Current Best Practice for Presenting Probabilities in Patient Decision Aids: Fundamental Principles

Carissa Bonner, Lyndal J. Trevena, Wolfgang Gaissmaier, Paul K. J. Han, Yasmina Okan, Elissa Ozanne, Ellen Peters, Daniëlle Timmermans, and Brian J. Zikmund-Fisher

Background. Shared decision making requires evidence to be conveyed to the patient in a way they can easily understand and compare. Patient decision aids facilitate this process. This article reviews the current evidence for how to present numerical probabilities within patient decision aids. Methods. Following the 2013 review method, we assembled a group of 9 international experts on risk communication across Australia, Germany, the Netherlands, the United Kingdom, and the United States. We expanded the topics covered in the first review to reflect emerging areas of research. Groups of 2 to 3 authors reviewed the relevant literature based on their expertise and wrote each section before review by the full authorship team. Results. Of 10 topics identified, we present 5 fundamental issues in this article. Although some topics resulted in clear guidance (presenting the chance an event will occur, addressing numerical skills), other topics (context/evaluative labels, conveying uncertainty, risk over time) continue to have evolving knowledge bases. We recommend presenting numbers over a set time period with a clear denominator, using consistent formats between outcomes and interventions to enable unbiased comparisons, and interpreting the numbers for the reader to meet the needs of varying numeracy. Discussion. Understanding how different numerical formats can bias risk perception will help decision aid developers communicate risks in a balanced, comprehensible manner and avoid accidental "nudging" toward a particular option. Decisions between probability formats need to consider the available evidence and user skills. The review may be useful for other areas of science communication in which unbiased presentation of probabilities is important.

Keywords
decision aids, risk communication, standards

Shared decision making requires evidence-based probabilities to be conveyed to the patient in a way they can easily understand, to compare options and come to an informed health decision. This includes the chance of experiencing an adverse health outcome if no action is taken, as well as the chance of experiencing benefits and harms from different medical interventions.

Patient decision aids are designed to present quantitative evidence about options in an unbiased way to facilitate shared decision making. The most recent 2017 Cochrane review of patient decision aids includes 105 studies involving 31,043 people and more than 50 different decisions. This update continues to provide high-quality evidence that decision aids can improve patients’ knowledge and help them feel more informed and clear about their values.

To present probabilities in a way that facilitates an informed choice, we need to better understand how people perceive and process risk information. We can then
develop decision aids that optimize informed decision making and account for the heuristics that can influence our perceptions. This understanding may help decision aid developers avoid nudging patients toward a particular intervention or outcome through differences in the way they are presented. Varying skill levels may influence the best format to use for a particular target audience, as certain formats may enable better understanding in patients with low numeracy and literacy.

We aimed to update a previous review of the current evidence for how to present probabilities in a way that maximizes understanding, with a focus on informing decision aid development.

Methods
Following the method of the first review published in 2013, the International Patient Decision Aids Standards (IPDAS) collaboration convened international groups of experts on IPDAS quality dimensions, including risk communication (led by B.J.Z.-F. and L.J.T.). This included researchers from Australia, Germany, the Netherlands, the United Kingdom, and the United States. Several opportunities were also provided for the chapter leads to liaise with other chapter lead authors about overlap and gaps between the standards.

We reviewed and expanded the topics covered in the first review to reflect emerging areas of research. Ten topics were agreed as covering the key aspects of communicating numeric information in patient decision aids. Five of these were considered to be fundamental principles and are detailed in this first article. The remainder apply numeric information in more complex contexts and are outlined in our second article. In addition, our discussions led to a new introductory section considering the rationale for (and potential downsides of) numerical presentations of probability. Two to 3 authors reviewed and wrote each section based on their expertise before bringing the topics together for the full IPDAS report, which was subsequently split into 2 articles because of the large number of topics covered. Each author took a leadership role on 2 topics, and all contributed to reviewing the final paper. We resolved disagreements through discussion to reach consensus on which topics were considered fundamental versus advanced. The final fundamental topics included 1) presenting the chance that an event will occur, 2) putting numerical estimates in context and evaluative labels, 3) conveying uncertainty, 4) time-based risk formats, and 5) skills for understanding numerical estimates. The advanced article covers 1) effect sizes of treatment/screening options, 2) personalized risk estimates, 3) visual formats, 4) graph literacy, and 5) interactive/web-based formats. We have continued to provide this update as a non-systematic expert review of the literature on these 10 topics, drawing on the depth and breadth of the authors’ expertise. Following the development of the expert-written section updates, all coauthors further contributed to the update, which includes more than 230 references.

