mathcal{A} : H_\gamma \supset D(A) \rightarrow H_\gamma \) is the generator of a \(C_0 \)-semigroup of contractions on \(H_\gamma \). So, \(-\mathcal{A} \) is an \(m \)-accretive operator (see Section 4.3 from Lunardi\(^{26} \)). By Corollary 3.8 and Corollary 4.37 from Lunardi\(^{26} \), we obtain \(D(A) = (H_\gamma, D(A^2))^{1,2} \). Due to Theorem 3.6, it holds

\[
D(A) \subset H^2(\Omega_1) \times H^2(\Omega_1) \times H^2(\Omega_2) \times H^1(\Omega_2),
\]

\[
D(A^2) \subset H^4(\Omega_1) \times H^2(\Omega_1) \times H^2(\Omega_2) \times H^1(\Omega_2).
\]

By Proposition 5.12 from Barraza Martínez et al.,\(^{27} \) we have

\[
D(A) \subset (H^2(\Omega_1), H^4(\Omega_1))^{1,2} \times H^2(\Omega_1) \times H^2(\Omega_2) \times H^1(\Omega_2).
\]

By Theorem 1 of Section 4.3.1. from Triebel,\(^{28} \) we get \((H^2(\Omega_1), H^4(\Omega_1))^{1,2} = H^3(\Omega_1) \).

The following result allows us to affirm that the spectrum \(\sigma(A) \) of \(\mathcal{A} \) coincides with its point spectrum \(\sigma_p(A) \).

Proposition 3.9. The operator \(A^{-1} : H_\gamma \rightarrow H_\gamma \) is compact.

Proof. By Corollary 3.8 and the Rellich–Kondrachov theorem, we have

\[
D(A) \subset H^3(\Omega_1) \times H^2(\Omega_1) \times H^2(\Omega_2) \times H^1(\Omega_2)
\]

\[
\subset H^2(\Omega_1) \times H^1(\Omega_1) \times L^2(\Omega_1) \times H^1(\Omega_2) \times L^2(\Omega_2).
\]

As \(H_\gamma \) is a closed subspace of \(H^2(\Omega_1) \times H^1(\Omega_1) \times L^2(\Omega_1) \times H^1(\Omega_2) \times L^2(\Omega_2) \), we get \(D(A) \subset H_\gamma \). Therefore, the identity operator \(\text{id} : D(A) \rightarrow H_\gamma \) is compact. Proposition 3.1 implies the continuity of the operator \(A^{-1} : H_\gamma \rightarrow D(A) \). In consequence, \(A^{-1} = \text{id} \circ A^{-1} : H_\gamma \rightarrow H_\gamma \) is a compact operator.

Proposition 3.10. If \(\gamma, \rho \geq 0 \) and \(m > 0 \), then \(i\mathbb{R} \subset \rho(A) \).

Proof. Let us suppose \(\gamma \geq 0 \) and \(m > 0 \). Since \(A^{-1} \) is compact, the spectrum of \(\mathcal{A} \) consists of eigenvalues only. Thus, we have to establish that there are no purely imaginary eigenvalues. Let \(0 \neq \lambda \in \mathbb{R} \) and \(w \in D(A) \) with \(\mathcal{A}w = i\lambda w \). By (14), we have

\[
\langle \lambda w, \phi \rangle_{H_\gamma^* \times H_\gamma} = i\lambda \langle w, \phi \rangle_{H_\gamma} \quad (\phi \in H_\gamma).
\]

Using Remark 2.3, we see that \(i\lambda w_1 = w_2 \) and \(i\lambda w_4 = w_5 \). Choosing \(\phi = w \) in (27), we obtain

\[
\lambda \text{Im} \langle \lambda w, w \rangle_{H_\gamma^* \times H_\gamma} = \lambda^2 \|w\|_{H_\gamma^*}^2,
\]

and

\[
0 = \text{Re} \langle \lambda w, w \rangle_{H_\gamma^* \times H_\gamma}
\]

\[
= -\rho \|\nabla w_2\|_{L^2(\Omega_1)}^2 - \beta_0 \|\nabla w_3\|_{L^2(\Omega_1)}^2 - \beta_0 k \|w_3\|_{L^2(\Gamma)}^2 - m \|w_5\|_{L^2(\Omega_2)}^2
\]

as in the proof of Theorem 2.5. For \(\rho > 0 \), we get \(w_2 = w_3 = w_5 = 0 \) due to (29) and Poincaré’s inequality. We conclude \(w = 0 \).
If $\rho = 0$, we have $w_3 = w_5 = 0$, and therefore, $w_4 = 0$, that is, $w = (w_1, w_2, 0, 0, 0)^T$. Equality (28) leads to

$$2\beta_1 \| \Delta w_2 \|_{L^2(\Omega_1)}^2 = \lambda \text{Im} \langle Aw, w \rangle_{H_y \times H_y}$$

$$= \beta_1 \| \Delta w_2 \|_{L^2(\Omega_1)}^2 + \lambda^2 \left(\rho_1 \| w_2 \|_{L^2(\Omega_1)}^2 + \gamma \| \nabla w_2 \|_{L^2(\Omega_1)}^2 \right);$$

therefore, we have

$$\beta_1 \| \Delta w_2 \|_{L^2(\Omega_1)}^2 = \lambda^2 \left(\rho_1 \| w_2 \|_{L^2(\Omega_1)}^2 + \gamma \| \nabla w_2 \|_{L^2(\Omega_1)}^2 \right). \quad (30)$$

Now, we choose $\phi = (0, 0, \phi_3, 0, 0) \in H_y$ in (27) and obtain $0 = \mu(\Delta w_2, \phi_3)_{L^2(\Omega_1)}$ for all $\phi_3 \in H^1(\Omega_1)$ with $\phi_3 = 0$ on I. In consequence, we get $\Delta w_2 = 0$. From (30), it follows that $w_2 = 0$. Finally, for any case of ρ, we have shown that $w = 0$.

Remark 3.8. (a) Proposition 3.10 also holds true if the plate is isothermal and $\rho > 0$. In the case $\rho = 0$, the above proof does not work in its present form in the isothermal case.

(b) We will see in the proof of Theorem 5.2 that $i\mathbb{R} \subset \rho(A)$ holds also for $m = 0$.

4 | EXPONENTIAL STABILITY IN THE CASE OF DAMPED MEMBRANE

In this section, we will prove the exponential stability of the solution of system (1)–(8) when the membrane is damped and when $\rho > 0$ or $\rho = \gamma = 0$.

Theorem 4.1. If $m > 0$ and $\rho > 0$, then for all $\gamma \geq 0$, the semigroup $(S(t))_{t \geq 0}$ generated by A is exponentially stable, that is, there exist constants $C \geq 1$ and $\delta > 0$ such that $\| S(t) \|_{L(H_y)} \leq Ce^{-\delta t}$ for all $t \geq 0$.

Proof. Let $\gamma \geq 0$, $m, \rho > 0$, and $\lambda \in \mathbb{R}$. For the proof, we use the characterization of exponential stability by Gearhart and Prüss (see Prüss29) which tells us that the semigroup is exponentially stable if $i\mathbb{R} \subset \rho(A)$, and there is a constant $C > 0$, which does not depend on $\lambda \in \mathbb{R}$, such that

$$\| (i\lambda - A)^{-1} \|_{L(H_y)} \leq C. \quad (31)$$

As $i\mathbb{R} \subset \rho(A)$ by Proposition 3.10, we have to show (31). To see this, let $w \in D(A)$, $\lambda \in \mathbb{R}$, and

$$(i\lambda - A)w = f. \quad (32)$$

To prove (31), it is sufficient to establish that there is a constant $C > 0$ such that for all $\varepsilon > 0$, there exists $C_\varepsilon > 0$ with

$$\| w \|_{H_y}^2 \leq C_\varepsilon \| w \|_{H_y} \| f \|_{H_y} + \varepsilon C \| w \|_{H_y}^2. \quad (33)$$

Multiplying the resolvent Equation (32) by w, we obtain

$$i\lambda \| w \|_{H_y}^2 - \langle Aw, w \rangle_{H_y} = \langle f, w \rangle_{H_y}.$$

In consequence,

$$-\text{Re} \langle Aw, w \rangle_{H_y} = \text{Re} \langle f, w \rangle_{H_y} \leq \| f \|_{H_y}.$$

As we have seen in the proof of Theorem 2.5, this means

$$\rho \| \nabla w_2 \|_{L^2(\Omega_1)}^2 + \beta_0 \| \nabla w_3 \|_{L^2(\Omega_1)}^2 + \beta_0 \kappa \| w_3 \|_{L^2(\Gamma)}^2 + m \| w_3 \|_{L^2(\Omega_3)}^2 \leq \| w \|_{H_y} \| f \|_{H_y}. \quad (34)$$

