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Abstract. We investigate the Bi-Laplacian with Wentzell boundary con-
ditions in a bounded domain Ω ⊆ R

d with Lipschitz boundary Γ. More
precisely, using form methods, we show that the associated operator on
the ground space L2(Ω) × L2(Γ) has compact resolvent and generates
a holomorphic and strongly continuous real semigroup of self-adjoint
operators. Furthermore, we give a full characterization of the domain
in terms of Sobolev spaces, also proving Hölder regularity of solutions,
allowing classical interpretation of the boundary condition. Finally, we
investigate spectrum and asymptotic behavior of the semigroup, as well
as eventual positivity.
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1. Introduction

Wentzell or dynamic boundary conditions appear naturally in many physical
contexts where a free energy on the boundary of the domain has to be taken
into account. This is the case, for instance, for the heat equation with heat
sources on the boundary (see [19, Section 3]), for the Stefan problem with
surface tension (see [12, Section 1]), in climate models including coupling
between the deep ocean and the surface (see [10, Section 2]), and for the
Cahn–Hilliard equation describing spinodal decomposition of binary poly-
mer mixtures (see [28, Section 1]). From a mathematical point of view, the
fact that the time derivative of the unknown function appears on the bound-
ary implies that classical parabolic theory cannot be applied. Therefore, new
methods (mostly based on semigroup theory) were developed for boundary
value problems with Wentzell boundary condition (see, e.g., [2], [11], [33]).
Most of these results deal with the Laplacian or more general second-order
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operators. For the Bi-Laplacian with Wentzell boundary conditions, less re-
sults are known, and typically the smooth setting is considered (see [13]).
Therefore, it is an interesting task to study the Bi-Laplacian with Wentzell
boundary condition in a bounded domain Ω with Lipschitz boundary Γ. This
is the topic of the present paper.

The main challenge in tackling Wentzell boundary conditions lies in the
fact that the operator of the equation in the interior, in our case the Bi-
Laplacian Δ2, itself appears in the boundary condition, and the standard
condition Δ2u ∈ L2(Ω) is not sufficient to guarantee existence of the trace
of Δ2u on the boundary. The most common way to solve this problem is to
consider a related operator in the product space for which the action in the
interior of the domain and on the boundary is decoupled.

The case of the Laplace operator subject to Wentzell boundary con-
ditions on Lipschitz domains was treated in this way by form methods on
the space L2(Ω) × L2(Γ) in [2]; using the classical Beurling–Deny criteria
this result is then extended to the Lp-scale. Under additional smoothness
assumptions also spaces of continuous functions were considered in [2]; see
also [11], where Greiner perturbations were used. These results were later
extended to general second-order elliptic operators on Lipschitz domains, see
[25] and [33].

For higher-order elliptic operators the above extension procedure does
not work, because the Beurling–Deny criteria are in general not fulfilled
(see also Proposition 3.5 below). An exception is the one-dimensional sit-
uation, where one can extend at least to part of the Lp-scale, see [17,18],
where fourth-order (or even higher-order) operators on networks with vari-
ous boundary and transmission condition for the nodes were studied.

In higher dimensions, less results are available and they typically rely
on being in a smooth setting. For fourth-order equations with sufficiently
smooth coefficients in C4-domains, it was shown in [13, Theorem 2.1] that the
related operator in the product space is essentially self-adjoint. For the Cahn–
Hilliard equation, classical well-posedness was shown in [28, Theorem 5.1] in
the L2-setting, and in [27, Theorem 2.1] in the Lp-setting. These results
were generalized to boundary value problems of relaxation type (including
dynamic boundary conditions) in [9, Theorem 2.1], where maximal regularity
in Lp-spaces is shown. Again the domain and the coefficients were assumed to
be (sufficiently) smooth, and the methods do not carry over to the Lipschitz
case considered here.

The aim of our paper is to study the evolution equation for a fourth-
order operator on a Lipschitz domain with Wentzell boundary conditions,
showing existence of a holomorphic semigroup and giving a full characteriza-
tion of the domain in terms of Sobolev regularity. More precisely, we consider
the initial boundary value problem
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∂tu + Δ(αΔ)u = 0 in (0,∞) × Ω,(1.1)

Δ(αΔ)u + β∂ν(αΔ)u − γu = 0 on (0,∞) × Γ,(1.2)

∂νu = 0 on (0,∞) × Γ,(1.3)

u|t=0 = u0 in Ω.(1.4)

In (1.1)–(1.4), it is implicitly assumed that the initial value u0 is suffi-
ciently smooth to have a trace on the boundary and that this trace is used
as an initial condition for u on the boundary.

Here, and throughout this article, we make the following assumptions.

Hypothesis 1.1. The set Ω ⊆ R
d is a bounded domain with Lipschitz bound-

ary Γ. We endow Ω with Lebesgue measure and Γ with surface measure S.
Moreover, we are given functions α ∈ L∞(Ω;R) and β, γ ∈ L∞(Γ;R) such
that there exists a constant η > 0 with α ≥ η almost everywhere on Ω and
β ≥ η almost everywhere on Γ.

Note that Equation (1.1) is of fourth order with respect to x ∈ Ω,
whence we have to impose two boundary conditions. Here, we have chosen
the Neumann boundary condition (1.3) in addition to the Wentzell boundary
condition (1.2). From (1.1) we get Δ(αΔ)u = −∂tu, and replacing this in
(1.2), we obtain a dynamic boundary condition.

In order to decouple this system as mentioned above, we rename u to u1

and replace in the boundary condition (1.2) the term Δ(αΔu) not by the time
derivative ∂tu1 but by the time derivative ∂tu2 of an independent function u2

that lives on the boundary. Even though u2 is formally independent of u1, we
think of u2 as the trace of u1; this condition will actually be incorporated into
the domain of our operator. We thus obtain the following decoupled version
of (1.1)–(1.4):

∂tu1 + Δ(αΔ)u1 = 0 in (0,∞) × Ω,(1.5)

∂tu2 − β∂ν(αΔ)u1 + γu2 = 0 on (0,∞) × Γ,(1.6)

∂νu1 = 0 on (0,∞) × Γ,(1.7)

u1|t=0 = u1,0 in Ω,(1.8)

u2|t=0 = u2,0 on Γ.(1.9)

Note that as u2 is independent of u1, we have to impose an additional
initial condition for u2. If, however, the initial value u0 in (1.4) is smooth
enough, we can put u1,0 = u0 and u2,0 = u0|Γ.

As we are in the situation of a Lipschitz domain, we are outside the
usual ‘strong setting’ for differential operators, and we have to define the
operator A related to (1.5)–(1.9) in a weak sense. In the Lipschitz case, the
domain of the Neumann Laplacian is, in general, not contained in the Sobolev
space H2(Ω) and thus the standard Green’s Formula is not at our disposal.
Therefore, we use weaker definitions of the Neumann Laplacian and for the
Dirichlet and Neumann traces of functions involved. Based on results in [15],
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[16], and [3, Section 8.7], we establish in Sect. 2 a version of Green’s formula
and a regularity result for functions satisfying Green’s formula which appears
to be new and might be of independent interest, see Proposition 2.4 below.

These results are used in Sect. 3 to define a quadratic form a (related to
the system (1.5)–(1.9)) to which the operator A is associated. Based on the
analysis of the form, we can show that the operator A is self-adjoint and the
generator of a strongly continuous and analytic semigroup (T(t))t≥0 (The-
orem 3.4). However, this semigroup is neither positive nor L∞-contractive
(Proposition 3.5).

In Sect. 4, Theorem 4.1, we identify the operator A associated to the
form a as an operator matrix acting on the product space L2(Ω) × L2(Γ);
we also obtain an explicit description of the domain D(A). This will show
that the operator A indeed governs the system (1.5)–(1.9). We will explain
afterwards that we can obtain a solution of the system (1.1)–(1.3) with initial
condition (1.4). If u2,0 is not the trace of u1,0, there are some subtleties
concerning the initial values, see Remark 4.3.

One of the main results of this paper, Theorem 5.4 in Sect. 5, states that
for every element (u1, u2) of D(A∞) the function u1 is Hölder continuous
and u2 is the trace of u1. As the semigroup T is analytic, it follows that for
positive time the solution of (1.5)–(1.9) is Hölder continuous and satisfies the
Wentzell boundary condition in a pointwise sense. But this regularity result
is also of independent interest as D(A∞) is a core for A (and also a form
core for a, see the proof of [26, Lemma 1.25]). Moreover, this result implies
regularity of the eigenfunctions of the operator A and is used extensively in
the subsequent sections.

In Sect. 6, we show that the operator A has compact resolvent. By stan-
dard theory, we thus find an orthonormal basis consisting of eigenfunctions
of A. This allows us to describe the semigroup in terms of the eigenfunctions
and study the asymptotic behavior of the semigroup.