Within each section, we have summarized the key points that continue to hold from the previous IPDAS update in 2013, as well as new evidence, with recommendations highlighted. More detail is provided for topics in which advancement has occurred since the previous update, with brief overviews for other issues. Where emerging issues for future research and/or future systematic reviews were identified, these are highlighted in the Results and expanded further in the Discussion section.

Results
A Preparatory Question: Are Numbers Needed?
A difficult issue for decision aid developers is how much information to include. Including detailed risk and benefit information supports the ethics of informed choice and can reduce over- or underestimation of risk, which is otherwise both common and substantial, particularly among less numerate individuals. Numbers may, for some people at least, evoke greater trust and people report wanting quantitative information. As a result, current standards for decision aids support provision of quantitative information as a quality indicator.

Yet, interpreting quantitative risk and benefit information can be challenging. As discussed in the below sections, less numerate individuals find the information retrieval and comparison tasks necessary to derive
meaning from risk data more challenging. Furthermore, in unfamiliar situations, all patients can find it difficult to determine whether a risk statistic should be interpreted as good or bad absent use-relevant reference standards or evaluative labels.21,22

The value derived from providing quantitative information about risks and benefits appears to depend on the patients’ ability to derive appropriate gist (including affective) representations from this information.23 If patients can do so consistently, accurately, and in task-appropriate ways, then the argument for presenting numbers in risk communications is strong. If they cannot, then the question becomes whether nonnumerical risk presentations might be more consistently and accurately interpreted.24 By this argument, less numerical precision (including the use of nonquantitative formats such as evaluative category information only) may be appropriate for certain tasks, such as providing clear motivational or behavioral signals (e.g., being at “high risk” for developing a disease implies a need to act), although evidence is needed for this conjecture.

Strong arguments exist for ensuring the availability of quantitative risk information for patients. Whether quantitative information about probabilities is always necessary as the initial, primary communication of risk, however, is less clear, and only a few decision aid studies have begun to investigate this question.24 The data that do exist is difficult to interpret, with studies finding that quantitative information can have different effects in the screening context: increased colorectal screening, no effect on colorectal cancer screening uptake, and decreased cervical cancer screening intentions.25–27 More generally, there is a need for research evaluating both how targeted quantitative risk information can best be used to support informed decision making, and when and under what circumstances tradeoffs may exist regarding use of number-heavy risk presentations.

Evidence and Recommendations Regarding Numerical Presentations of Probability

What is most clear from our review is that many numerical format and presentation decisions can influence the effectiveness of numerical presentations of probability. The key recommendations from each section are summarized in Table 1, with more detail in text below.

Presenting the Chance an Event Will Occur

The research evidence regarding optimal methods for presenting the chance that a single event will occur has not changed substantively in the past decade. For both written and verbal information, patients have a more accurate understanding of risk when probabilistic information is presented as numbers rather than words, even though some may prefer receiving words because it seems easier to understand, as one systematic review has shown.28 Some newer studies show that combining verbal and numerical risk formats may lead to overestimation;29 therefore, care should be taken if formats are combined.

Suitable formats for presenting numeric chances depend on the nature of the task. When the task is to present the chance of a single event, either frequency formats that express the expected proportion of affected and unaffected individuals within a given time frame (e.g., “Every year, 10 in 100 people with pre-diabetes develop diabetes”) or percentage formats (e.g., “Every year, 10% of people with pre-diabetes will develop diabetes”) are more transparent and informative than formats such as “The annual chance of developing diabetes is 10%.”30 The last statement is problematic because it does not specify the reference class, that is, the population for whom the risk estimate applies (e.g., “people with pre-diabetes”). Without a clear description of the reference class, people might draw inappropriate inferences about their own risks or misinterpret probabilities as referring to event frequencies in their own lives.30 For example, a patient taking fluoxetine for mild depression might hear from her doctor that there is a “30–50% chance of developing a sexual problem such as impotence or loss of sexual interest” and misinterpret this statement as indicating that she will have problems in 30% of her own sexual encounters. In other words, she might mistakenly interpret the reference class or denominator of the risk estimate as the total of her own sexual encounters, rather than the total of all patients who take fluoxetine.31