From Remark 2.2 and (32), it follows that

$$(i\lambda w_1 - w_2, i\lambda w_4 - w_5) = \langle f_1, f_4 \rangle,$$

$$\langle M(i\lambda w - f), \phi \rangle_{H_y \times H_y} = \langle i\lambda w, \phi \rangle_{H_y \times H_y}. \quad (35)$$
Choosing \(\phi = (0, w_1, 0, w_4) \), we get
\[
\rho_1(i\lambda w_2 - f_2, w_1)_{L^2(\Omega_1)} + \gamma(\nabla (i\lambda w_2 - f_2), \nabla w_1)_{L^2(\Omega_1)} + \rho_2(i\lambda w_5 - f_5, w_4)_{L^2(\Omega_2)} \\
= -\|(w_1, w_4)\|_{H^2}^2 - \mu\langle w_3, \Delta w_1 \rangle_{L^2(\Omega_1)} - \rho\langle \nabla w_2, \nabla w_1 \rangle_{L^2(\Omega_1)} - m\langle w_5, w_4 \rangle_{L^2(\Omega_2)}.
\]
Taking (35) into account, we get
\[
\rho_1(i\lambda w_2, w_1)_{L^2(\Omega_1)} + \gamma(i\lambda \nabla w_2, \nabla w_1)_{L^2(\Omega_1)} + \rho_2(i\lambda w_5, w_4)_{L^2(\Omega_2)} \\
= -\rho_1\|w_2\|_{L^2(\Omega_1)}^2 - \gamma\|\nabla w_1\|_{L^2(\Omega_1)}^2 - \rho_2\|w_5\|_{L^2(\Omega_2)}^2 - \rho_1\langle w_2, f_1 \rangle_{L^2(\Omega_1)} - \gamma\langle \nabla w_2, \nabla f_1 \rangle_{L^2(\Omega_1)} - \rho_2\langle w_5, f_4 \rangle_{L^2(\Omega_2)}.
\]
Using the last equality, Poincaré's inequality, and inequality (34), we obtain
\[
\|\langle w_1, w_4 \rangle\|_{H^2}^2 = \rho_1\|w_2\|_{L^2(\Omega_1)}^2 + \gamma\|\nabla w_1\|_{L^2(\Omega_1)}^2 + \rho_2\|w_5\|_{L^2(\Omega_2)}^2 \\
+ \rho_1\langle w_2, f_1 \rangle_{L^2(\Omega_1)} + \gamma\langle \nabla w_2, \nabla f_1 \rangle_{L^2(\Omega_1)} + \rho_2\langle w_5, f_4 \rangle_{L^2(\Omega_2)} \\
+ \rho_1\langle f_2, w_1 \rangle_{L^2(\Omega_1)} + \gamma\langle \nabla f_2, \nabla w_1 \rangle_{L^2(\Omega_1)} + \rho_2\langle f_3, w_4 \rangle_{L^2(\Omega_2)} \\
- \mu\langle w_3, \Delta w_1 \rangle_{L^2(\Omega_1)} - \rho\langle \nabla w_2, \nabla w_1 \rangle_{L^2(\Omega_1)} - m\langle w_5, w_4 \rangle_{L^2(\Omega_2)} \\
\leq C\|w\|_{H_\gamma} \|f\|_{H_\gamma} + \mu\|\langle w_3, \Delta w_1 \rangle_{L^2(\Omega_1)} + \rho\|\langle \nabla w_2, \nabla w_1 \rangle_{L^2(\Omega_1)} + m\|\langle w_5, w_4 \rangle_{L^2(\Omega_2)} \|.
\]
Now, we estimate the remaining terms on the right-hand side. Due to Young’s and Poincaré’s inequality, we have
\[
\left|\langle w_3, \Delta w_1 \rangle_{L^2(\Omega_1)}\right| \leq C_\varepsilon \|w_3\|_{L^2(\Omega_1)}^2 + \varepsilon \|\Delta w_1\|_{L^2(\Omega_1)}^2 \\
\leq C_\varepsilon \|w_3\|_{L^2(\Omega_1)}^2 + \varepsilon C \|w\|_{H_\gamma}^2 \\
\leq C_\varepsilon \|w\|_{H_\gamma} \|f\|_{H_\gamma} + \varepsilon C \|w\|_{H_\gamma}^2
\]
for all \(\varepsilon > 0 \). In the last step, we used again inequality (34). Similarly, we get
\[
\left|\langle \nabla w_2, \nabla w_1 \rangle_{L^2(\Omega_1)}\right| \leq C_\varepsilon \|w\|_{H_\gamma} \|f\|_{H_\gamma} + \varepsilon C \|w\|_{H_\gamma} \text{ and } \left|\langle w_5, w_4 \rangle_{L^2(\Omega_2)}\right| \leq C_\varepsilon \|w\|_{H_\gamma} \|f\|_{H_\gamma} + \varepsilon C \|w\|_{H_\gamma}^2
\]
for all \(\varepsilon > 0 \). Altogether, we have shown inequality (33). Therefore, the semigroup is exponentially stable.

Remark 4.2. Our plate–membrane system also has exponential stability when the plate is isothermal.

We will now show that the thermoelastic plate–membrane system without rotational inertia has exponential stability if the membrane is damped \(m > 0 \) even without structural damping \(\gamma = 0 \). Under this situation, the thermal effect on the plate is enough for exponential decay. For the proof of this result, the following lemma (Theorem 1.4.4 in Liu and Zheng[20]) will be useful.

Lemma 4.3. Let \(\Omega \subset \mathbb{R}^n \) be a bounded domain with \(C^1 \)-boundary. Then, for any function \(u \in H^1(\Omega) \), the following estimate holds:
\[
\|u\|_{L^2(\Omega)} \leq C\|u\|_{H^1(\Omega)}^{1/2} \|u\|_{L^2(\Omega)}^{1/2}.
\]
Below, we will also apply this lemma to \(\partial_t u, \Delta u \), and \(\partial_t \Delta u \) with \(u \) being sufficiently smooth.

Theorem 4.4. If \(\gamma = 0, \rho = 0, \) and \(m > 0 \), then the semigroup \((S(t))_{t \geq 0} \) generated by the operator \(A \) is exponentially stable.

Proof. Again we use the Gearhart–Prüss criterion, so we study the resolvent in \(H_\gamma \) (note \(\gamma = 0 \)) on the imaginary axis. From Proposition 3.10, we have \(\mathbb{iR} \subset \rho(A) \). Let us suppose (31) is not true. Then, there exists a sequence \((\lambda_n)_{n \in \mathbb{N}} \subset \mathbb{R} \)
and a sequence \((w^n)_{n \in \mathbb{N}} \subset D(A)\) with \(\|w^n\|_{H_0} = 1\) such that

\[
\|(i \lambda_n - A)w^n\|_{H_0} \to 0 \quad (n \to \infty). \tag{36}
\]

As the resolvent is holomorphic and therefore bounded on compact subsets of the imaginary axis, we see that the sequence \((\lambda_n)_{n \in \mathbb{N}}\) is unbounded, so we may assume \(\lim_{n \to \infty} |\lambda_n| = \infty\). For \(f^n := (i \lambda_n - A)w^n\), we obtain

\[
i \lambda_n w^n_1 - w^n_2 = f^n_1, \tag{37}
\]

\[
i \lambda_n \rho_1 w^n_2 + \beta_1 \Delta^2 w^n_1 + \mu \Delta w^n_3 = \rho_1 f^n_2, \tag{38}
\]

\[
i \lambda_n \rho_0 w^n_3 - \mu \Delta w^n_2 - \beta_0 \Delta w^n_3 = \rho_0 f^n_3, \tag{39}
\]

\[
i \lambda_n w^n_4 - w^n_5 = f^n_4, \tag{40}
\]

\[
i \lambda_n \rho_2 w^n_5 - \beta_2 \Delta w^n_4 + mw^n_5 = \rho_2 f^n_5, \tag{41}
\]

and since

\[
\|(i \lambda_n - A)w^n\|_{H_0}^2 = \|f^n\|_{H_0}^2 = \beta_1 \|\Delta f^n_1\|_{L^2(\Omega_1)}^2 + \beta_2 \|\nabla f^n_4\|_{L^2(\Omega_2)}^2 + \rho_1 \|f^n_2\|_{L^2(\Omega_1)}^2 + \rho_2 \|f^n_5\|_{L^2(\Omega_2)}^2 + \rho_0 \|f^n_3\|_{L^2(\Omega_2)}^2, \tag{42}
\]

we obtain from (36)–(42)

\[
i \lambda_n \Delta w^n_1 - \Delta w^n_2 \to 0 \quad \text{in} \quad L^2(\Omega_1), \tag{43}
\]

\[
i \lambda_n \rho_1 w^n_2 + \beta_1 \Delta^2 w^n_1 + \mu \Delta w^n_3 \to 0 \quad \text{in} \quad L^2(\Omega_1), \tag{44}
\]

\[
i \lambda_n \rho_0 w^n_3 - \mu \Delta w^n_2 - \beta_0 \Delta w^n_3 \to 0 \quad \text{in} \quad L^2(\Omega_1), \tag{45}
\]

\[
i \lambda_n \nabla w^n_4 - \nabla w^n_5 \to 0 \quad \text{in} \quad L^2(\Omega_2), \tag{46}
\]

\[
i \lambda_n \rho_2 w^n_5 - \beta_2 \Delta w^n_4 + mw^n_5 \to 0 \quad \text{in} \quad L^2(\Omega_2), \tag{47}
\]

for \(n \to \infty\). From (15), it follows that

\[
\text{Re}\langle (i \lambda_n - A)w^n, w^n \rangle_{H_0} = \text{Re}\left[i \lambda_n \|w^n\|_{H_0}^2 - \langle Aw^n, w^n \rangle_{H_0} \right] = -\text{Re}\langle Aw^n, w^n \rangle_{H_0} = m \|w^n_2\|_{L^2(\Omega_1)}^2 + \beta_0 \|\nabla w^n_5\|_{L^2(\Omega_2)}^2 + \beta_0 \kappa \|w^n_3\|_{L^2(\Omega_2)}^2.
\]

As \((i \lambda_n - A)w^n\) converges to zero in \(H_0\) and \((w^n)_{n \in \mathbb{N}}\) is a bounded sequence in \(H_0\), the right-hand side of the last equality tends to zero. Therefore,

\[
w^n_2 \to 0 \quad \text{in} \quad L^2(\Omega_2) \quad \text{and} \quad w^n_5 \to 0 \quad \text{in} \quad H^1(\Omega_1). \tag{48}
\]

Note also that the sequences \((w^n_1)_{n \in \mathbb{N}} \subset H^2(\Omega_1), (w^n_2)_{n \in \mathbb{N}} \subset L^2(\Omega_1)\) and \((w^n_4)_{n \in \mathbb{N}} \subset H^1(\Omega_2)\) are bounded because of \(\|w^n\|_{H_0} = 1\). As \(f^n \to 0\) in \(H_0\), we obtain \(f^n_2 \to 0\) in \(H^2(\Omega_1)\).