In the concluding Sect. 7, we study eventual positivity of the semigroup.
We have already mentioned that our operator does not satisfy the Beurling–
Deny criteria. In fact, [23, Theorem 3.6] (which is concerned with operators
on R

d) suggests that a semigroup generated by a fourth-order operator can-
not be expected to be positive; similar results have also been observed for
the Bi-Laplacian subject to Dirichlet boundary conditions, see [14, Sections
3.1.3 and 5.1]. However, for some domains Ω the semigroup generated by
the Bi-Laplacian with Dirichlet boundary conditions is at least, in a sense,
“eventually positive”. We will see that for γ ≡ 0 and independently of the
geometry of Ω this is also true for our semigroup (Theorem 7.1). If, however,
γ > 0, then, similar to Dirichlet boundary conditions, there are domains
where eventual positivity fails, see Corollary 7.4.
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2. The Neumann Laplacian and Green’s Formula on Lipschitz
Domains

As we consider a fourth-order equation in a Lipschitz domain, the definition
of the operator related to (1.1)–(1.4) in Sect. 3 will be based on the related
quadratic form, so we are in the weak setting. To handle this situation, we
start with the (weakly defined) Neumann Laplacian which is the topic of the
present section. Weak traces and the Dirichlet and Neumann Laplacian in
Lipschitz domains were studied, e.g., in [15], [16], and [3].

For s ≥ 0, we write Hs(Ω) for the standard Sobolev space and Hs
Δ(Ω)

for the space of functions u ∈ Hs(Ω) such that the distributional Laplacian
Δu belongs to L2(Ω). We denote the inner products in L2(Ω) and L2(Γ) by

〈f, g〉Ω :=
∫

Ω

uv dx and 〈f, g〉Γ :=
∫

Γ

fg dS,

respectively. By slight abuse of notation, we will also write

〈∇u,∇v〉Ω :=
∫

Ω

d∑
j=1

∂ju∂jv dx

whenever u, v ∈ H1(Ω). We write ‖ · ‖Ω and ‖ · ‖Γ for the induced norms. In
Hs

Δ(Ω), we take the canonical norm

‖u‖2
Hs

Δ(Ω) := ‖u‖2
Hs(Ω) + ‖Δu‖2

Ω, u ∈ Hs
Δ(Ω).

We write Hs(Γ), s ∈ [−1, 1], for the standard Sobolev spaces on the Lipschitz
boundary Γ (see, e.g., [22, p. 96]).

The Neumann Laplacian ΔN on Ω can now be defined by setting

D(ΔN ) := {u ∈ H1
Δ(Ω) | 〈∇u,∇v〉Ω = −〈Δu, v〉Ω for all v ∈ H1(Ω)} (2.1)

and ΔNu = Δu, the distributional Laplacian.
To describe in which sense elements of D(ΔN ) satisfy Neumann bound-

ary conditions, one has to study (weak) traces on the boundary. Let C∞
c (Rd)

denote the space of all infinitely smooth functions on R
d with compact sup-

port, and let C∞(Ω) := {ϕ|Ω |ϕ ∈ C∞
c (Rd)}. We denote the trace of a func-

tion u ∈ C∞(Ω) on the boundary by tru := u|Γ. This smooth trace extends
by continuity to a bounded linear operator tr : Hs(Ω) → Hs−1/2(Γ) for all
s ∈ ( 1

2 , 3
2 ) [22, Theorem 3.38]. For s ∈ ( 1

2 , 1], this operator is surjective and
even a retraction, i.e. there exists a continuous right-inverse (see [22, Theo-
rem 3.37]).

Even for smooth domains, the continuity of tr : Hs(Ω) → Hs−1/2(Γ)
does not hold for the endpoint case s = 1

2 , see [21, Theorem 1.9.5]. However,
one can include the cases s = 1

2 and s = 3
2 by considering the spaces Hs

Δ(Ω)
instead of Hs(Ω). It was shown in [15, Lemma 2.3] that the smooth trace
extends to a retraction τD : H

3/2
Δ (Ω) → H1(Γ). Similarly, we can consider

the smooth Neumann trace u �→ ν · tr(∇u), u ∈ C∞(Ω), where ν denotes the
unit outer normal which exists in almost every boundary point. This trace
extends to a retraction τN : H

3/2
Δ (Ω) → L2(Γ), see [15, Lemma 2.4].
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For the connection between the above traces and the Neumann Lapla-
cian, we consider the weak Neumann trace ∂ν which is defined on

D(∂ν) :=
{
u ∈ H1

Δ(Ω) | there exists g ∈ L2(Γ) such that

〈Δu, v〉Ω + 〈∇u,∇v〉Ω = 〈g, tr v〉Γ for all v ∈ H1(Ω)
}

by setting ∂νu = g. As tr : H1(Ω) → H1/2(Γ) is surjective and H1/2(Γ) is
dense in L2(Γ) (cf. [3, Section 8.7]), the function g ∈ L2(Γ) is unique, which
shows that ∂νu is well defined. Thus, it follows that

D(ΔN ) = {u ∈ H1
Δ(Ω) | ∂νu = 0}.

Remark 2.1. We would like to point out that the definition of the smooth
Neumann trace τN (though not that of its extension to H

3/2
Δ (Ω)) depends

only on the geometry of the domain and is independent of the choice of the
underlying operator, in our case the Laplacian. The weak Neumann trace, on
the other hand, depends crucially on the fact that we consider the Laplacian.
If, instead, we consider a general second order elliptic differential operator
A in divergence form, we would instead obtain the co-normal derivative ∂A

ν

associated to A. It would be more appropriate to use the notation ∂Δ
ν to

indicate the dependence on the underlying operator. However, to simplify
notation, we will continue to use ∂ν as above.

The following result shows the connection between the weak Neumann
trace and τN and includes a regularity result for the weak Neumann Laplacian
defined above. It can be found in [3, Theorem 8.7.2].

Lemma 2.2. We have D(ΔN ) = {u ∈ H
3/2
Δ (Ω) | τNu = 0}.

Following [3, Chapter 8], it is possible to extend the trace operators
τN and τD to the space H0

Δ(Ω) := {u ∈ L2(Ω) |Δu ∈ L2(Ω)}. The price to
pay is that the extensions take values in certain spaces of functionals on the
boundary. This involves the spaces

G0 := rg(τD|ker(τN)) and G1 := rg(τN |ker(τD)),

where rg stands for the range of an operator. It is possible to define a Hilbert
space structure on those spaces creating two Gelfand triples G0 ⊆ L2(Γ) ⊆ G′

0

and G1 ⊆ L2(Γ) ⊆ G′
1. We recall the following result from [3, Theorem 8.7.5].

Lemma 2.3. The traces τD and τN can be continuously extended to bounded
linear operators

τ̃D : H0
Δ(Ω) → G′

1 and τ̃N : H0
Δ(Ω) → G′

0,

respectively. Moreover,

(i) ker τ̃N = ker τN = D(ΔN ),
(ii) for u ∈ H0

Δ(Ω) and v ∈ D(ΔN ) we have

〈Δu, v〉Ω − 〈u,Δv〉Ω = 〈τ̃Nu, τDv〉G′
0×G0 . (2.2)
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We can now establish a version of Green’s formula on Lipschitz domains
and obtain regularity for all functions in H0

Δ(Ω) which satisfy this Green’s
formula. This is the main result of this section. It is worthwhile to point out
that while the extended traces τ̃N and τ̃D do not appear in the statement of
the result, we make extensive use of them in the proof. Indeed, by virtue of
Lemma 2.3, we can give meaning to traces of functions in H0

Δ(Ω) and have
(2.2) at our disposal. We may then use the fact that ker τN = ker τ̃N to infer
higher regularity of the functions involved.

Proposition 2.4. (i) We have ∂ν = τN and, in particular, D(∂ν) = H
3/2
Δ (Ω).

For u ∈ D(∂ν) and v ∈ D(ΔN ), we have

〈Δu, v〉Ω − 〈u,Δv〉Ω = 〈∂νu, tr v〉Γ. (2.3)

(ii) Let u ∈ H0
Δ(Ω) and assume there is some g ∈ L2(Γ) such that for all

v ∈ D(ΔN ) we have

〈Δu, v〉Ω − 〈u,Δv〉Ω = 〈g, tr v〉Γ .(2.4)

Then u ∈ H
3/2
Δ (Ω) and ∂νu = g.

Proof. (i) Fix u ∈ H
3/2
Δ (Ω) ⊆ H1

Δ(Ω) and let v ∈ D(ΔN ). Noting that
tr v = τDv ∈ G0, Equality (2.2) yields

〈Δu, v〉Ω − 〈u,Δv〉Ω = 〈τNu, tr v〉G′
0×G0

.

As τNu ∈ L2(Γ) and G0 ⊆ L2(Γ) ⊆ G′
0 is a Gelfand triple, we obtain

〈τNu, tr v〉G′
0×G0

= 〈τNu, tr v〉Γ .

Consequently,

〈Δu, v〉Ω − 〈u,Δv〉Ω = 〈τNu, tr v〉Γ .(2.5)

Since v ∈ D(ΔN ) and u ∈ H1(Ω), we have 〈u,Δv〉Ω = −〈∇u,∇v〉Ω by (2.1),
and thus (2.5) can be rewritten as

〈Δu, v〉Ω + 〈∇u,∇v〉Ω = 〈τNu, tr v〉Γ . (2.6)

Note that ΔN is the associated operator of the closed symmetric form (u, v) �→
〈∇u,∇v〉Ω with form domain H1(Ω). Thus, by [26, Lemma 1.25], D(ΔN ) is
dense in H1(Ω). As, moreover, tr is a continuous map from H1(Ω) to L2(Ω),
we can extend (2.6) by density to hold for all v ∈ H1(Ω). It follows that
u ∈ D(∂ν) and ∂νu = τNu, which proves τN ⊆ ∂ν .