Presenting risks as frequencies reflects the way that evidence-based objective probability estimates are truly derived. However, there is also some experimental evidence that risks presented as frequencies are perceived as higher than when they are presented in their equivalent percentage value, especially in patients with lower numeracy32 and (possibly) when smaller percentages are presented.33 There is some evidence that people find percentages less than 1% (e.g., 0.1%) more difficult to understand than the equivalent simple frequency (e.g., 1 in 1000).33 However, this problem may reflect difficulty manipulating decimal points (e.g., asking someone to represent 1 in 1000 as a percentage) rather than a comprehension problem. Combining simple frequency and percentage formats appears to add no advantage.33
The use of the “1-in-x” format to communicate probability estimates should be avoided in patient decision aids. Available experimental evidence suggests that 1-in-x formats can elevate probability perceptions leading to biased risk perceptions and thereby affect decision making. This effect appears to be small but consistent and does not seem to be more prevalent among people with lower numeracy. Because patient decision aids should be balanced and not designed to persuade toward one particular option, the 1-in-x format is not recommended.

When the task is to compare the chance of occurrence of 2 or more independent events (e.g., the chance of symptom relief with drug A compared with placebo), formats that express the chance of an event using a single number, such as a percentage, work better than frequencies that require the use of more than one number, such as 1 in 100. If using simple frequencies such as 1 in 100, one should use the same denominator (e.g., 1 in 100 versus 2 in 100), as these are easier to compare than frequencies using different denominators (e.g., 1 in 100 versus 1 in 50). Consistent denominators should always

Table 1 Key Recommendations for Decision Aid Developers

<table>
<thead>
<tr>
<th>Topic</th>
<th>Recommendations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overarching principles</td>
<td>• In general, use numerical risk formats (versus verbal terms only) for precision, comprehension, and trust building</td>
</tr>
<tr>
<td></td>
<td>• Consider context and skills when deciding which risk formats to use</td>
</tr>
<tr>
<td></td>
<td>• Present options and outcomes in the same risk format wherever possible</td>
</tr>
<tr>
<td></td>
<td>• Test risk formats with end users in the population to whom the risk applies</td>
</tr>
<tr>
<td>Presenting the chance an event will occur</td>
<td>• Using frequencies or percentages over a specific time period may be considered to reduce information overload</td>
</tr>
<tr>
<td></td>
<td>• Use consistent denominators and formats across outcomes</td>
</tr>
<tr>
<td></td>
<td>• Specify the reference class (i.e., the population to whom the risk applies)</td>
</tr>
<tr>
<td></td>
<td>• It is preferable to avoid 1-in-x formats as they are hard to compare and bias risk perception</td>
</tr>
<tr>
<td>Numerical estimates in context and evaluative labels</td>
<td>• Consider using evaluative labels, symbols, or colors to convey gist meaning but beware of the potential for bias (e.g., different cultural meanings of red)</td>
</tr>
<tr>
<td></td>
<td>• Consider providing comparative risks and/or reference standards (e.g., in a risk ladder) to clarify meaning, but choice of comparators can influence beliefs and create bias (e.g., anchoring to first number presented)</td>
</tr>
<tr>
<td>Conveying uncertainty</td>
<td>• Recognize that people's conceptual understanding of both the first-order (related to the fundamental indeterminacy of future outcomes) and second-order (related to the lack of knowledge needed to predict future outcomes) uncertainty embodied by probability estimates is often limited</td>
</tr>
<tr>
<td></td>
<td>• Be cautious about communicating second-order, epistemic uncertainty (e.g., using probability ranges), given that this uncertainty may be psychologically aversive and difficult to understand, and that optimal methods of communication remain to be determined</td>
</tr>
<tr>
<td>Time-based risk formats</td>
<td>• Because little comparative research exists on the multiple ways to convey risk over time (e.g., 5- v. 10-years risk, mortality/survival graphs, cumulative risk, occurrence rate), communicators should consider audience needs when deciding among formats (e.g., what time period is most relevant?)</td>
</tr>
<tr>
<td></td>
<td>• It is preferable to avoid using biological age to convey “lifetime risk” because it is not clear to users how this relates to absolute risk or intervention effects, and it can bias risk perception and reduce credibility</td>
</tr>
<tr>
<td></td>
<td>• Prolongation of life and delay of event information may be useful to help patients weigh whether the benefit is meaningful to them</td>
</tr>
<tr>
<td></td>
<td>• If time-based risk formats are used, use the same time frame for all options and outcomes to avoid bias toward one option</td>
</tr>
<tr>
<td>Skills for understanding numerical estimates</td>
<td>• Draw and maintain attention to numeric information</td>
</tr>
<tr>
<td></td>
<td>• Don’t require the reader to do math; instead, do the math for them (e.g., by calculating and presenting differences or ratios)</td>
</tr>
<tr>
<td></td>
<td>• Help the reader understand a number’s evaluative (good or bad) meaning through cues (e.g., labels) and support with visual formats (e.g., icon arrays)</td>
</tr>
<tr>
<td></td>
<td>• When evaluating the effect of decision aids or risk formats, the numerical skills of both patients and clinicians should be considered</td>
</tr>
</tbody>
</table>