The convergences (47), (45), and (48) imply

\[
\frac{1}{|\lambda_n|} \Delta w^n_4 \to 0 \quad \text{in} \quad L^2(\Omega_2), \tag{49}
\]

and

\[
\frac{\mu}{|\lambda_n|} \Delta w^n_2 + \frac{\beta_0}{|\lambda_n|} \Delta w^n_3 \to 0 \quad \text{in} \quad L^2(\Omega_1). \tag{50}
\]

As \((\nabla w^n_4)_{n \in \mathbb{N}}\) is a bounded sequence in \(L^2(\Omega_2)\), we get from (46) that

\[
\langle i \lambda_n \nabla w^n_4 - \nabla w^n_5, \nabla w^n_4 \rangle_{L^2(\Omega_2)} \to 0.
\]
Using integration by parts, we have

$$
\left\langle i \lambda_n \nabla w^n_4 - \nabla w^n_5, \nabla w^n_4 \right\rangle_{L^2(\Omega_2)} = i \lambda_n \left\| \nabla w^n_4 \right\|^2_{L^2(\Omega_2)} + \left\langle w^n_5, \Delta w^n_4 \right\rangle_{L^2(\Omega_2)} + \left\langle w^n_5, \partial w^n_4 \right\rangle_{L^2(I)},
$$

(51)

With the interpolation inequality, we obtain

$$
\left\| w^n_2 \right\|_{H^1(\Omega_2)} \leq C \left\| w^n_2 \right\|_{H^1(\Omega_1)}^{1/2} \left\| w^n_2 \right\|_{L^2(\Omega_2)}^{1/2}
= C \left\| i \lambda_n w^n_1 - \nu^n_1 \right\|_{H^1(\Omega_1)}^{1/2} \left\| w^n_2 \right\|_{L^2(\Omega_2)}^{1/2}
\leq C \left(| \lambda_n |^{1/2} \left\| w^n_1 \right\|_{H^1(\Omega_1)}^{1/2} + \left\| f^n_1 \right\|_{H^1(\Omega_1)}^{1/2} \right) \left\| w^n_2 \right\|_{L^2(\Omega_2)}^{1/2}
$$

and thus

$$
\left\| w^n_2 \right\|_{H^1(\Omega_2)} / | \lambda_n |^{1/2} \leq C \left(\left\| w^n_1 \right\|_{H^1(\Omega_1)}^{1/2} + \left\| f^n_1 \right\|_{H^1(\Omega_1)}^{1/2} \right) \left\| w^n_2 \right\|_{L^2(\Omega_2)}^{1/2} \leq C.
$$

(52)

By trace theorem, Lemma 4.3 applied to ∂, w^n_4 and $w^n_5 = w^n_2$ on I, we get

$$
\left\| \left\langle w^n_5, \partial, w^n_4 \right\rangle_{L^2(I)} \right\| \leq \left\| w^n_2 \right\|_{L^2(I)} \left\| \partial, w^n_4 \right\|_{L^2(I)}
\leq C \left\| w^n_2 \right\|_{H^1(\Omega_2)} \left\| w^n_4 \right\|_{H^1(\Omega_1)}^{1/2} \left\| w^n_2 \right\|_{H^1(\Omega_2)}^{1/2}
$$

and therefore

$$
\left\| \frac{1}{\lambda_n} \left\langle w^n_5, \partial, w^n_4 \right\rangle_{L^2(I)} \right\| \leq C \left(\frac{\left\| w^n_2 \right\|_{H^1(\Omega_2)} \left\| w^n_4 \right\|_{H^1(\Omega_2)}^{1/2}}{| \lambda_n |^{1/2}} \right) \left\| w^n_2 \right\|_{H^1(\Omega_2)}^{1/2}
\leq C \left(\frac{\left\| w^n_2 \right\|_{H^1(\Omega_2)}^{1/2}}{| \lambda_n |^{1/2}} \right).
$$

(53)

By (41), we have

$$
\Delta w^n_4 = \frac{1}{\beta_2} (i \lambda_n \rho_2 w^n_5 + mw^n_5 - \rho_2 f^n_5)
$$

and as $w^n_5 = w^n_2$ on I, elliptic regularity for the Dirichlet Laplacian (Theorem 3.2) implies

$$
\left\| w^n_4 \right\|_{H^1(\Omega_2)} \leq C \left(\left\| i \lambda_n \rho_2 w^n_5 + mw^n_5 - \rho_2 f^n_5 \right\|_{L^2(\Omega_2)} + \left\| w^n_2 \right\|_{H^1(\Omega_2)} \right)
\leq C \left(| \lambda_n | \left\| w^n_2 \right\|_{L^2(\Omega_2)} + \left\| w^n_2 \right\|_{L^2(\Omega_2)} + \left\| f^n_1 \right\|_{L^2(\Omega_2)} + \left\| w^n_1 \right\|_{H^1(\Omega_1)} \right).
$$

Thus,

$$
\left\| \frac{w^n_2}{| \lambda_n |} \right\|_{H^1(\Omega_2)} \leq C \left(\frac{\left\| w^n_2 \right\|_{L^2(\Omega_2)}}{| \lambda_n |} + \frac{\left\| w^n_2 \right\|_{L^2(\Omega_2)}}{| \lambda_n |} + \frac{\left\| f^n_1 \right\|_{L^2(\Omega_2)}}{| \lambda_n |} + \frac{\left\| w^n_1 \right\|_{H^1(\Omega_1)}}{| \lambda_n |} \right).
$$

Because of $\lim_{n \to \infty} \left\| w^n_2 \right\|_{L^2(\Omega_2)} = 0$, $\lim_{n \to \infty} \left\| f^n_1 \right\|_{L^2(\Omega_2)} = 0$ and $\left\| w^n_1 \right\|_{H^1(\Omega_1)} \leq C$, we get

$$
\frac{\left\| w^n_2 \right\|_{H^1(\Omega_2)}}{| \lambda_n |} \to 0 \ (n \to \infty).
$$

From (49), (51), (53), and (54), we obtain

$$
\nabla w^n_4 \to 0 \ \text{in} \ L^2(\Omega_2).
$$
Dividing (43) by $|\lambda_n|$, we have

$$\pm i \Delta w^n_1 - \frac{1}{|\lambda_n|} \Delta w^n_2 \to 0 \text{ in } L^2(\Omega_1)$$

and given that $\|\Delta w^n_1\|_{L^2(\Omega_1)} \leq C$, then $(1/|\lambda_n|\Delta w^n_2)_{n \in \mathbb{N}}$ is a bounded sequence in $L^2(\Omega_1)$. Consequently, the limit (50) implies that $(1/|\lambda_n|\Delta w^n_3)_{n \in \mathbb{N}}$ is a bounded sequence in $L^2(\Omega_1)$. From (44), it follows that

$$\pm i \rho_1 w^n_2 + \frac{\beta_1}{|\lambda_n|} \Delta^2 w^n_2 + \frac{\mu}{|\lambda_n|} \Delta w^n_3 \to 0 \text{ in } L^2(\Omega_1).$$

Hence,

$$\frac{1}{|\lambda_n|}\|\Delta^2 w^n_0\|_{L^2(\Omega_1)} \leq C.$$

Due to (38) and $w^n \in D(A)$ (see Theorem 3.6), w^n satisfies the problem

$$\begin{cases}
(\eta_0 + \Delta w^n_1 = \eta_0 w^n_1 + \beta_1^{-1} w^n \text{ in } \Omega_1, \\
w^n_1 = 0, \partial_n w^n_1 = 0 \text{ on } \Gamma, \\
\partial_n w^n_1 = 0, \partial_n (\Delta w^n_2) = \beta_1^{-1}(-\beta_2 \partial_n w^n_2 - \mu \partial_n w^n_3) \text{ on } I.
\end{cases}$$

with

$$z^n := \lambda_n^2 \rho_1 w^n_1 - \mu \Delta w^n_3 + i \lambda_n \rho_1 f^n_1 + \rho_1 f^n_2.$$

Then, Theorem 3.2 implies

$$\|w^n_1\|_{H^1(\Omega_1)} \leq C \left(\|\eta_0 w^n_1 + \Delta w^n_1\|_{L^2(\Omega_1)} + \|\beta_1^{-1}(-\beta_2 \partial_n w^n_2 - \mu \partial_n w^n_3)\|_{H^1(I)}\right)$$

$$\leq C \left(\|w^n_2\|_{L^2(\Omega_1)} + \|\Delta w^n_2\|_{L^2(\Omega_1)} + \|\partial_n w^n_2\|_{H^1(I)} + \|\partial_n w^n_3\|_{H^1(I)}\right).$$

By the trace theorem and (54), we have

$$\frac{\|\partial_n w^n_2\|_{H^1(I)}}{|\lambda_n|} \leq C \frac{1}{|\lambda_n|} \|w^n_3\|_{H^1(\Omega_2)} \to 0. \quad (58)$$

Note that w^n_3 is a solution to the following problem:

$$\begin{cases}
\Delta w^n_3 = \frac{\rho_2}{\rho_0} (i \lambda_n w^n_3 - \rho_0^{-1} \mu \Delta w^n_3 - f^n_3) =: h^n_3 \in L^2(\Omega_1), \\
\partial_n w^n_3 + \kappa w^n_3 = 0 \text{ on } \Gamma, \\
w^n_3 = 0 \text{ on } I.
\end{cases}$$

In consequence,

$$\|w^n_3\|_{H^1(\Omega_2)} \leq C \|h^n_3\|_{L^2(\Omega_1)} \leq C \left(\|w^n_3\|_{L^2(\Omega_1)} + |\lambda_n| \|w^n_3\|_{L^2(\Omega_1)}
+ |\lambda_n| \|\Delta w^n_3\|_{L^2(\Omega_1)} + \|\Delta f^n_1\|_{L^2(\Omega_1)} + \|f^n_3\|_{L^2(\Omega_1)}\right);$$

here, we have used equality (37). Thus,

$$\frac{1}{|\lambda_n|} \|w^n_3\|_{H^1(\Omega_2)} \leq C. \quad (59)$$

Consequently,

$$\frac{\|\partial_n w^n_3\|_{H^1(I)}}{|\lambda_n|} \leq C \frac{1}{|\lambda_n|} \|w^n_3\|_{H^1(\Omega_2)} \leq C. \quad (60)$$