It remains to show that D(∂ν) ⊆ D(τN ) = H
3/2
Δ (Ω). For this, let u ∈

D(∂ν) and set g := ∂νu. Then for v ∈ D(ΔN ) we have, by definition of ∂ν ,

〈Δu, v〉Ω + 〈∇u,∇v〉Ω = 〈g, tr v〉Γ = 〈g, tr v〉G′
0×G0

, (2.7)

where the second equality holds since tr v ∈ G0. As v ∈ D(ΔN ) and u ∈
H1(Ω), we have 〈u,Δv〉Ω = −〈∇u,∇v〉Ω by (2.1), and we obtain

〈Δu, v〉Ω + 〈∇u,∇v〉Ω = 〈Δu, v〉Ω − 〈u,Δv〉Ω = 〈τ̃Nu, tr v〉G′
0×G0

. (2.8)

A comparison of (2.7) and (2.8) shows that 〈g, tr v〉G′
0×G0

= 〈τ̃Nu, tr v〉G′
0×G0

.
As v ∈ D(ΔN ) = ker τN was arbitrary, we have g = τ̃Nu in G′

0. Since g ∈
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L2(Γ) and τN is surjective, we can find a function ū ∈ H
3/2
Δ (Ω) such that

τN ū = g = τ̃Nu. Hence ū − u ∈ ker τ̃N = ker τN ⊆ H
3/2
Δ (Ω). But then also

u = ū − (ū − u) ∈ H
3/2
Δ (Ω), which shows D(∂ν) ⊆ D(τN ) and, consequently,

∂ν = τN . Equality (2.3) is now an immediate consequence of (2.5).
(ii) Here we may argue in a similar way as in the proof of (i). Let

u ∈ H0
Δ(Ω) and g ∈ L2(Γ) such that for all v ∈ D(ΔN ) we have

〈Δu, v〉Ω − 〈u,Δv〉Ω = 〈g, tr v〉Γ .

Comparing with (2.2), we obtain

〈g, tr v〉G′
0×G0

= 〈τ̃Nu, tr v〉G′
0×G0

for all v ∈ D(ΔN ) and thus τ̃Nu = g. Making use of the surjectivity of τN

and the fact that ker τ̃N ⊆ H
3/2
Δ (Ω), the same arguments as before yield

u ∈ H
3/2
Δ (Ω) and ∂νu = τNu = g. �

3. The Bi-Laplacian Via Quadratic Forms

We now take up our main line of study and define a quadratic form which will
then be used to define a realization of the Bi-Laplace operator. In contrast to
the last section, we now combine the L2-spaces on Ω and on Γ into a single
Hilbert space. Moreover, we will incorporate the function β into its norm.
More precisely, we set

H := L2(Ω) × L2(Γ, β−1dS),

where the inner product on the second factor is given by

〈u, v〉Γ,β :=
∫

Γ

uv̄β−1 dS.

To be consistent with the last section, we will omit the subscript β when β = 1

is the constant one function: 〈·, ·〉Γ,1 = 〈·, ·〉Γ. Note that as β, β−1 ∈ L∞(Γ)
the scalar products 〈·, ·〉Γ,β and 〈·, ·〉Γ are always equivalent.

We will denote elements of H by lowercase calligraphic letters and the
components of this element by the same lowercase roman letters, i.e. if u, v ∈
H, then u = (u1, u2), v = (v1, v2) and

〈u, v〉H = 〈u1, v1〉Ω + 〈u2, v2〉Γ,β .

We may now define our quadratic form. For general information concern-
ing forms and their associated operators we refer the reader to [20, Chapter
6] or [26].

Definition 3.1. We define the form a by setting

a(u, v) :=
∫

Ω

αΔu1Δv1 dx +
∫

Γ

γu2v2β
−1 dS

= 〈αΔu1,Δv1〉Ω + 〈γu2, v2〉Γ,β

for

u, v ∈ D(a) := {u ∈ H |u1 ∈ D(ΔN ), u2 = tr u1}.
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Lemma 3.2. The form domain D(a) is a dense subset of H.

Proof. We may assume without loss of generality that β = 1, otherwise
switching to an equivalent norm. Next note that C∞

c (Ω)×{0} ⊆ D(a) which
implies that L2(Ω) × {0} ⊆ D(a) as the test functions C∞

c (Ω) are dense in
L2(Ω).

We next show that {0} × L2(Γ) ⊆ D(a). To that end, let f2 ∈ L2(Γ)
and ε > 0. As H1/2(Γ) is dense in L2(Γ), we find a function u2 ∈ H1/2(Γ)
with ‖u2 − f2‖2

Γ ≤ ε. Because tr : H1(Ω) → H1/2(Γ) is bounded (denote
its operator norm by M) and surjective (cf. Section 2), we find a function
ũ1 ∈ H1(Ω) with tr ũ1 = u2. As also D(ΔN ) is dense in H1(Ω), we find
a function ū1 ∈ D(ΔN ) with ‖ū1 − ũ1‖2

H1(Ω) ≤ M−1ε. Finally, we pick a
test function ϕ ∈ C∞

c (Ω) such that ‖ū1 − ϕ‖2
Ω ≤ ε and put u = (ū1 −

ϕ, tr(ū1 − ϕ)) = (ū1 − ϕ, tr ū1). Then, by construction, we have u ∈ D(a)
and a short computation shows ‖u − (0, f2)‖2

H ≤ 3ε. As f2 was arbitrary,
{0} × L2(Γ) ⊆ D(a).

Since D(a) is a vector space, we may combine our two results and obtain
D(a) = H. �

We can now prove the following result.

Proposition 3.3. The form a is densely defined, symmetric, semibounded from
below by γ0 := min{ess inf γ, 0} (in particular, it is accretive whenever γ ≥ 0),
and closed.

Proof. It is straightforward to prove that a is symmetric, and we have proved
that it is densely defined in Lemma 3.2. For the quadratic form we have

a(u) := a(u,u) =
∫

Ω

α|Δu1|2 dx +
∫

Γ

γ|u2|2β−1 dS

≥ ess inf γ · ‖u2‖2
Γ,β ≥ γ0‖u‖2

H,

proving the result concerning the semiboundedness. It only remains to prove
the closedness. To that end, we assume without loss of generality that γ ≥ 0
so that the norm associated with a on D(a) is given by ‖u‖2

a = a(u) + ‖u‖2
H.

Let (un)n∈N ⊆ D(a) be a ‖ · ‖a-Cauchy sequence, where un = (un
1 , un

2 ).
We have to prove that this sequence converges with respect to ‖ · ‖a. Let us
first note that for a certain constant C, we have

‖u1‖2
ΔN

≤ C‖u‖2
a

whenever u = (u1, u2) ∈ D(a). Here, ‖ ·‖ΔN
stands for the graph norm of the

operator ΔN . It follows that un
1 is a Cauchy sequence with respect to ‖ ·‖ΔN

.
As ΔN is closed, we find some u ∈ D(ΔN ) such that un

1 → u in L2(Ω) and
Δun

1 → Δu in L2(Ω).
Next observe that for u ∈ D(ΔN ) we have

‖u‖2
H1(Ω) = ‖u‖2

Ω + 〈∇u,∇u〉Ω = ‖u‖2
Ω − 〈Δu, u〉Ω ≤ C̃(‖Δu‖2

Ω + ‖u‖2
Ω)

for some constant C̃ ≥ 1. Combining this with the above, we find that un
1

is also a Cauchy sequence in H1(Ω) whence, by the continuity of the trace,
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un
2 = tr un

1 → tru in L2(Γ). Setting u = (u, tr u), we see that u ∈ D(a) and
un → u with respect to ‖ · ‖a. This proves closedness of the form. �

Proposition 3.3 enables us to invoke a representation theorem for semi-
bounded, symmetric forms, see [20, Theorem VI.2.6], to obtain information
about the associated operator A. We recall that this operator is defined as
follows.

The domain D(A) is given by

D(A) := {u ∈ D(a) | ∃ f ∈ H : a(u, v) = 〈f, v〉H for all v ∈ D(a)} (3.1)

and for u ∈ D(a) we have Au = f, where f is as in (3.1).

Theorem 3.4. The operator A is self-adjoint and semibounded. Moreover,
−A generates a strongly continuous, analytic semigroup T = (T(t))t≥0 of
self-adjoint operators on H. If γ ≥ 0, this semigroup is contractive.

Proof. The first statements follow from Proposition 3.3 and the representa-
tion theorem [20, Theorem VI.2.6]. The rest can then either be inferred from
the spectral theorem or, else, follows from more general results concerning
m-sectorial operators, see [26, Section 1.4]. �

Up to now, we only have the abstract definition of the operator A,
given by (3.1), but we will identify this operator more explicitly in the next
section. Before we do that, however, we collect some more information about
the semigroup T. In the study of second-order elliptic operators, defined by
means of sectorial forms, contractivity properties of the associated semigroup
are of particular importance and can be characterized in terms of the form
by means of the Beurling–Deny criteria, see [26, Chapter 2].

Let us briefly recall the relevant notions. To that end, let (X,Σ, μ) be a
measure space. Given a semigroup (T (t))t≥0 on H = L2(X;C), we say that
T is real if T (t)f ∈ L2(X;R) for all t ≥ 0 whenever f ∈ L2(X;R). It is
called positive if T (t)f ≥ 0 for all t ≥ 0 and f ≥ 0 and L∞-contractive if
‖T (t)f‖∞ ≤ ‖f‖∞ for all t ≥ 0 and f ∈ L2(X)∩L∞(X). To make use of this
terminology in our situation, we use X = Ω∪Γ, μ(A) = λ(A∩Ω)+

∫
A∩Γ

β−1dS
and identify our semigroup on the product space H with a semigroup on
L2(X).

We now obtain the following result for our semigroup T, in which we
restrict ourselves to the situation where γ ≥ 0, so that a is accretive.

Proposition 3.5. Let γ ≥ 0. Then the semigroup T is real, but neither positive
nor L∞-contractive.

Proof. That T is real can be inferred from [26, Theorem 2.5] as Re D(a) ⊆
D(a) and a(Reu, Imu) ∈ R for all u ∈ D(a).

For T to be positive, it is necessary that u+ := sup{u, 0} ∈ D(a) when-
ever u ∈ D(a) is a real-valued function, see [26, Theorem 2.6]. But this is
never the case. To see this, let us first consider d = 1 and Ω = (−2, 2).
We put ϕ(t) = tϕ0(t), where ϕ0 ∈ C∞

c (Ω) with ϕ0 = 1 on [−1, 1]. Then
ϕ belongs to the domain of the Neumann Laplacian (which in this case is
{u ∈ H2(−2, 2) |u′(−2) = u′(2) = 0}). However, if we consider ϕ+, we have
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(ϕ+)′ = 1(0,1) on the interval (−1, 1) and the second derivative is no longer
an element of L2(Ω), whence ϕ+ �∈ H2(Ω) and thus ϕ+ �∈ D(ΔN ).

This example can be lifted to higher dimensions by considering func-
tions of the form u(x1, . . . , xd) = ϕ(s−1(x1 − c1))ψ(x1, . . . , xd) where c =
(c1, . . . , cd) ∈ Ω, s > 0 and ψ is a test function which is 1 in a neighborhood
of c. Then u = (u, 0) ∈ D(a), but u+ = (u+, 0) is not.

By [26, Theorem 2.13], for T to be L∞-contractive, it is necessary that
whenever u ∈ D(a) is a positive, real function, then also min{u, 1} belongs
to D(a). But here we can construct a counterexample in a similar way. �

4. Identification of the Associated Operator

In this section, we identify the operator associated to our form a, which, in
an abstract way, is given by (3.1). This involves actually two aspects: First,
we need to determine the domain of our operator and second, we have to
establish how the operator acts on an element of its domain. Since we work
in a Hilbert space which is a cartesian product, the action of our operator
can be represented by means of an operator matrix. As far as the domain of
the operator is concerned, we will give an explicit description in Theorem 4.1.
In the smooth setting, we give an alternative characterization of the domain
in Theorem 4.5. Without additional smoothness assumptions, we obtain the
following description of A. This should be compared to Equations (1.5) and
(1.6).

Theorem 4.1. The operator A associated to the form a is given by

A =
(

Δ(αΔ) 0
−β∂ν(αΔ) γ

)
,

defined on the domain

D(A) =
{
u ∈ H |u1 ∈ H

3/2
Δ (Ω), αΔu1 ∈ H

3/2
Δ (Ω), ∂νu1 = 0, u2 = tru1

}
.

We point out that the regularity of an element of D(A) is sufficient for
every entry in the above matrix to be well defined as an element of L2. In-
deed, as αΔu1 ∈ H

3/2
Δ (Ω), it follows that Δ(αΔu1) ∈ L2(Ω); moreover, also

∂ν(αΔu1) ∈ L2(Γ), as D(∂ν) = H
3/2
Δ (Ω) by Proposition 2.4. Before proceed-

ing to the proof of Theorem 4.1, we collect some alternative characterizations
of D(A) for later use.

Corollary 4.2. The domain of the operator A is given by

D(A) = {u ∈ H |u1 ∈ D(ΔN ), u2 = tru1, αΔu ∈ D(∂ν)}
= {u ∈ D(a) |αΔu1 ∈ D(∂ν)}.

Proof. The first equality follows from the fact that D(ΔN ) = {u ∈ H
3/2
Δ (Ω)|

∂νu = 0} (see Lemma 2.2) and the identity D(∂ν) = H
3/2
Δ (Ω) from Proposi-

tion 2.4. The second is immediate from the definition of D(a). �
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Proof of Theorem 4.1
Let us, for time being, denote the operator described in the statement of the
theorem by B and by A, as before, the operator associated with the form a.
We recall that u ∈ D(A) and Au = f is equivalent to u ∈ D(a) and

a(u, v) = 〈f, v〉H for all v ∈ D(a). (4.1)

Let us first prove A ⊆ B. To that end, fix u ∈ D(A) and set f := Au.
Using (4.1) for v = (ϕ, 0) ∈ C∞

c (Ω) × {0} ⊆ D(a), we find

〈αΔu1,Δϕ〉Ω = a(u, v) = 〈f, v〉H = 〈f1, ϕ〉Ω.

As this is true for every ϕ ∈ C∞
c (Ω), it follows that f1 = Δ(αΔu1). In

particular, Δ(αΔu1) ∈ L2(Ω), so that αΔu1 ∈ H0
Δ(Ω).

Let v ∈ D(a). Rearranging terms in (4.1) and using that tr v1 = v2 and
f1 = Δ(αΔu1), we find

〈Δ(αΔu1), v1〉Ω − 〈αΔu1,Δv1〉Ω = 〈γ tr u1 − f2, tr v1〉Γ,β

for all v1 ∈ D(ΔN ). Using Proposition 2.4 (ii) with u = αΔu1, v = v1 and
g = β−1(γ tr u1 − f2) ∈ L2(Γ), we obtain αΔu1 ∈ H

3/2
Δ (Ω) and ∂ν(αΔu1) =

β−1(γ tr u1−f2). As u2 = tr u1, the latter is equivalent to f2 = −β∂ν(αΔu1)+
γu2. Altogether, we have proved that u ∈ D(B) and Au = Bu.

To see the converse, let u ∈ D(B). Then, using Lemma 2.2 and the fact
that ∂ν = τN (Proposition 2.4 (i)), we find u ∈ D(a) and αΔu1 ∈ H

3/2
Δ (Ω) =

D(∂ν). With (2.3) we see that for all v ∈ D(a) we have

a(u, v) = 〈αΔu1,Δv1〉Ω + 〈γu2, v2〉Γ,β

= 〈Δ(αΔu1), v1〉Ω − 〈∂ν(αΔu1), tr v1〉Γ + 〈γu2, v2〉Γ,β

= 〈Δ(αΔu1), v1〉Ω + 〈−β∂ν(αΔu1) + γu2, v2〉Γ,β = 〈Bu, v〉H .

This implies u ∈ D(A) and Au = Bu. �
It is a consequence of Theorem 4.1 that the semigroup T governs the

system (1.5)–(1.9). As the semigroup is analytic, the solution is C∞ in time
so that (u(t))t>0 = (T(t)(u1,0, u2,0))t>0 satisfies Equations (1.5) and (1.6)
in a classical (in time) sense. Furthermore it shows that u(t) ∈ D(A∞) for
t > 0. Coming back to our initial system (1.1)–(1.4), we immediately see that
u = u1 solves Equation (1.1). The question remains in which way the Wentzell
boundary condition (1.2) is satisfied. However, as u(t) ∈ D(A∞) for t > 0,
we know in particular that u(t), Au(t) ∈ D(a) for t > 0. Hence we obtain
tr((Au)1) = (Au)2 and tru1 = u2, yielding tr(Δ(αΔ)u1) = −β∂ν(αΔ)u1 +
γu2 = −β∂ν(αΔ)u1 + γ tr u1.

This proves that the Wentzell boundary condition is satisfied in the
sense of traces for t > 0. Thus u = u1 satisfies (1.1)–(1.4).

Remark 4.3. We point out that the system (1.1)–(1.4) has to be interpreted
in such a way that u0 is sufficiently smooth to have a trace on the boundary,
say u0 ∈ H1(Ω); in this setting, the solutions of (1.1)–(1.4) are thus in a
one-to-one correspondence with the solutions of (1.5)–(1.9) with u1,0 = u0|Ω
and u2,0 = u0|Γ. In our semigroup approach, however, u2,0 can be chosen
independently of u1,0 and, by the above, all of these solutions are (distinct!)
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solutions of (1.1)–(1.4). In a way, choosing u2,0 different from tr u1,0 corre-
sponds precisely to having some free energy on the boundary, which was a
main motivation to consider Wentzell boundary conditions in the first place.