The estimates (56), (57), (58), and (60) imply $1/|\lambda_n| \|w^n_3\|_{H^1(\Omega_2)} \leq C$. By interpolation inequality,

$$\frac{1}{|\lambda_n|^{1/2}} \|w^n_3\|_{H^1(\Omega_2)} \leq C \frac{\|w^n_3\|_{H^1(\Omega_2)}^{1/2}}{|\lambda_n|^{1/2}} \|w^n_1\|_{H^1(\Omega_1)}^{1/2}.$$
Therefore, \((1/|\lambda_n|^{1/2}w^n_1)_{n \in \mathbb{N}}\) is a bounded sequence in \(H^2(\Omega_1)\). From (43) and (50), it follows that
\[
\pm i\mu \Delta w^n_1 + \frac{\beta_0}{|\lambda_n|} \Delta w^n_3 \to 0 \text{ in } L^2(\Omega_1),
\]
and then
\[
\left\langle \pm i\mu \Delta w^n_1 + \frac{\beta_0}{|\lambda_n|} \Delta w^n_3, \Delta w^n_1 \right\rangle_{L^2(\Omega_1)} \to 0.
\]
So,
\[
\pm i\mu \|\Delta w^n_1\|_{L^2(\Omega_1)}^2 + \frac{\beta_0}{|\lambda_n|} \left(\Delta w^n_3, \Delta w^n_1 \right)_{L^2(\Omega_1)} \to 0.
\]
Using integration by parts,
\[
\left\langle \Delta w^n_3, \Delta w^n_1 \right\rangle_{L^2(\Omega_1)} = \left\langle w^n_3, \Delta^2 w^n_1 \right\rangle_{L^2(\Omega_1)} - \left\langle w^n_3, \partial_\nu \Delta w^n_1 \right\rangle_{\partial \Omega_1} + \left\langle \partial_\nu w^n_3, \Delta w^n_1 \right\rangle_{L^2(\partial \Omega_1)}.
\]
By the trace theorem and Lemma 4.3 applied to \(\partial, \Delta w^n_1\), we have
\[
\left| \left\langle w^n_3, \partial_\nu \Delta w^n_1 \right\rangle_{L^2(\partial \Omega_1)} \right| \leq \|w^n_3\|_{L^2(\partial \Omega_1)} \|\partial_\nu \Delta w^n_1\|_{L^2(\partial \Omega_1)} \leq C \|w^n_3\|_{H^1(\Omega_1)} \|w^n_1\|_{H^1(\Omega_1)} \leq C \|w^n_3\|_{H^1(\Omega_1)} \|w^n_1\|_{H^1(\Omega_1)}.
\]
Then,
\[
\left| \frac{1}{\lambda_n} \left\langle w^n_3, \partial_\nu \Delta w^n_1 \right\rangle_{L^2(\partial \Omega_1)} \right| \leq C \frac{\|w^n_3\|_{H^1(\Omega_1)} \|w^n_1\|_{H^1(\Omega_1)}}{|\lambda_n|^{1/4}} \leq C \frac{\|w^n_3\|_{H^1(\Omega_1)}}{|\lambda_n|^{1/4}}.
\]
Therefore,
\[
\frac{1}{|\lambda_n|} \left\langle w^n_3, \partial_\nu \Delta w^n_1 \right\rangle_{L^2(\partial \Omega_1)} \to 0.
\]
Lemma 4.3 implies
\[
\left| \left\langle \partial_\nu w^n_3, \Delta w^n_1 \right\rangle_{L^2(\partial \Omega_1)} \right| \leq \|\partial_\nu w^n_3\|_{L^2(\partial \Omega_1)} \|\Delta w^n_1\|_{L^2(\partial \Omega_1)} \leq C \|w^n_3\|_{H^1(\Omega_1)} \|w^n_1\|_{H^1(\Omega_1)} \leq C \|w^n_3\|_{H^1(\Omega_1)} \|w^n_1\|_{H^1(\Omega_1)}.
\]
By (59), we have
\[
\left| \frac{1}{\lambda_n} \left\langle \partial_\nu w^n_3, \Delta w^n_1 \right\rangle_{L^2(\partial \Omega_1)} \right| \leq C \frac{\|w^n_3\|_{H^1(\Omega_1)} \|w^n_1\|_{H^1(\Omega_1)}}{|\lambda_n|^{1/4}} \leq C \frac{\|w^n_3\|_{H^1(\Omega_1)}}{|\lambda_n|^{1/4}}.
\]
Hence,
\[
\frac{1}{|\lambda_n|} \left\langle \partial_\nu w^n_3, \Delta w^n_1 \right\rangle_{L^2(\partial \Omega_1)} \to 0.
\]
From (48), (56), and (61)–(64), it follows that
\[
\Delta w^n_1 \to 0 \text{ in } L^2(\Omega_1).
\]
The limit (44) implies \(\left\langle i\lambda_n \rho_1 w^n_1 + \beta_1 \Delta^2 w^n_1 + \mu \Delta w^n_3, w^n_2 \right\rangle_{L^2(\Omega_1)} \to 0\). Using integration by parts, we have
\[
\left\langle i\lambda_n \rho_1 w^n_1 + \beta_1 \Delta^2 w^n_1 + \mu \Delta w^n_3, w^n_2 \right\rangle_{L^2(\Omega_1)} = i\lambda_n \rho_1 \|w^n_2\|_{L^2(\Omega_1)}^2 + \beta_1 \left(\Delta w^n_1, \Delta w^n_2 \right)_{L^2(\Omega_1)} + \beta_1 \left(\partial_\nu w^n_3, w^n_2 \right)_{L^2(\partial \Omega_1)} + \mu \left(\Delta w^n_3, w^n_2 \right)_{L^2(\Omega_1)}.
\]
From (43) and (65), we get
\[
\frac{1}{|\lambda_n|} \Delta w^n \to 0 \text{ in } L^2(\Omega_1).
\]
(67)

By Theorem 3.6, the trace theorem, and Lemma 4.3, we get
\[
\left| \left\langle \beta_1 \partial_t \Delta w^n, w_2^n \right\rangle_{L^2(I)} \right| = \left| \left\langle -\beta_2 \partial_t w^n - \mu \partial_t w^n, w_2^n \right\rangle_{L^2(I)} \right|
\leq C \left(\| \partial_t w^n \|_{L^2(I)} + \| \partial_t w^n \|_{L^2(I)} \right) \| w^n \|_{L^2(I)}
\leq C \left(\| w^n \|_{H^1(\Omega_2)}^{1/2} \| w_4^n \|_{H^1(\Omega_2)}^{1/2} + \| w^n \|_{H^1(\Omega_2)}^{1/2} \right) \| w_2^n \|_{H^1(\Omega_2)}
\]
Then,
\[
\left| \frac{1}{\lambda_n} \left\langle \beta_1 \partial_t \Delta w^n, w_2^n \right\rangle_{L^2(I)} \right| \leq C \left(\frac{\| w^n \|_{H^1(\Omega_2)}}{|\lambda_n|^{1/2}} \| w_4^n \|_{H^1(\Omega_2)}^{1/2} + \frac{\| w^n \|_{H^1(\Omega_2)}}{|\lambda_n|^{1/2}} \| w_2^n \|_{H^1(\Omega_2)} \right) \frac{\| w_2^n \|_{H^1(\Omega_2)}}{|\lambda_n|^{1/2}}.
\]

From (52), (54), and (59), it follows that
\[
\frac{1}{|\lambda_n|} \left\langle \beta_1 \partial_t \Delta w^n, w_2^n \right\rangle_{L^2(I)} \to 0.
\]
(68)
The limits (50) and (67) imply
\[
\frac{1}{|\lambda_n|} \Delta w^n \to 0 \text{ in } L^2(\Omega_1).
\]
(69)
From (66)–(69), we obtain
\[
w^n \to 0 \text{ in } L^2(\Omega_1).
\]
(70)
Finally, the limits (48), (55), (65), and (70) allow us to write \(\| w^n \|_{H_0} \to 0 \), which is a contradiction to \(\| w^n \|_{H_0} = 1 \) for all \(n \in \mathbb{N} \).

5 | THE CASE OF UNDAMPED MEMBRANE

We now consider the situation when the membrane is undamped, that is, \(m = 0 \). First, we will prove that the solution of our system is not exponentially stable. However, under certain geometric assumptions, we will prove that in this case, the system is polynomially stable. The proof of the next theorem follows the ideas from Theorem 3.5 in Muñoz Rivera and Racke.\(^{31}\)

Theorem 5.1. For \(\rho \geq 0, \gamma > 0 \) and \(m = 0 \), the system (1)–(8) is not exponentially stable.

Proof. We set \(\tilde{H} := \{ 0 \} \times \{ 0 \} \times \{ 0 \} \times H_0^1(\Omega_2) \times L^2(\Omega_2) \). Note that \(\tilde{H} \) is a Hilbert subspace of \(H^r \). We define the operator \(\tilde{A} \) given by \(D(\tilde{A}) = \{ 0 \} \times \{ 0 \} \times \{ 0 \} \times (H^2(\Omega_2) \cap H_0^1(\Omega_2)) \times H_0^1(\Omega_2) \subset \tilde{H} \) and
\[
\tilde{A} \tilde{w} = (0, 0, 0, \beta_2/\rho_2 \Delta \tilde{w}_4)^\top.
\]

With respect to the fourth and fifth component, \(\tilde{A} \) is the first-order system related to the nondamped wave equation for \(\tilde{v} := \tilde{w}_4 \)
\[
\begin{aligned}
\rho_2 \tilde{v}_{tt} - \beta_2 \Delta \tilde{v} &= 0 \text{ in } \Omega_2 \times (0, \infty), \\
\tilde{v} &= 0 \text{ on } I \times (0, \infty), \\
\tilde{v}(\cdot, 0) = \tilde{v}^0, \tilde{v}_t(\cdot, 0) = \tilde{v}^1 \text{ in } \Omega_2
\end{aligned}
\]
(71)
with appropriate initial values \(\tilde{v}^0, \tilde{v}^1 \). Let \((\tilde{S}(t))_{t \geq 0} \) be the \(C_0 \)-semigroup generated by \(\tilde{A} \) on \(\tilde{H} \). As (71) contains no damping term, this is a unitary semigroup. Thus, the essential spectral radius \(r_{\text{ess}}(\tilde{S}(t)) \) is equal to 1.