We now study the case of smooth domain and coefficients. For simplicity,
we assume for the rest of this section that Ω is a bounded and infinitely
smooth domain and that α ∈ C∞(Ω), β, γ ∈ C∞(Γ) with α ≥ η and β ≥ η
on Ω and Γ for some constant η > 0, respectively. In this case, it is natural
to start with the strong definition of the operator. More precisely, we define
the operator A0 in H by

D(A0) :=
{
u = (u1, tr u1) | u1 ∈ C4(Ω), tr(Δ(αΔ)u1)

+ β∂ν(αΔ)u1 − γ tr u1 = 0, ∂νu1 = 0 on Γ
} ⊆ H

and

A0u :=
(

Δ(αΔ)u1

tr(Δ(αΔ)u1)

)
=

(
Δ(αΔ) 0

−β∂ν(αΔ) γ

) (
u1

u2

)
for u ∈ D(A0).

Lemma 4.4. In the smooth setting, the operator A0 is essentially self-adjoint,
and its closure A0 is given by A.

Proof. The fact that A0 is essentially self-adjoint is a special case of [13,
Theorem 1.1]. As the self-adjoint extension of an essentially self-adjoint op-
erator is unique and given by its closure (see [34, Theorem 5.31]), we only
have to show that A is an extension of A0. However, in the smooth case
this is obvious from the definition of D(A0) and the description of D(A) in
Theorem 4.1. �

We remark that even in the smooth case, we cannot expect that for
u ∈ D(A) the first component u1 belongs to H4(Ω). However, we can show
u1 ∈ H7/2(Ω). To this end, we use a version of elliptic regularity which
includes weighted Sobolev spaces Ξs(Ω), s ∈ R, see [21, Sections 2.6 and 2.7].
For our application, it is enough to know that for all s > 0, the space Ξ−s(Ω)
is continuously embedded into L2(Ω). This follows by duality from the dense
embedding Ξs(Ω) ⊆ L2(Ω), see [21, Chapter 2, (6.20)–(6.21)].

Theorem 4.5. In the smooth situation, we have

D(A) = {u ∈ H |u1 ∈ H7/2(Ω), Δ(αΔ)u1 ∈ L2(Ω), ∂νu1 = 0, u2 = tr u1}.

Proof. First, let u belong to the space on the right-hand side. From u1 ∈
H7/2(Ω) and α ∈ C∞(Ω), we obtain u1 ∈ H

3/2
Δ (Ω) and αΔu1 ∈ H3/2(Ω).

Now Δ(αΔ)u1 ∈ L2(Ω) yields αΔu1 ∈ H
3/2
Δ (Ω), and with the description of

D(A) in Theorem 4.1 we see that u ∈ D(A).
For the other direction, let u ∈ D(A). We apply the elliptic regularity

result from [21, Remark 2.7.2], setting there A = Δ(αΔ) + I, B0 = ∂ν ,
B1 = −β∂ν(αΔ) + γ tr, and s = 7

2 . We obtain

‖u1‖H7/2(Ω) ≤ C
(
‖u1 + Δ(αΔu1)‖Ξ−1/2(Ω) + ‖∂νu1‖H2(Γ) + ‖γu2 − β∂ν(αΔu1)‖Γ

)

≤ C
(
‖u1‖Ω + ‖Δ(αΔu1)‖Ω + ‖γu2 − β∂ν(αΔu1)‖Γ

)
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≤ C
(
‖Au‖H + ‖u‖H

)
.

Here, for the second inequality, we use the continuous embedding L2(Ω) ⊆
Ξ−1/2(Ω) (see above) and the fact that ∂νu1 = 0. We see that u1 ∈ H7/2(Ω)
and that D(A) is continuously embedded into the space on the right-hand
side. �

Remark 4.6. We assumed the domain and the coefficients to be infinitely
smooth, as the theory from [21] is formulated in this setting. However, the
proofs are based on elliptic regularity up to order 4, duality and interpolation,
which shows that it is, e.g., sufficient to assume Ω to have a C4-boundary as
well as α ∈ C4(Ω), β, γ ∈ C3+ε(Γ). This regularity was considered in [13],
and thus Theorem 4.5 gives the precise domain of the self-adjoint extension
of the operator A0. However, we omit the formal proof and technical details
for this.

Remark 4.7. We would like to point out that in the rough case there are
examples for domains where we can find u = (u1, u2) ∈ D(A) such that
u1 �∈ H3/2+ε(Ω) for any ε > 0. This behaviour is known for the Neumann
Laplacian. For d = 2, there are even C1-domains Ω and functions u ∈ D(ΔN )
such that Δu = f ∈ C∞(Ω), ∂νu = 0 and u �∈ H3/2+ε(Ω) (cf. [5, Section 3]).
If we take α ≡ 1, it follows from Theorem 4.1 that for any such example u

we have (u, tr u) ∈ D(A), as f = Δu ∈ C∞(Ω) ⊆ H
3/2
Δ (Ω). This shows that

in the Lipschitz setting, one cannot expect more regularity than H3/2(Ω)
for functions belonging to D(A), in contrast to the smooth setting, where
Theorem 4.5 yields the regularity H7/2(Ω).

This significant regularity difference between the rough and the smooth
setting also suggests that there is little hope in tackling Lipschitz domains
by approximating them with smooth domains. That domain approximation
is a delicate business for higher order elliptic operators subject to boundary
conditions is a well-known phenomenon. This is illustrated by the Babuška
paradox, where a circular domain is approximated by a sequence of polygons
but the solutions do not converge to the solution on the smooth domain (see,
e.g., [31, Section 2.2] for details).

5. Hölder Continuity of the Solution

As a preparation to prove Hölder regularity in Theorem 5.4, we establish some
results concerning weak solutions of the inhomogeneous Neumann problem

Δu = f in Ω,

∂νu = g on Γ.
(5.1)

By a weak solution of (5.1), we mean a function u ∈ H1(Ω) such that

−〈∇u,∇v〉Ω = 〈f, v〉Ω + 〈g, tr v〉Γ
for all v ∈ H1(Ω). Naturally, the data f and g have to have enough integra-
bility such that these integrals are well defined. Note that, as a consequence
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of Proposition 2.4, a weak solution of (5.1) automatically belongs to the space
H

3/2
Δ (Ω).

In what follows, we write ‖f‖Ω,p for the norm of f in Lp(Ω) and ‖g‖Γ,p

for the norm of g in Lp(Γ). We begin by recalling the following result from
[24], in which Cα(Ω) refers to the space of α-Hölder continuous functions
on Ω. Note that every function u ∈ Cα(Ω) can be extended uniquely to a
(Hölder) continuous function on Ω.

Lemma 5.1. Assume that d ≥ 2, f ∈ L
d
2 +ε(Ω), and g ∈ Ld−1+ε(Γ) (or d = 1,

f ∈ L1(Ω), and g ∈ L1(Γ)). Then, there exists α ∈ (0, 1) such that if u ∈
H1(Ω) is a weak solution of (5.1), then u ∈ Cα(Ω) and

‖u‖Cα(Ω) ≤ C
(‖u‖Ω,2 + ‖f‖Ω, d

2 +ε + ‖g‖Γ,d−1+ε

)
.

Proof. This is [24, Theorem 3.1.6]. Note that we are in the situation of [24,
Remark 3.1.7]. �

Lemma 5.1 allows us in particular to estimate ‖u‖Ω,∞ and ‖ tr u‖Γ,∞
for solutions of (5.1), provided the data have high enough integrability. We
prove next that solutions u ∈ H

3/2
Δ (Ω) of (5.1) have higher integrability than

the data.

Lemma 5.2. Let d ≥ 2, p ∈ (2,∞). Then there is a constant C0 > 0 such that
whenever u ∈ H

3/2
Δ (Ω) is a weak solution of (5.1) with (f, g) ∈ Lp(Ω)×Lp(Γ),

then (u, tr u) ∈ Lϕ(p)(Ω) × Lϕ(p)(Γ) and

‖u‖Ω,ϕ(p) + ‖ tr u‖Γ,ϕ(p) ≤ C0

(
‖u‖Ω,2 + ‖f‖Ω,p + ‖g‖Γ,p

)
,

where

ϕ(p) :=

{
d−2
d−p p if p ∈ (2, d),
∞ if p ∈ [d,∞).

Proof. We first consider the end-point cases p = 2 and p = d, then use
interpolation.

As for p = d, note that for small enough ε, we have d/2+ε, d−1+ε ≤ d,
so that Lemma 5.1 yields

‖u‖Ω,∞ + ‖ tr u‖Γ,∞ ≤ ‖u‖Cα(Ω) ≤ C
(‖u‖Ω,2 + ‖f‖Ω,d + ‖g‖Γ,d

)
. (5.1)

For p = 2, we use the continuity of the trace operator from H1(Ω) to
L2(Γ) and obtain with Cauchy–Schwarz’s and Young’s inequality

‖u‖2
Ω,2 + ‖ tr u‖2

Γ,2 ≤ C
(
‖u‖2

Ω,2 + ‖∇u‖2
Ω,2

)

= C
(
‖u‖2

Ω,2 + 〈−Δu, u〉Ω + 〈∂νu, tr u〉Γ
)

≤ C
(
‖u‖2

Ω,2 + ‖Δu‖2
Ω,2 + ‖∂νu‖2

Γ,2

)
+ 1

2‖ tr u‖2
Γ,2.

This yields

‖u‖Ω,2 + ‖ tr u‖Γ,2 ≤ C
(
‖u‖Ω,2 + ‖f‖Ω,2 + ‖g‖Γ,2

)
. (5.2)
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In order to interpolate between (5.1) and (5.2), let us first prove that if
u is a solution of (5.1) with data f and g, then

‖u‖
H

3/2
Δ (Ω)

≤ C
(
‖u‖Ω,2 + ‖f‖Ω,2 + ‖g‖Γ,2

)
. (5.3)

As the map τN = ∂ν : H
3/2
Δ (Ω) → L2(Γ) has a bounded right-inverse

eN : L2(Γ) → H
3/2
Δ (Ω), we can set v := eNg ∈ H

3/2
Δ (Ω). Then w := u − v is

a solution of

Δw = f − Δv in Ω,

∂νw = 0 on Γ.

In particular, w ∈ D(ΔN ) and therefore (see [3, Corollary 8.7.4])

‖w‖
H

3/2
Δ (Ω)

≤ C
(‖w‖Ω,2 + ‖f‖Ω,2 + ‖Δv‖Ω,2

)
≤ C

(‖u‖Ω,2 + ‖v‖
H

3/2
Δ (Ω)

+ ‖f‖Ω,2

)
≤ C

(‖u‖Ω,2 + ‖f‖Ω,2 + ‖g‖Γ,2

)
.

In the last step, we used the continuity of eN . Thus,

‖u‖
H

3/2
Δ (Ω)

≤ ‖v‖
H

3/2
Δ (Ω)

+ ‖w‖
H

3/2
Δ (Ω)

≤ C
(‖u‖Ω,2 + ‖f‖Ω,2 + ‖g‖Ω,2

)
,

which shows (5.3).
For the interpolation, let X0 := F (H3/2

Δ (Ω)), where

F : H
3/2
Δ (Ω) → L2(Ω) × L2(Ω) × L2(Γ), u �→ (u,Δu, ∂νu).

Then F : H
3/2
Δ (Ω) → X0 is bounded, bijective, and its inverse is bounded

due to (5.3). So F is an isomorphism of normed spaces, and, as H
3/2
Δ (Ω) is

a Banach space, the same is true for X0. Let Z1 := L2(Ω) × Ld(Ω) × Ld(Γ)
and X1 := X0 ∩ Z1. By (5.2), the linear operator

T : X0 → Y0 := L2(Ω) × L2(Γ), (u,Δu, ∂νu) �→ (u, tr u)

is well-defined and bounded. By (5.1), the same holds for its restriction

T : X1 → Y1 := L∞(Ω) × L∞(Γ).

Complex interpolation shows that T : [X0,X1]θ → [Y0, Y1]θ is continuous for
all θ ∈ (0, 1). To identify the interpolation spaces, recall from [32, Theorem
1.18.1] that complex interpolation of tuples of Lp-spaces yields the tuple of
interpolated spaces in the sense of

[Lp0(Ω) × Lq0(Γ), Lp1(Ω) × Lq1(Γ)]θ
= [Lp0(Ω), Lp1(Ω)]θ × [Lq0(Γ) × Lq1(Γ)]θ

for all p0, p1, q0, q1 ∈ [1,∞]. Moreover, we have the equality [Lp0(Ω), Lp1(Ω)]θ
= Lp(Ω) (and a similar equality for Γ) for 1

p = 1−θ
p0

+ θ
p1

in the sense of
equivalent norms, see [32, Theorem 1.18.6/2]. From this, we obtain for all
θ ∈ (0, 1) the continuity of T : X0 ∩ Zθ → Yθ, where

Zθ := L2(Ω) × Lp(Ω) × Lp(Γ)
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and Yθ := Lϕ(p)(Ω)×Lϕ(p)(Γ) with p and ϕ(p) being defined by 1
p = 1−θ

2 + θ
d

and 1
ϕ(p) = 1−θ

2 . For p ∈ (2, d), the first equality yields θ = d(p−2)
(d−2)p , and the

second equality gives

ϕ(p) =
2

1 − θ
=

d − 2
d − p

p.

Now the continuity of T : X0 ∩ Zθ → Yθ shows that for all u ∈ H
3/2
Δ (Ω) we

have

‖u‖Ω,ϕ(p) + ‖ tr u‖Γ,ϕ(p) ≤ C
(
‖u‖Ω,2 + ‖Δu‖Ω,p + ‖∂νu‖Γ,p

)
,

which proves the lemma for p ∈ (2, d). For p ≥ d the statement follows
directly from (5.1). �

We obtain the following corollary about the integrability of elements of
D(A).

Corollary 5.3. Let r > 2. If u ∈ D(A)∩ (Lr(Ω)×Lr(Γ)) and Au ∈ Lr(Ω)×
Lr(Γ), then u ∈ Lϕ2(r)(Ω) × Lϕ2(r)(Γ) and Δu1 ∈ Lϕ(r)(Ω).

Proof. By Theorem 4.1, we have for u ∈ D(A)

(Au)1 = Δ(αΔ)u1,

(Au)2 = −β∂ν(αΔ)u1 + γu2.

Thus, if u satisfies the assumption of this corollary, then αΔu1 solves the
inhomogeneous Neumann problem

Δ(αΔ)u1 = (Au)1 ∈ Lr(Ω)

∂ν(αΔ)u1 = −β−1(Au)2 + β−1γu2 ∈ Lr(Γ).

By Lemma 5.2, αΔu1 ∈ Lϕ(r), yielding Δu1 ∈ Lϕ(r)(Ω) as well. Since u ∈
D(A), we also know that ∂νu1 = 0 and u2 = tru1, so that u1 solves the
homogeneous Neumann problem

Δu1 = Δu1 ∈ Lϕ(r)(Ω)

∂νu1 = 0 ∈ Lϕ(r)(Γ).

Applying Lemma 5.2 once more, we obtain u1 ∈ Lϕ2(r)(Γ) and u2 = tr u1 ∈
Lϕ2(r)(Γ) as claimed. �

We can now prove the main result of this section.

Theorem 5.4. Let u ∈ D(A∞). Then u1 ∈ Cα(Ω) for some α ∈ (0, 1).

Proof. Let u ∈ D(A). Then Δu1 ∈ H
3/2
Δ (Ω) ⊆ H1(Ω) and ∂νu1 = 0 ∈

L∞(Γ). If d ≤ 5, then, by Sobolev embedding (see [1, Theorem 4.12]), Δu1 ∈
L

d
2 +ε(Ω) and Lemma 5.1 yields u1 ∈ Cα(Ω).

Now consider the case d ≥ 6. In this case the Sobolev embedding yields
Δu1 ∈ L

2d
d−2 (Ω). Setting r1 := ϕ( 2d

d−2 ) > 2, Lemma 5.2 implies

u = (u1, tr u1) ∈ Lr1(Ω) × Lr1(Γ).
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Thus, D(A) ⊆ Lr1(Ω) × Lr1(Γ). Inductively, we obtain D(Ak) ⊆ Lrk(Ω) ×
Lrk(Γ), where rk = ϕ2(rk−1) = ϕ2k−1( 2d

d−2 ). Indeed, assume this statement is
true for some k and let u ∈ D(Ak+1). Then u ∈ D(Ak) ⊆ D(A) and Au ∈
D(Ak). By induction hypothesis, u,Au ∈ Lrk(Ω) × Lrk(Γ), and Corollary
5.3 yields u ∈ Lϕ2(rk)(Ω) × Lϕ2(rk)(Γ) = Lrk+1(Ω) × Lrk+1(Γ) as well as
Δu1 ∈ Lϕ(rk)(Ω).

From the structure of the map ϕ it is clear that (rk)k∈N is an increasing
sequence that tends to ∞. We thus find k0 ∈ N such that D(Ak0−1) ⊆
Ld(Ω)×Ld(Γ). For u ∈ D(Ak0), we have Δu1 ∈ Lϕ(d)(Ω) and ∂νu1 ∈ L∞(Γ).
Thus, Lemma 5.1 implies u1 ∈ Cα(Ω) as claimed. �
Remark 5.5. The proof of Theorem 5.4 actually shows that given the dimen-
sion d, there exists a number k0 ∈ N, depending only on d, such that for
u ∈ D(Ak0) we have u1 ∈ Cα(Ω).

6. Spectral Decomposition and Asymptotic Behavior

In this section, we prove that we can find an orthonormal basis of H consisting
of eigenfunctions of A and study the long-time behavior of the semigroup T.
We begin with the following lemma.

Lemma 6.1. The operator A has compact resolvent.