We will show that \(S(t) - \tilde{S}(t) : \tilde{H} \to H_r \) is compact, where \((S(t))_{t \geq 0} \) stands for the \(C_0 \)-semigroup generated by \(A \) (Theorem 2.5). It is enough to prove that \(S(t) - \tilde{S}(t) : \tilde{W} \to H_r \) is compact for some dense subspace \(\tilde{W} \) of \(\tilde{H} \). We define
\[
\tilde{W} := \{ 0 \} \times \{ 0 \} \times \{ 0 \} \times \mathcal{D}(\Omega_2) \times \mathcal{D}(\Omega_2).
\]
Then \(\mathcal{W} \) is dense in \(\tilde{H} \), and obviously, \(\mathcal{W} \subset D(A) \cap D(\tilde{A}) \). For \(w_0 \in \mathcal{W} \), we consider

\[
E(t) := \frac{1}{2} \| S(t)w_0 - \tilde{S}(t)w_0 \|^2_{\mathcal{H}} \quad (t \geq 0).
\]

Let \(w(t) := S(t)w_0 \) and \(\tilde{w}(t) := \tilde{S}(t)w_0 \). Then

\[
E'(t) = \frac{1}{2} \frac{d}{dt} \| w(t) - \tilde{w}(t) \|^2_{\mathcal{H}} = \Re \langle w'(t) - \tilde{w}'(t), w(t) - \tilde{w}(t) \rangle_{\mathcal{H}},
\]

\[
= \Re \langle Aw(t) - \tilde{A}\tilde{w}(t), w(t) - \tilde{w}(t) \rangle_{\mathcal{H}},
\]

\[
= \Re \langle Aw(t), w(t) \rangle_{\mathcal{H}} + \Re \langle A\tilde{w}(t), \tilde{w}(t) \rangle_{\mathcal{H}} - \Re \langle Aw(t), \tilde{w}(t) \rangle_{\mathcal{H}} - \Re \langle A\tilde{w}(t), w(t) \rangle_{\mathcal{H}}.
\]

From (15), we know \(\Re \langle Aw(t), w(t) \rangle_{\mathcal{H}} \leq 0 \), and for the undamped wave equation, we obtain \(\Re \langle A\tilde{w}(t), \tilde{w}(t) \rangle_{\mathcal{H}} = 0 \). Moreover, by the definition of \(A \) and (14), we see that

\[
\langle A\tilde{w}(t), \tilde{w}(t) \rangle_{\mathcal{H}} = \langle \Delta w(t), \tilde{w}(t) \rangle_{\mathcal{H}^1 \times \mathcal{H}} = -\beta_2 \langle \nabla w_4(t), \tilde{w}_5(t) \rangle_{L^2(\Omega_2)} + \beta_2 \langle \nabla \tilde{w}_4(t), \tilde{w}_4(t) \rangle_{L^2(\Omega_2)}.
\]

With integration by parts, we obtain

\[
\langle A\tilde{w}(t), \tilde{w}(t) \rangle_{\mathcal{H}} = \beta_2 \langle \nabla \tilde{w}_5(t), \tilde{w}_4(t) \rangle_{L^2(\Omega_2)} + \beta_2 \langle \nabla \tilde{w}_4(t), \tilde{w}_5(t) \rangle_{L^2(\Omega_2)} - \beta_2 \langle \nabla \tilde{w}_4(t), \tilde{w}_4(t) \rangle_{L^2(\Omega_2)}.
\]

Taking the real part in the last two equalities and inserting this into (72), we see that

\[
E'(t) \leq \beta_2 \Re \langle \partial_4 \tilde{w}_4(t), w_5(t) \rangle_{L^2(I)} = \beta_2 \Re \langle \partial_4 \tilde{w}_4(t), w_2(t) \rangle_{L^2(I)},
\]

where we used in the last equality that \(w_5(t) = w_2(t) \) on \(I \) because \(w(t) \in D(A) \). Therefore, noting \(E(0) = 0 \), we have

\[
E(t) \leq \beta_2 \Re \int_0^t \langle \partial_4 \tilde{w}_4(s), w_2(s) \rangle_{L^2(I)} ds.
\]

Let \((w_0^k)_{k \in \mathbb{N}} \subset \mathcal{W} \) be a bounded sequence in \(\tilde{H} \), and let \(w^k(t) := S(t)w_0^k \) and \(\tilde{w}^k(t) := \tilde{S}(t)w_0^k \).

We estimate the terms appearing on the right-hand side of (73) separately:

(i) We first show that the sequence \((\partial_4 \tilde{w}_4^k)_{k \in \mathbb{N}} \subset L^2((0, t), L^2(I)) \) is uniformly bounded. For this, we first note that \(\tilde{v}^k := \tilde{w}_4^k \) is a solution of (71). We fix a vector field \(\sigma \in C^1(\Omega_2)^2 \) satisfying \(\sigma = -\nu \) on \(I \). Straight-forward calculations using integration by parts (note that \(\tilde{v}^k(s) = 0 \) on \(I \)) yield for \(s \in (0, t) \)

\[
\int_{\Omega_2} \tilde{v}^k(s) \left(\sigma \cdot \tilde{\nu}^k(s) \right) dx = \frac{1}{2} \int_{\Omega_2} \tilde{v}^k(s)^2 \div(\sigma) dx + \frac{d}{ds} \int_{\Omega_2} \tilde{v}^k(s) \left(\sigma \cdot \tilde{\nu}^k(s) \right) dx.
\]

and

\[
\int_{\Omega_2} \Delta \tilde{v}^k(s) \left(\sigma \cdot \tilde{\nu}^k(s) \right) dx = \frac{1}{2} \| \partial_4 \nu(s) \|^2_{L^2(I)} - \int_{\Omega_2} \tilde{v}^k(s) \cdot \left(D\sigma \tilde{\nu}^k(s) \right) dx + \frac{1}{2} \int_{\Omega_2} \tilde{v}^k(s)^2 \div(\sigma) dx.
\]
Multiplying the differential equation \(\rho_2 \tilde{v}_t^k - \beta_2 \Delta \tilde{v}^k = 0 \) with \(\sigma \cdot \nabla \tilde{v}^k \) and integrating over \(\Omega_2 \), we obtain from (74) and (75)

\[
\beta_2 \| \partial_t \tilde{v}^k(s) \|^2_{L^2(I)} = \int_{\Omega_2} \left(\rho_2 |\tilde{v}_t^k(s)\|^2 - \beta_2 |\nabla \tilde{v}^k(s)|^2 \right) \text{div}(\sigma) \, dx
+ 2\beta_2 \int_{\Omega_2} \tilde{v}^k(s) \cdot \left(D\sigma \nabla \tilde{v}^k(s) \right) \, dx + 2\rho_2 \frac{d}{ds} \int_{\Omega_2} \tilde{v}_t^k(s) \left(\sigma \cdot \nabla \tilde{v}^k(s) \right) \, dx.
\]

Now we integrate the last equality with respect to \(s \in (0, t) \) and obtain

\[
\| \partial_t \tilde{v}^k \|^2_{L^2((0,t),L^2(I))} \leq C \sup_{s \in [0,t]} \left(\| \nabla \tilde{v}^k(s) \|^2_{L^2(I)} + \| \tilde{v}_t^k(s) \|^2_{L^2(I)} \right)
\leq C \sup_{s \in [0,t]} \| \tilde{v}^k(s) \|^2_{H^1} \leq C \| w_0 \|^2_{H^1},
\]

which finishes the proof of (i).

ii In the next step, we show that there exists a subsequence of \((w^k_n)_{k \in \mathbb{N}} \) which converges in \(L^2((0,t),L^2(I)) \). For this, we apply the lemma of Aubin–Lions and the theory of extrapolation–interpolation scales as developed in Amann.\(^{32}\) Chapter V. To define this scale, one sets \(X_0 \coloneqq H_f \) and defines \(X_{-1} \) as the completion of \(X_0 \) with respect to the norm \(\| f \|_{-1} \coloneqq \| A^{-1} f \|_{X_0} \) (see\(^{32}\) Theorem V.1.3.2). It is known that \(X_{-1} \) is the dual space of \(\mathcal{A}(A') \), where \(A' : H'_f \supset D(A') \to H'_f \) denotes the adjoint operator to \(A \) (see\(^{32}\) Corollary V.1.4.7). We define \(X_{-a} \coloneqq [X_0,X_{-1}]_a \) for \(a \in (0,1) \), where \([\cdot , \cdot] \) stands for the complex interpolation functor. Then the general theory of extrapolation–interpolation scales tells us that we have the dense and compact embeddings

\[
H_f = X_0 \subset X_{-a} \subset X_{-1}
\]

for all \(a \in (0,1) \); see Amann.\(^{32}\) The compactness of both embeddings follows from the fact that \(A^{-1} \in \mathcal{L}(H_f) \) is compact due to Proposition 3.9.

To describe \(X_{-1} \), let

\[
\phi \in Y_0 \coloneqq H^3_0(\Omega_1) \times H^2_0(\Omega_1) \times H^2_0(\Omega_1) \times H^2_0(\Omega_2) \times H^1_0(\Omega_2),
\]

and let \(w \in D(A) \). By definition of \(M \), we have

\[
\langle A w, \phi \rangle_{H_f} = \langle M^{-1} A w, \phi \rangle_{H_f} = \langle A w, \phi \rangle_{H'_f} = \langle A w, \phi \rangle_{Y' \times Y'},
\]

where the last equality follows from the fact that \(\phi \in Y \). By the definition of \(A \) (equality (12)) and integration by parts, we obtain

\[
\left| \langle A w, \phi \rangle_{H_f} \right| \leq C_\phi \| w \|_{H_f},
\]

where the constant \(C_\phi \) can be estimated by a constant times the norm of \(\phi \) in the space \(Y_0 \). Therefore, the map \(D(A), \| \cdot \|_{H_f} \to \mathbb{C}, w \mapsto \langle A w, \phi \rangle_{H_f} \) is a continuous linear functional, and its continuous extension to \(H_f \) is an element of \(H'_f \). This shows that \(\phi \in D(A') \), and therefore, \(Y_0 \subset D(A') \). As \(X_{-1} \) is the dual space of \(D(A') \), this yields

\[
X_{-1} \subset Y'_0 = H^{-3}(\Omega_1) \times H^{-2}(\Omega_1) \times H^{-2}(\Omega_1) \times H^{-2}(\Omega_2) \times H^{-1}(\Omega_2).
\]

On the other hand, by definition of \(H_f \), we have

\[
H_f = X_0 \subset H^2(\Omega_1) \times H^1(\Omega_1) \times L^2(\Omega_1) \times H^1(\Omega_2) \times L^2(\Omega_2).
\]

With complex interpolation, we obtain from (76) and (77)

\[
X_{-a} \subset H^{2-3a}(\Omega_1) \times H^{1-3a}(\Omega_1) \times H^{-2a}(\Omega_1) \times H^{1-3a}(\Omega_2) \times H^{-a}(\Omega_2).
\]
Now we apply the Aubin–Lions lemma to the compact embedding \(H_f = X_0 \subset X_{-a} \subset X_1 \). For this, we first note that \((w^k)_{k \in \mathbb{N}}\) is bounded in \(C([0,t], H_f) \) and therefore in \(L^2((0,t), \mathcal{L}(H_f)) \) because of \(\|\mathcal{L}(s)\|_{L^\infty(H_f)} \leq 1 \) for all \(s \in [0,t] \). For the time derivative, we use \(\partial_t w^k = Aw^k \) and obtain

\[
\sup_{s \in [0,t]} \|\partial_t w^k(s)\|_{X_{-a}} = \sup_{s \in [0,t]} \|A w^k(s)\|_{X_{-a}} = \sup_{s \in [0,t]} \|w^k(s)\|_{H_{\ell}} \leq C.
\]

So \((\partial_t w^k)_{k \in \mathbb{N}}\) is bounded in \(L^2((0,t), X_{-a}) \), and the application of the Aubin–Lions lemma yields that there exists a subsequence \((w^{k'})_{k' \in \mathbb{N}}\) which is convergent in \(L^2((0,t), X_{-a}) \). From the embedding (78), we see that the second component \((w^k)_{k \in \mathbb{N}}\) converges in \(L^2((0,t), H^{1-3\alpha}(\Omega_1)) \). Now we choose \(a < 1/6 \) and take the trace on \(I \) and obtain convergence in \(L^2((0,t), H^{1-3\alpha}(I)) \) and therefore in \(L^2((0,t), L^2(I)) \) for \((w^k)_{k \in \mathbb{N}}\), which finishes the proof of (ii).

We know from (i) and (ii) that, after passing to a subsequence, we have that \((\partial_t w^k)_{k \in \mathbb{N}}\) is bounded in \(L^2((0,t), L^2(I)) \) and \((w^k)_{k \in \mathbb{N}}\) converges strongly in \(L^2((0,t), L^2(I)) \). For \(k, \ell' \in \mathbb{N} \) we now denote by

\[
E^{k \ell'}(t) := \frac{1}{2} \|\mathcal{L}(k)(w^k_0 - w^\ell'(0)) - \tilde{S}(t)(w^k_0 - w^\ell'(0))\|^2_{\mathcal{L}(H_{\ell'})} (t \geq 0).
\]

By (73), we have that

\[
E^{k \ell'}(t) \leq \beta_2 \left| \langle \partial_t w^k, w^\ell' \rangle_{L^2((0,t),L^2(I))} \right| \to 0 (k, \ell' \to \infty),
\]

where \(w^k(t) := \mathcal{L}(k)(w_0^k - w_0^\ell') \) and \(\tilde{w}^k(t) := \tilde{S}(t)(w_0^k - w_0^\ell') \) for \(k, \ell' \in \mathbb{N} \). Therefore, \((\mathcal{L}(k) - \tilde{S}(t)) w^k_{k \in \mathbb{N}}\) is a Cauchy sequence in \(H_{\ell'} \) and thus convergent. This shows the compactness of \(\mathcal{L}(k) - \tilde{S}(t) \) : \(W \to H_{\ell'} \). Therefore, \(\mathcal{L}(k) - \tilde{S}(t) : H \to H_{\ell'} \) is compact. As \(r_{\text{es}}(\tilde{S}(t)) = 1 \), Theorem 3.3 in Muñoz Rivera and Racke\(^\text{31}\) implies that \(r_{\text{es}}(\mathcal{L}(k)) = 1 \), and thus, \((\mathcal{L}(k))_{k \geq 0}\) is not exponentially stable.

Although the last result tells us that there is no exponential stability in the case of an undamped membrane, we will now show that the system decays polynomially under the following geometric condition: there exists some \(x_0 \in \mathbb{R}^2 \) such that

\[
q(x) \cdot v(x) \leq 0 \quad (x \in I), \quad \text{where} \quad q(x) := x - x_0 \quad (x \in \bar{\Omega}_2).
\]

(79)

Theorem 5.2. Let \(m = 0, \rho > 0, \gamma \geq 0 \) and assume that the geometrical condition (79) is satisfied. Then, the semigroup \((S(t))_{t \geq 0}\) generated by \(A \) decays polynomially; that is, there exist constants \(a, C > 0 \) such that

\[
\|S(t)w_0\|_{H_{\ell}} \leq Ct^{-a}\|w_0\|_{D(A)}
\]

for all \(t > 0 \) and \(w_0 \in D(A) \).

Proof. By Lemma 5.2 in Muñoz Rivera and Racke\(^\text{31}\) the semigroup is polynomially stable if \(i\mathbb{R} \subset \rho(A) \) and if there exist \(C > 0, \lambda_0 > 0, \) and \(\beta > 0, \beta' \geq 0 \) with

\[
\|(i\lambda - A)^{-1}\|_{H_{\ell}} \leq C|\lambda|^\beta\|A^{\beta'}f\|_{H_{\ell}} (f \in D(A^{\beta'}), \lambda \in \mathbb{R}, |\lambda| > \lambda_0).
\]

(80)

First, let \(\gamma > 0 \). We will show (80) with \(\beta' = 1 \). Let \(\lambda_0 > 0 \) and \(\lambda \in \mathbb{R} \) with \(|\lambda| > \lambda_0 \). Let \(w \in D(A^{\frac{1}{2}}) \) and \(f := (i\lambda - A)w \). Then \(f \in D(A) \), and

\[
i\lambda w_1 - w_2 = f_1,
\]

(81)

\[
i\lambda\rho_1 w_2 - i\lambda\gamma \Delta w_2 + \beta_1 \Delta^2 w_1 + \mu \Delta w_3 - \rho \Delta w_2 = \rho_1 f_2 - \gamma \Delta f_2.
\]

(82)

\[
i\lambda\rho_3 w_3 - \mu \Delta w_2 - \beta_3 \Delta w_3 = \rho_3 f_3,
\]

(83)

\[
i\lambda w_4 - w_5 = f_4,
\]

(84)

\[
i\lambda\rho_2 w_5 - \beta_2 \Delta w_4 = \rho_2 f_5.
\]

(85)

Replacing (81) into (82) and (83), we have

\[
-\lambda^2 \rho_1 w_1 + \lambda^2 \gamma \Delta w_1 + \beta_1 \Delta^2 w_1 + \mu \Delta w_3 - i\lambda\rho \Delta w_1 = i\lambda\rho_1 f_1 - i\lambda\gamma \Delta f_1 - \rho \Delta f_1 + \rho_1 f_2 - \gamma \Delta f_2,
\]

(86)
and
\[i \lambda \rho_0 w_3 - i \lambda \mu \Delta w_1 - \beta_0 \Delta w_3 = -\mu \Delta f_1 + \rho_0 f_3, \tag{87} \]
respectively. Replacing (84) into (85), we get
\[-\lambda^2 \rho_2 w_4 - \beta_2 \Delta w_4 = i \lambda \rho_2 f_4 + \rho_2 f_5. \tag{88} \]
Multiplying (86) by \(\frac{1}{\lambda} w_2 \), (87) by \(i \lambda w_3 \), and (88) by \(-\overline{w_4} \), integrating and adding the resulting equalities, we obtain
\[
\lambda^2 \left(\rho_1 \|w_1\|^2_{L^2(\Omega)} + \rho_2 \|w_4\|^2_{L^2(\Omega)} + \gamma \|\nabla w_1\|^2_{L^2(\Omega)} \right) - \beta_1 \|\Delta w_1\|^2_{L^2(\Omega)}

+ i \lambda \rho \langle \Delta w_1, w_1 \rangle_{L^2(\Omega)} - \lambda^2 \gamma \langle \Delta w_1, w_1 \rangle_{L^2(\Omega)} - \mu \langle \Delta w_3, w_1 \rangle_{L^2(\Omega)}

+ \beta_2 \langle \Delta w_4, w_4 \rangle_{L^2(\Omega)} + \mu \langle \Delta w_1, w_3 \rangle_{L^2(\Omega)} - i \rho_0 \lambda^{-1} \langle \Delta w_3, w_3 \rangle_{L^2(\Omega)}

= -i \rho \rho_1 \langle f_1, w_1 \rangle_{L^2(\Omega)} + i \lambda \gamma \langle f_1, w_1 \rangle_{L^2(\Omega)} + \rho \langle f_1, w_1 \rangle_{L^2(\Omega)} - \rho_1 \langle f_2, w_1 \rangle_{L^2(\Omega)}

+ \gamma \langle f_2, w_1 \rangle_{L^2(\Omega)} - i \rho \rho_5 + \rho_2 f_5 + i \lambda \rho_2 f_4, w_4 \rangle_{L^2(\Omega)}

+ i \lambda \lambda^{-1} \Delta f_1 - i \rho_0 \lambda^{-1} f_3, w_3 \rangle_{L^2(\Omega)}.
\]
Integrating by parts and using the transmission conditions, we obtain
\[
\lambda^2 \left(\rho_1 \|w_1\|^2_{L^2(\Omega)} + \rho_2 \|w_4\|^2_{L^2(\Omega)} + \gamma \|\nabla w_1\|^2_{L^2(\Omega)} \right) - \beta_1 \|\Delta w_1\|^2_{L^2(\Omega)}

- \rho_0 \|w_3\|^2_{L^2(\Omega)} - i \lambda \rho \langle \nabla w_1, w_3 \rangle_{L^2(\Omega)} + i 2 \mu \operatorname{Im} \langle \nabla w_1, w_3 \rangle_{L^2(\Omega)} - \beta_2 \|\nabla w_4\|^2_{L^2(\Omega)}

+ \lambda \lambda^{-1} \langle \nabla f_1, w_3 \rangle_{L^2(\Omega)} + \lambda \lambda^{-1} \langle \nabla f_1, w_3 \rangle_{L^2(\Omega)} - \langle \rho f_5 + \lambda \rho_2 f_4, w_4 \rangle_{L^2(\Omega)}

+ \lambda \lambda^{-1} \langle \nabla f_1, w_3 \rangle_{L^2(\Omega)} + \lambda \lambda^{-1} \langle \nabla f_1, w_3 \rangle_{L^2(\Omega)} - \langle \rho f_5 + \lambda \rho_2 f_4, w_4 \rangle_{L^2(\Omega)}

+ \lambda \lambda^{-1} \langle \nabla f_1, w_3 \rangle_{L^2(\Omega)} + \lambda \lambda^{-1} \langle \nabla f_1, w_3 \rangle_{L^2(\Omega)} - \langle \rho f_5 + \lambda \rho_2 f_4, w_4 \rangle_{L^2(\Omega)}

+ \lambda \lambda^{-1} \langle \nabla f_1, w_3 \rangle_{L^2(\Omega)} + \lambda \lambda^{-1} \langle \nabla f_1, w_3 \rangle_{L^2(\Omega)} - \langle \rho f_5 + \lambda \rho_2 f_4, w_4 \rangle_{L^2(\Omega)}