Proof. We have to show that the embedding D(A) ⊆ H is compact. By
Theorem 4.1, we know that the operator π1 : D(A) → H3/2(Ω), u �→ u1 is
well defined. We show that π1 is closed. For this, let un = (un

1 , un
2 ), n ∈ N,

be a sequence in D(A) with un → u0 = (u0
1, u

0
2) in D(A) and π1un → v1

in H3/2(Ω). Then un
1 → u0

1 in L2(Ω) and also un
1 → v1 in L2(Ω), which

shows v1 = u0
1 = π1u0. Thus π1 is closed and, by the closed graph theorem,

bounded.
Let (un)n∈N be a bounded sequence in D(A). As π1 is bounded, the

sequence (un
1 )n∈N is bounded in H3/2(Ω) and therefore also in H1(Ω). By the

theorem of Rellich–Kondrachov (see [1, Theorem 6.3]), there exists a subse-
quence which converges in L2(Ω). As tr : H1(Ω) → H1/2(Γ) is continuous
and H1/2(Γ) is compactly embedded into L2(Γ) (see [16, Equation (2.17)]),
we have convergence of another subsequence of (tr un

1 )n∈N in L2(Γ). From
this and trun

1 = un
2 , we see that there exists a subsequence of (un)n∈N which

converges in H. This shows the compactness of the embedding D(A) ⊆ H.
�

We now obtain the following spectral decomposition of our operator A.

Corollary 6.2. There exists an orthonormal basis (en)n∈N of H consisting of
eigenfunctions of A, say Aen = λnen, where the sequence λn is increasing to
∞. Moreover, as en ∈ D(A∞), it has a Hölder continuous representative in
the sense that there exists a function en ∈ Cα(Ω) such that en = (en|Ω, en|Γ).
Finally, the semigroup T can be represented as

T(t)f =
∞∑

k=1

e−λkt 〈f, ek〉H ek.(6.1)
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From the representation (6.1) we can obtain information about the as-
ymptotic behavior in a standard way. For this, however, we need some addi-
tional information about the first eigenvalue, which we obtain by making use
of the following facts.

Remark 6.3. The first eigenvalue λ1 of A can be obtained by minimizing the
Rayleigh quotient :

λ1 = inf
u∈D(a)\{0}

a(u)
‖u‖2

H

.

Moreover, the infimum is in fact a minimum and every minimizer is an eigen-
function for λ1. Thus,

λ1 = inf
u∈D(a)\{0}

a(u)
‖u‖2

H

= inf
u∈D(A)\{0}

〈Au,u〉H
‖u‖2

H

.

Lemma 6.4. (i) If γ = 0 almost everywhere, then λ1 = 0 and ker(A) =
span{(1Ω,1Γ)}.

(ii) If γ ≥ 0 and γ > 0 on a set of positive measure, then λ1 > 0 and we
have ker(A) = {0}.

(iii) If
∫
Γ

γ dS < 0, then λ1 < 0.

Proof. In cases (i) and (ii), a is accretive, so we have λ1 ≥ 0. Thus, whether
λ1 = 0 or λ1 > 0 depends only on ker(A).

(i) Suppose γ = 0 almost everywhere. Then any constant function be-
longs to the kernel of A and hence λ1(A) = 0. Let us prove that any element
of ker(A) is necessarily constant. To that end, let u ∈ ker(A) ⊆ D(A) ⊆
D(a). Then

0 = 〈Au,u〉H = a(u,u) =
∫

Ω

α|Δu1|2dx.

It follows that α|Δu1|2 = 0 and hence, since α(x) ≥ η, Δu1 = 0. As, more-
over, ∂νu1 = 0, we have u1 ∈ ker(ΔN ). But only constants lie in the kernel of
the Neumann Laplacian. Indeed, the Neumann Laplacian is associated to the
form aN (u, v) = 〈∇u,∇v〉Ω defined on H1(Ω). Arguing as above we find for
u ∈ ker ΔN that ‖∇u‖2

Ω = 0 and thus ∇u = 0 so u is a constant. It follows
that u1 (hence also u2 = tru1) is constant almost everywhere.

(ii) Now let γ ≥ 0, γ �= 0 and u ∈ ker(A). As above we see that

0 = 〈Au,u〉H = a(u,u) =
∫

Ω

α|Δu1|2dx +
∫

Γ

γ|u2|2dS.

But then each of these integrals has to be zero. Arguing as above shows that
u1 ∈ ker(ΔN ) and hence u1 ≡ c for some constant. But then u2 = tru1 ≡ c.
As γ �= 0, we find some set P ⊆ Γ of positive measure and ε > 0 such that
γ(x) ≥ ε for every x ∈ P . This implies

0 ≥
∫

Γ

γc2 dS ≥ εc2|P |,
which, in turn, implies c = 0.

(iii) Plugging (1Ω,1Γ) ∈ D(a) into the Rayleigh quotient, we obtain a
negative value as

∫
Γ

γ dS < 0. Thus λ1 < 0. �
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We can now characterize the asymptotic behavior of our semigroup.

Theorem 6.5. (i) If γ = 0 almost everywhere, then ‖T(t)f−f̄‖H ≤ e−λ2t‖f‖H
for all f ∈ H, where

f̄ :=
1

|Ω| + |Γ|
(∫

Ω

f1dx +
∫

Γ

f2dS

)
(1Ω,1Γ),

and λ2 > 0 is the second eigenvalue of A.
(ii) If γ ≥ 0 and γ > 0 on a set of positive measure, then ‖T(t)f‖H ≤

e−λ1t‖f‖H holds for all f ∈ H. Thus, in this case, the semigroup T is
exponentially stable.

(iii) If
∫
Γ

γ dS < 0, then ‖T(t)‖ = e−λ1t → ∞ as t → ∞.

Proof. As for (i), observe that in this case f̄ = e−λ1t〈f, e1〉He1 in view of
Lemma 6.4. Thus (6.1) and Parseval’s identity yield

‖T(t)f − f̄‖2
H =

∞∑
k=2

e−λkt|〈f, ek〉H|2 ≤
∞∑

k=2

e−λ2t|〈f, ek〉H|2 ≤ e−λ2t‖f‖2
H.

This proves (i). In case (ii) we have λ1 > 0 (see again Lemma 6.4), and (ii)
follows by a similar computation. (iii) follows by considering an eigenvalue
corresponding to the eigenvalue λ1. �

7. Eventual Positivity

We have seen in Proposition 3.5 that the semigroup associated to the operator
A is never positive. This is hardly surprising, as this is the expected behav-
ior of semigroups generated by the Bi-Laplacian subject to ‘classical’ bound-
ary conditions. However, for some of these boundary conditions, like ‘slid-
ing’ boundary conditions or Dirichlet (in this context also called ‘clamped’)
boundary conditions on certain domains, the semigroup is, in a sense, eventu-
ally positive. As this behavior is also observed for other operators (including
the Dirichlet-to-Neumann operator), recently a systematic treatment of this
phenomenon was initiated, see [6–8].

In this section we will prove that in the case γ = 0, the semigroup T is
eventually positive in the sense that there is some t0 > 0 such that for every
f ∈ H with f ≥ 0 but f �= 0 there exists an ε > 0 such that T(t)f(x) ≥ ε
for all t ≥ t0 and (considering Theorem 5.4) all x ∈ Ω ∪ Γ; in the language
of [6] it would be more precise to call this behavior uniform, eventual strong
positivity with respect to the quasi-interior point 1. The term ‘uniform’ refers
to the fact that the time t0 can be chosen independently of the function f.
In our situation this uniformity follows from the self-adjointness of A (cf. [6,
Corollary 3.5]).

The case where γ ≥ 0 but γ �= 0 is more involved. In this case the
function 1 does not satisfy the boundary condition and we have to replace
it with some other quasi-interior point, i.e. a strictly positive function. In
practice, if the first eigenfunction of the generator of the semigroup is positive,
one uses this function. In fact, for a semigroup to be (even individually)
eventually strongly positive, it is also necessary that the first eigenfunction is
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positive. However, for the Bi-Laplacian with Dirichlet (or clamped) boundary
conditions it is known that for some domains (see [30] for a survey) the first
eigenfunction changes sign.

As it turns out, Dirichlet boundary conditions appear as a limiting case
of our general boundary conditions. At the end of this section, we will prove
that we can deduce from this that also in our situation, it can happen that
the first eigenfunction of our operator A changes sign so that the semigroup
T is not eventually positive in any sense in this situation.

But let us start with γ = 0.

Theorem 7.1. Let γ = 0. Then the semigroup T is eventually positive in the
sense defined above.

Proof. We apply [6, Corollary 3.5] for the quasi-interior point 1 of H. Note
that, as a consequence of Lemma 6.4, we have λ1 = 0 as γ = 0 and the
corresponding eigenspace is spanned by 1 (thus condition (iii) of [6, Corollary
3.5] is satisfied). It remains to check the other hypotheses of [6, Corollary 3.5].
We first note that T is real as a consequence of Lemma 3.5. Furthermore the
operator A is self-adjoint due to the symmetry of the form (see Theorem
3.4). All that is left to show is that D(A∞) embeds into the ideal generated
by 1, i.e. L∞(Ω) × L∞(Γ). But this follows from Theorem 5.4. �

We now turn to the situation where γ > 0. Let us first explain how
the Bi-Laplacian with Dirichlet boundary conditions can be obtained as a
limiting case. To that end, we consider a sequence (γn)n∈N in L∞(Γ;R) with
0 ≤ γn ≤ γn+1. We assume that there exists a sequence (gn) ⊆ (0,∞) with
γn(x) ≥ gn for almost all x ∈ Γ and such that gn ↗ ∞. We now consider the
sequence an, defined by D(an) := D(a) and

an(u, v) := 〈Δu1,Δv1〉Ω + 〈γnu2, v2〉Γ.