Taking real part in the previous equation, we get
\[
\beta_1 \|\Delta w_1\|^2_{L^2(\Omega)} + \beta_2 \|\nabla w_4\|^2_{L^2(\Omega)} + \rho_0 \|w_3\|^2_{L^2(\Omega)}

\leq \lambda^2 \left(\rho_1 \|w_1\|^2_{L^2(\Omega)} + \rho_2 \|w_4\|^2_{L^2(\Omega)} + \gamma \|\nabla w_1\|^2_{L^2(\Omega)} \right)

+ \langle \rho \|\nabla f_1\|^2_{L^2(\Omega)} + \|\lambda \gamma \|\nabla f_1\|^2_{L^2(\Omega)} + \gamma \|\nabla f_2\|^2_{L^2(\Omega)} \|\nabla w_1\|^2_{L^2(\Omega)}

+ \rho \|\nabla f_1\|^2_{L^2(\Omega)} + \|\lambda \gamma \|\nabla f_1\|^2_{L^2(\Omega)} + \gamma \|\nabla f_2\|^2_{L^2(\Omega)} \|\nabla w_1\|^2_{L^2(\Omega)}

+ \rho_0 \|f_5\|^2_{L^2(\Omega)} + \lambda \lambda^{-1} \|f\|^2_{H^1(\Omega)},
\]
By Lemma 2.1, (34), and \(|\lambda| \geq \lambda_0\), we obtain
\[
\beta_1 \|\Delta w_1\|^2_{L^2(\Omega)} + \beta_2 \|\nabla w_4\|^2_{L^2(\Omega)} + \rho_0 \|w_3\|^2_{L^2(\Omega)} \leq C \left(\lambda^2 \|w_1\|^2_{H^2(\Omega)} + \lambda^2 \|w_4\|^2_{H^2(\Omega)} + \|\nabla w_1\|^2_{H^2(\Omega)} + \|\nabla w_4\|^2_{H^2(\Omega)} \right), \tag{89} \]
Since
\[
\|w_2\|^2_{L^2(\Omega)} \leq 4(\lambda^2 \|w_1\|^2_{L^2(\Omega)} + \|f_1\|^2_{L^2(\Omega)} \leq C(\lambda^2 \|w_1\|^2_{L^2(\Omega)} + \|f\|^2_{H^1(\Omega)}),
\]
\[
\|\nabla w_2\|^2_{L^2(\Omega)} \leq \frac{1}{\rho} \|w\|_{H^2(\Omega)} + \|f\|^2_{H^1(\Omega)}.
\]
we get
\[
\rho_1 \|w_2\|^2_{L^2(\Omega)} + \gamma \|\nabla w_2\|^2_{L^2(\Omega)} + \rho_2 \|w_3\|^2_{L^2(\Omega)} \leq C \left(\lambda^2 \|w_1\|^2_{H^2(\Omega)} + \lambda^2 \|w_4\|^2_{H^2(\Omega)} + \|w\|_{H^2(\Omega)} + \|f\|^2_{H^1(\Omega)} \right). \tag{90} \]
Poincaré’s inequality implies

\[\lambda^2 \|w_1\|_{H^2(\Omega_3)}^2 = \|w_2 + f_1\|_{H^2(\Omega_3)}^2 \leq C \left(\|\nabla w_2\|_{L^2(\Omega_3)}^2 + \|f_1\|_{H^2(\Omega_3)}^2 \right) \]
\[\leq C \left(\|w\|_{H_\nu} \|f\|_{H_\nu} + \|f\|_{H^1(\Omega)}^2 \right). \]

From (89)–(91), it follows that

\[\|w\|_{H_\nu}^2 \leq C \left(\lambda^2 \|w_4\|_{L^2(\Omega_3)}^2 + |\lambda| \|w\|_{H_\nu} \|f\|_{H_\nu} + |\lambda|^{-1} \|w\|_{H^1(\Omega)}^{1/2} \|f\|_{H_\nu}^{3/2} + \|f\|_{H_\nu}^2 \right). \]

Now we will prove that

\[\lambda^2 \|w_4\|_{L^2(\Omega_3)}^2 \leq C \left(|\lambda| \|w\|_{H_\nu} \|f\|_{H_\nu} + \|f\|_{H_\nu}^3 + \beta_2 \int_I \partial_\nu \omega_4(q\nabla w_4) dS \right). \]

In fact, using Rellich’s identity (see eq. 2.5 from Mitidieri), we have the following equality:

\[\text{Re} \int_{\Omega_3} \Delta w_4(q\nabla w_4) d\nu = - \text{Re} \int_I \left[\partial_\nu \omega_4(q\nabla w_4) - \frac{1}{2} (q \cdot \nu) |\nabla w_4|^2 \right] dS. \]

Multiplying (88) by \(q\nabla w_4\) and integrating, we get

\[- \lambda^2 \rho_2 \int_{\Omega_3} w_4(q\nabla w_4) d\nu - \beta_2 \int_{\Omega_3} \Delta w_4(q\nabla w_4) d\nu = \int_{\Omega_3} (i \lambda \rho_2 f_4 + \rho_2 f_5)(q\nabla w_4) d\nu .\]

Taking real part and using (94), we see that

\[- \lambda^2 \rho_2 \text{Re} \int_{\Omega_3} w_4(q\nabla w_4) d\nu + \beta_2 \text{Re} \int_I \left[\partial_\nu \omega_4(q\nabla w_4) - \frac{1}{2} (q \cdot \nu) |\nabla w_4|^2 \right] dS = \text{Re} \int_{\Omega_3} (i \lambda \rho_2 f_4 + \rho_2 f_5)(q\nabla w_4) d\nu .\]

Using integration by parts and the identity \(q\nabla w_4 = \text{div}(qw_4) - 2w_4\), it holds

\[\int_{\Omega_3} w_4(q\nabla w_4) d\nu = \int_{\Omega_3} w_4 \left(\text{div}(qw_4) - 2w_4 \right) d\nu \]
\[= \int_{\Omega_3} w_4 \text{div}(qw_4) d\nu - 2 \int_{\Omega_3} w_4 w_4 d\nu \]
\[= - \int_{\Omega_3} \nabla w_4 \cdot q\nabla w_4 d\nu - \int_I w_4 q\nabla w_4 \cdot \nu dS - 2 \|w_4\|_{L^2(\Omega_3)}^2 \]
and therefore

\[\int_{\Omega_3} w_4(q\nabla w_4) d\nu + \int_{\Omega_3} w_4(q\nabla w_4) d\nu = - \int_I (q\nu) |w_4|^2 dS - 2 \|w_4\|_{L^2(\Omega_3)}^2 .\]

Thus,

\[\text{Re} \int_{\Omega_3} w_4(q\nabla w_4) d\nu = - \|w_4\|_{L^2(\Omega_3)}^2 - \frac{1}{2} \int_I (q\nu) |w_4|^2 dS .\]

In consequence,

\[\lambda^2 \rho_2 \|w_4\|_{L^2(\Omega_3)}^2 = - \lambda^2 \rho_2 \text{Re} \int_{\Omega_3} w_4(q\nabla w_4) d\nu - \frac{1}{2} \lambda^2 \rho_2 \int_I (q\nu) |w_4|^2 dS \]
\[= \text{Re} \int_{\Omega_3} (i \lambda \rho_2 f_4 + \rho_2 f_5)(q\nabla w_4) d\nu - \beta_2 \text{Re} \int_I \partial_\nu \omega_4(q\nabla w_4) dS + \frac{1}{2} \beta_2 \int_I (q\nu) |\nabla w_4|^2 dS - \frac{1}{2} \lambda^2 \rho_2 \int_I (q\nu) |w_4|^2 dS. \]
Due to \(q \cdot v \leq 0 \) on \(I \), \(w_1 = w_4 \) on \(I \), trace theorem, and (91), we obtain that

\[
\lambda^2 \rho_2 \| w_4 \|^2_{L^2(\Omega_2)} \leq C \left(\| \lambda \| \| w \|_{H_1} \| f \|_{H_1} + \beta_2 \int_I \| \partial_\omega w_4(q \nabla \bar{w}_4) \| dS \right) + \lambda^2 \| w_1 \|^2_{L^2(I)}
\]
\[
\leq \left(\| \lambda \| \| w \|_{H_1} \| f \|_{H_1} + \beta_2 \int_I \| \partial_\omega w_4(q \nabla \bar{w}_4) \| dS + \lambda^2 \| w_1 \|^2_{H_1(\Omega_1)} \right)
\]
\[
\leq C \left(\| \lambda \| \| w \|_{H_1} \| f \|_{H_1} + \| f \|_{H_1}^2 + \beta_2 \int_I \| \partial_\omega w_4(q \nabla \bar{w}_4) \| dS \right).
\]

Next, we will show that for any \(\varepsilon > 0 \), there exists a constant \(C_\varepsilon > 0 \) such that

\[
\beta_2 \int_I \| \partial_\omega w_4(q \nabla \bar{w}_4) \| dS \leq \varepsilon \| w \|_{H_1}^2 + C_\varepsilon \| \lambda \| \mathcal{A} f \|_{H_1}^2.
\] (95)

Indeed, the transmission conditions imply

\[
\beta_2 \int_I \| \partial_\omega w_4(q \nabla \bar{w}_4) \| dS \leq \| \partial_\omega (\Delta w_1) + \mu \partial_\omega w_3 \|_{L^2(I)} \| q \nabla \bar{w}_4 \|_{L^2(I)}
\]
\[
\leq C \left(\| \partial_\omega (\Delta w_1) \|_{L^2(I)} + \| \partial_\omega w_3 \|_{L^2(I)} \right) \| \nabla w_4 \|_{L^2(I)}.
\] (96)

From (85), it holds that \(\Delta w_4 = 1/\beta_2(i \lambda \rho_2 w_5 - \rho_2 f_5) \). Because of \(w_1 = w_4 \) on \(I \), elliptic regularity for the Dirichlet–Laplace operator (Theorem 3.2) yields

\[
\| w_4 \|_{H^2(\Omega_2)} \leq C \left(\| i \lambda \rho_2 w_5 - \rho_2 f_5 \|_{L^2(\Omega_2)} + \| w_1 \|_{H^2(I)} \right)
\]
\[
\leq C \left(\| \lambda \| \| w_5 \|_{L^2(\Omega_2)} + \| f_5 \|_{L^2(\Omega_2)} \right) + \| w_1 \|_{H^2(\Omega_1)}
\]
\[
\leq C \left(\| \lambda \| \| w \|_{H_1} + \| f \|_{H_1} \right).
\] (97)

Applying Lemma 4.3 to \(\nabla w_4 \), we see that

\[
\| \nabla w_4 \|_{L^2(I)} \leq C \| w_4 \|^{1/2}_{H^1(\Omega_2)} \| w_4 \|^{1/2}_{H^1(\Omega_2)}
\]
\[
\leq C \left(\| \lambda \| \| w \|_{H_1} + \| f \|_{H_1} \right)^{1/2} \| w \|_{H_1}^{1/2}
\]
\[
\leq C \left(\| \lambda \|^{1/2} \| w \|_{H_1} + \| w \|_{H_1}^{1/2} \| f \|_{H_1}^{1/2} \right).
\] (98)

Note that \(w_3 \) belongs to \(H^2(\Omega_1) \) and is a solution of the problem

\[
\begin{align*}
\Delta w_3 &= \frac{\rho_2}{\rho_0} (i \lambda w_3 - \rho_0^{-1} \mu \Delta w_2 - f_3) =: h^* \in L^2(\Omega_1), \\
\partial_\omega w_3 + \kappa w_3 &= 0 \quad \text{on} \; \Gamma, \\
w_3 &= 0 \quad \text{on} \; I.
\end{align*}
\]

By Remark 3.3 and Theorem 3.2, there exist \(\eta_0 > 0 \) such that

\[
\| w_3 \|_{H^2(\Omega_1)} \leq C \| \eta_0 w_3 - h^* \|_{L^2(\Omega_1)}
\]
\[
\leq C \left(\| w_3 \|_{L^2(\Omega_1)} + | \lambda | \| w_3 \|_{L^2(\Omega_1)} + \| \Delta w_2 \|_{L^2(\Omega_1)} + \| f_3 \|_{L^2(\Omega_1)} \right).
\]

From (35) and the last inequality, it follows that

\[
\| w_3 \|_{H^2(\Omega_1)} \leq C \left(\| w_3 \|_{L^2(\Omega_1)} + | \lambda | \| w_3 \|_{L^2(\Omega_1)} + | \lambda | \| \Delta w_1 \|_{L^2(\Omega_1)} + \| \Delta f_1 \|_{L^2(\Omega_1)} + \| f_3 \|_{L^2(\Omega_1)} \right).
\]
This and (34) imply
\[\|w_3\|_{H^1(\Omega_3)} \leq C \left[|\lambda| \|w\|_{H^1_\gamma}^{1/2} \|f\|_{H^1_\gamma}^{1/2} + |\lambda| \|w\|_{H^1_\gamma} + \|f\|_{H^1_\gamma} \right]. \] (99)

Due to (86), \(w_1\) satisfies the equation
\[(\eta_0 + \Delta^2)w_1 = \eta_0 w_1 + \beta_1^{-1}z \]
with \(z := (\lambda^2 \rho_1 - \lambda^2 \gamma \Delta + i \lambda \rho \Delta)w_1 - \mu \Delta w_3 + (i \lambda \rho_1 - i \lambda \gamma \Delta - \rho \Delta)f_1 + (\rho_1 - \gamma \Delta)f_2\) and \(\eta_0 > 0\). Note that, if \(g := Af\), then \(g_1 = f_2\) and therefore
\[\|\Delta f_2\|_{L^2(\Omega_2)} = \|\Delta g_1\|_{L^2(\Omega_2)} \leq C\|g\|_{H^1_\gamma} = C\|Af\|_{H^1_\gamma}. \] (100)

From Theorem 3.2, the transmission conditions, inequalities (99), (97), (100), and \(0 \in \rho(A)\), we obtain
\[\|w_1\|_{H^1(\Omega_3)} \leq C \left(\|\eta_0 w_1 + \beta_1^{-1}z\|_{L^2(\Omega_3)} + \|\beta_1^{-1}(-\beta_2 \partial_\gamma w_4 - \mu \partial_\gamma w_3)\|_{H^{1/2}(\Gamma)} \right) \]
\[\leq C \left[\lambda^2 \|w\|_{H^1_\gamma} + |\lambda| \|w\|_{H^1_\gamma}^{1/2} \|f\|_{H^1_\gamma}^{1/2} + |\lambda| \|f\|_{H^1_\gamma} + |\lambda| \|Af\|_{H^1_\gamma} \right] \]
\[\leq C \|\eta_0 w_1 + \beta_1^{-1}z\|_{L^2(\Omega_3)} \leq C \|Af\|_{H^1_\gamma}. \]

We have from (91) that
\[\|w_1\|_{H^1(\Omega_3)} \leq C \|\lambda\|^{-1} \left(\|w\|_{H^1_\gamma}^{1/2} \|f\|_{H^1_\gamma}^{1/2} + \|f\|_{H^1_\gamma} \right). \]

Applying Lemma 4.3 to \(\partial_\gamma w_1\), using interpolation inequality and \(0 \in \rho(A)\), we obtain that
\[\|\partial_\gamma (\Delta w_1)\|_{L^2(\Omega)} \leq C \|w_1\|_{H^1(\Omega_3)} \|w_2\|_{H^1(\Omega_3)} \]
\[\leq C |\lambda|^{1/6} \left(\|w\|_{H^1_\gamma} + \|w\|_{H^1_\gamma}^{1/2} \|Af\|_{H^1_\gamma}^{1/2} + \|Af\|_{H^1_\gamma} \right) \]
\[\leq C |\lambda|^{1/6} \left(\|w\|_{H^1_\gamma} + \|w\|_{H^1_\gamma}^{1/2} \|Af\|_{H^1_\gamma}^{1/2} + \|Af\|_{H^1_\gamma} \right) \]
\[\|\partial_\gamma (\Delta w_1)\|_{L^2(\Omega)} \leq C \|w_1\|_{H^1(\Omega_3)} \|w_2\|_{H^1(\Omega_3)} \]
\[\leq C \left[\|w\|_{H^1_\gamma}^{1/2} \|Af\|_{H^1_\gamma}^{1/2} + \|w\|_{H^1_\gamma}^{1/2} \|Af\|_{H^1_\gamma} + \|w\|_{H^1_\gamma} \|Af\|_{H^1_\gamma} \right]. \] (101)

From (98) and (101), it follows that
\[\|\partial_\gamma (\Delta w_1)\|_{L^2(\Omega)} \leq C \left[\|w\|_{H^1_\gamma}^{1/2} \|Af\|_{H^1_\gamma}^{1/2} + \|w\|_{H^1_\gamma}^{1/2} \|Af\|_{H^1_\gamma} + \|w\|_{H^1_\gamma} \|Af\|_{H^1_\gamma} \right]. \] (102)

Applying Lemma 4.3 to \(\partial_\gamma w_3\) and using (34) and (99), we get
\[\|\partial_\gamma w_3\|_{L^2(\Omega)} \leq C \|w_3\|_{H^1(\Omega_3)} \|w_1\|_{H^1(\Omega_3)} \]
\[\leq C \left[\|w\|_{H^1_\gamma}^{1/2} \|Af\|_{H^1_\gamma}^{1/2} + \|w\|_{H^1_\gamma}^{1/2} \|Af\|_{H^1_\gamma} + \|w\|_{H^1_\gamma} \|Af\|_{H^1_\gamma} \right]. \] (103)

Then, from (98) and (103), we obtain
\[\|\partial_\gamma w_3\|_{L^2(\Omega)} \leq C \left[\|w\|_{H^1_\gamma}^{1/2} \|Af\|_{H^1_\gamma}^{1/2} + \|w\|_{H^1_\gamma} \|Af\|_{H^1_\gamma} + \|w\|_{H^1_\gamma} \|Af\|_{H^1_\gamma} \right]. \] (104)
Considering (102), (104), and Young’s inequality, we observe that the worst term in the estimate of the right side of (96) is
\[|\lambda|^2 \|w\|_H^2 + A f \|A f\|_{H^1}^{1/2} = \|w\|_H^{3/2} + C \|A f\|_{H^1}^{1/2} \leq \epsilon \|w\|_H^{3/2} + C \|A f\|_{H^1}^{2/3} = \lambda \|w\|_H^{23/12} + C \|A f\|_{H^1}^{2} \leq \epsilon \|w\|_H^{3/2} + C \|A f\|_{H^1}^{2} \cdot \]
This implies that (95) holds. Now, by (92), (93), (95), and Young’s inequality, we obtain
\[\|w\|_H^2 \leq \epsilon \|w\|_H^{3/2} + C \|A f\|_{H^1}^{2} \text{ for any } \epsilon > 0. \]
Hence,
\[\|w\|_H^2 \leq C \|A f\|_{H^1}^{2}, \tag{105} \]
which shows (80) with \(\beta' = 1 \) and \(\beta = 24 \) for the case \(\gamma > 0 \). Note that (105) implies that \(i\lambda - A \) is injective. In fact, let \(w \in D(A) \) with \(f := (i\lambda - A)w = 0 \). Then \(Aw = i\lambda w \in D(A) \), which shows \(w \in D(A^2) \), and we can apply (105) to see \(w = 0 \). Therefore, \(i\mathbb{R} \cap \sigma(A) = \emptyset \). Now, the assertion follows from Muñoz Rivera and Racke,31 Lemma 5.2.

For the case \(\gamma = 0 \), we can argue analogously and obtain (80) with \(\beta' = 0 \) and \(\beta = 24 \).

Remark 4.3. (a) Note that the proof gives no information on the optimal decay rate.

(b) It was shown in Barraza Martínez et al,12 Theorem 3.2 and Theorem 5.2, that also in the isothermal situation, we have polynomial but no exponential stability if the membrane is undamped.

ACKNOWLEDGEMENT

Financial support through MINCIENCIAS (formerly COLCIENCIAS) via Project 121571250194 is gratefully acknowledged.

Open access funding enabled and organized by Projekt DEAL.

ORCID

Bienvenido Barraza Martínez https://orcid.org/0000-0002-5284-0031
Robert Denk https://orcid.org/0000-0002-5406-4486
Jonathan González Ospino https://orcid.org/0000-0002-7248-7715
Jairo Hernández Monzón https://orcid.org/0000-0002-7841-134X

REFERENCES