Note that we have chosen α ≡ 1 and β ≡ 1 here. Obviously, the sequence an

is increasing, in the sense that D(an+1) ⊆ D(an) and an(u) ≤ an+1(u) for
all n ∈ N and u ∈ D(an+1). We are thus in the situation of Barry Simon’s
monotone convergence theorem, see [29]. The limiting form a∞ is defined by
setting a∞(u) := supn∈N

an(u) for

u ∈ D(a∞) :=
{ ⋂

n∈N

D(an)
∣∣∣ sup

n∈N

an(u) < ∞
}

.

In our concrete situation, it is easy to see that the limiting form is given by
a∞(u, v) = 〈Δu1,Δv1〉Ω, defined on the domain

D(a∞) = {u ∈ H |u1 ∈ D(ΔN ), u2 = tru1 = 0}.

We point out that the limiting form is not densely defined (as D(a∞) =
L2(Ω) × {0}). Nevertheless, we obtain degenerate convergence of the associ-
ated operators in the strong resolvent sense (see Section 4 of [29]); here, for
the limiting form, we have to consider the resolvent of the associated operator
on D(a∞) and then extend this to H by setting it to 0 on D(a∞)

⊥
.



   13 Page 22 of 26 R. Denk et al. IEOT

Let us identify the operator associated to the limiting form on D(a∞) �
L2(Ω). We put ã∞(u, v) = 〈Δu,Δv〉Ω for

u, v ∈ D(ã∞) := {u ∈ D(ΔN ) |Δ2u ∈ L2(Ω), tr u = 0}.

As a consequence of Simon’s monotone convergence theorem, the form a∞
(thus also ã∞) is closed.

The next Lemma shows that the limiting operator is the Bi-Laplacian
subject to Dirichlet boundary conditions tru = 0 and ∂νu = 0 with maximal
domain.

Lemma 7.2. The associated operator to ã∞ is given by A∞ = Δ2 on

D(A∞) = {u ∈ D(ΔN ) |Δ2u ∈ L2(Ω), tr u = 0}.

Proof. Denote, for the moment, the operator associated to ã∞ by A, i.e.
u ∈ D(A) and Au = f if and only if u ∈ D(ã∞) and ã∞(u, v) = 〈f, v〉Ω for
all v ∈ D(ã∞). Thus, if u ∈ D(A), by considering v ∈ C∞

c (Ω) it immediately
follows that Au = Δ2u = f ∈ L2(Ω). Since tr u = 0 for all u ∈ D(ã∞), we
have u ∈ D(A∞).

For the converse inclusion, let u ∈ D(A∞) ⊆ D(ã∞) and put f :=
Δ2u = A∞u. Then Δu ∈ H0

Δ(Ω) Thus for all v ∈ D(ã∞) ⊆ D(ΔN ) we
obtain from Lemma 2.3

〈f, u〉Ω = 〈Δ(Δu), v〉Ω = 〈Δu,Δv〉Ω + 〈τ̃NΔu, tr v〉G′
0×G0 = ã∞(u, v)

as tr v = 0. �

Thus, we have proved that the operators An, associated to an converge
in the strong resolvent sense to the Bi-Laplacian with Dirichlet boundary con-
ditions on L2(Ω). As we have already mentioned, properties of the eigenspace
corresponding to the first eigenvalue of the latter operator depend heavily on
the geometry of Ω:

If Ω is a ball (or, in a sense, close enough to a ball), then the first
eigenfunction is positive. If Ω is a square, then the first eigenfunction changes
sign. It may also happen that the first eigenspace is two-dimensional, e.g. if
Ω is an annulus whose inner radius is small enough. For all of this, and more,
we refer the reader to [30] and the references therein.

We will now prove that the convergence of An to A∞ (at least after
passing to a subsequence) entails convergence of the first eigenvalue and the
first eigenfunction. It follows that examples of Ω where the first eigenfunction
of the Bi-Laplacian with Dirichlet boundary condition changes sign give rise
to examples of domains where the first eigenfunction of our operator also
changes sign and thus the associated semigroup is not eventually positive.

In what follows, we write λ1(An) for the first eigenvalue of the operator
An. Note, that this eigenvalue can be computed by minimizing the Rayleigh
quotient (see Remark 6.3). By the monotonicity of the forms an, the first
eigenvalues are increasing. We will use these facts in the proof of the following

Theorem 7.3. For every n ∈ N, let un = (un
1 , un

2 ) be an eigenfunction of An

for the first eigenvalue λ1(An) with ‖un‖H = 1. Then there is a subsequence
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(which, for ease of notation, we index with n again) such that un → u ∈ H

for some u = (u1, u2) ∈ D(a∞) and

λ1(An) → λ1(A∞) = a∞(u),

i.e. u1 is an eigenfunction of A∞ for the eigenvalue λ1(A∞).

Proof. We have an(un) = λ1(An) ≤ λ1(A∞). Thus, since γn ≥ gn ↗ ∞, we
have

‖un
2‖2

Γ = 〈un
2 , un

2 〉Γ ≤ 1
gn

an[un] ≤ 1
gn

λ1(A∞) −→ 0.

This proves that un
2 = tr un

1 → 0 in L2(Γ). Furthermore we have

‖Δun
1‖2

Ω = 〈Δun
1 ,Δun

1 〉Ω ≤ a(un) ≤ λ1(A∞).

As also ‖un
1‖2

Ω ≤ ‖un‖H = 1, we can bound the H1(Ω)-Norm of un
1 . Indeed,

‖un
1‖2

H1(Ω) = ‖un
1‖2

Ω + 〈∇un
1 ,∇un

1 〉Ω = ‖un
1‖2

Ω − 〈Δun
1 , un

1 〉Ω
≤ 1 +

1
2
‖Δun

1‖2
Ω +

1
2
‖un

1‖2
Ω ≤ 3

2
+

1
2
λ1(A∞).

By the reflexivity of H1(Ω), passing to a subsequence, we may (and shall)
assume that un

1 converges weakly in H1(Ω) to some u1 ∈ H1(Ω). As the
embedding of H1(Ω) into L2(Ω) is compact, un

1 → u1 in L2(Ω). Since (Δun
1 )n

is bounded in L2(Ω), passing to another subsequence, we obtain Δun
1 ⇀ w

for some w ∈ L2(Ω). It follows that for ϕ ∈ H1(Ω)

〈w,ϕ〉Ω = lim
n→∞ 〈Δun

1 , ϕ〉Ω = lim
n→∞ 〈−∇un

1 ,∇ϕ〉Ω = −〈∇u1,∇ϕ〉Ω ,

so that u1 ∈ D(ΔN ) and Δu1 = w. Thus, Δun
1 ⇀ Δu1.

As the trace is continuous from H1(Ω) to L2(Γ), it is also weakly con-
tinuous, so that trun

1 ⇀ tru1. Since we know that trun
1 = un

2 → 0, we must
have tru1 = 0. Altogether, we have proved that u = (u1, 0) ∈ D(a∞) and un

converges to u in H. As the norm is continuous, we find ‖u‖H = 1.
Since the norm on L2(Ω) is weakly lower semicontinuous,

λ1(A∞) ≤ a∞(u) = ‖Δu1‖2
Ω

≤ lim inf
n→∞ ‖Δu1

n‖2
Ω

≤ lim inf
n→∞ an(un) ≤ λ1(A∞).

Hence limn→∞ an(un) = limn→∞ λ1(An) = λ(A∞) = a∞(u), proving the
claim. �

Combining what was done so far, we obtain

Corollary 7.4. Suppose that the domain Ω is such that all eigenfunctions of
A∞ for the first eigenvalue λ1(A∞) change sign. Then, there is some γ > 0
such that the operator A on L2(Ω) × L2(Γ) with α ≡ β ≡ 1 is not eventually
positive.
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Proof. We consider the sequences an, An as above and denote by un a nor-
malized eigenfunction for λ1(An). By Theorem 7.3, after passing to a subse-
quence, un converges to a function of the form u = (u1, 0), where u1 is an
eigenfunction of A∞ for λ1(A∞) which, by assumption, changes sign. Given
a set S ⊆ Ω, we have

|〈1S , un
1 〉Ω − 〈1S , u1〉Ω| ≤ |Ω|1/2 ‖un

1 − u1‖Ω → 0.

If we now consider sets of the form S = {u1 > ε} and S = {u1 < −ε}, we
see that for large enough n also un

1 must change sign whence, for such n, the
semigroup generated by −An cannot be eventually positive. �

Remark 7.5. A concrete example where the first eigenfunction of A∞ changes
sign is given by Ω = [0, 1]2, see [4, Thm 1.1].
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