The use of the “1-in-x” format to communicate probability estimates should be avoided in patient decision aids. Available experimental evidence suggests that 1-in-x formats can elevate probability perceptions leading to biased risk perceptions and thereby affect decision making. This effect appears to be small but consistent and does not seem to be more prevalent among people with lower numeracy. Because patient decision aids should be balanced and not designed to persuade toward one particular option, the 1-in-x format is not recommended.
be used. Experimental studies have shown that when choosing the size of the denominator, smaller numbers (e.g., 100) are easier to understand and remember than larger numbers (e.g., 10,000).40 When more than one probability is communicated (e.g., in situations involving multiple benefits and harms of multiple drugs), organizing the information through the use of a balanced and transparent format is also important. One such format that has been shown to improve consumer understanding and decision making is the so-called “fact box,” a simple table-based summary of benefits and harms.41,42

Numerical Estimates in Context and Evaluative Labels

As mentioned in the preceding sections, interpreting health-related numerical estimates is an important component of a patient’s decision-making process. Traditional approaches to communicating these risks, in fact, have often relied on numerical approaches. However, numeric information in health is often unfamiliar, lacking in meaning, and may be unusable for patients, even when numeric comparisons are available and/or patients believe they are using the numbers.43 Partly because of this, people often do not comprehend numerical information and can have difficulty using such information in decision making.44 Some approaches have relied on affective (evaluative) meaning to modulate the communication process.44,45 Research suggests that health-related risk estimates can be provided using numerical information in context, including numeric comparisons and evaluative labels and symbols to improve patient understanding.46

Directly interpreting the meaning of numeric information (e.g., telling patients how good or bad a 9% risk is) can have a substantial influence on how patients use that information in subsequent decisions. For example, providing evaluative labels for numeric quality-of-care information (e.g., telling decision makers that the numbers represented “poor” or “excellent” quality of care) resulted in greater use of this information in judgments and less reliance on an irrelevant emotional state among the less numerate.21 Evaluative labels for test results (that a patient’s test was “positive” or “abnormal”) induced larger changes to risk perceptions and behavioral intentions than did numeric results alone.47 Other evaluative symbols and color coding can help people identify high-value options and better understand risk factors (e.g., quality stars, checkmarks, blue ribbons, colored dots),48–51 although placement of the evaluative symbol can matter.49 The benefits of evaluative coding, however, can be unclear or mixed, so they should be used carefully. The use of evaluative labels, for example, can improve understanding of the general concept of uncertainty (whether it is high or low), but it can lead to value-inconsistent choices.52 Further research is needed on how such formats affect trust, decision-making processes (e.g., feelings, thoughts), decisions, and behaviors.

To make sense of risk information, people may also be provided with comparisons to other risks or to risks of other people (e.g., the average person). According to the evaluability hypothesis,22,53 providing individuals with information about other risks makes it easier for them to evaluate the magnitude of the risk. One approach is the risk ladder, in which people are provided with more familiar risk situations (e.g., the comparative risk of smoking). Research showed that less numerate individuals, in particular, were able to distinguish better between risk levels using this method.54 However, the addition of familiar risk scenarios to illustrate very low risks related to prenatal risks of chromosomal anomalies did not help women distinguish better between risk levels.55 More numerate women, however, did distinguish between risk levels better overall. These conflicting results of comparing risks may be related to the specific comparison risk that was used, which may be more familiar to some than to others. The choice of comparison risks has the potential to influence risk perceptions, so this choice needs to be made with careful thought.

Another approach is to compare an individual’s health risk with that of other people. In one study, individuals who were told they had a higher than average risk for breast cancer were more inclined to choose risk-reducing treatment than those told they had lower risk, despite the risks being equivalent.56 This effect may be interpreted as less desirable, as the comparison may lead to a less thorough evaluation of risks and benefits of a medical intervention by individuals. Another way to do this is converting an absolute risk to “biological age” by comparing to average or ideal risk, discussed below.

Conveying Uncertainty

Probability estimates embody and express different types of uncertainty, which may or may not be explicitly communicated to patients. The first type, aleatory or “first-order” uncertainty, pertains to the fundamental indeterminacy or randomness of future events. This idea can apply cleanly to populations, as different outcomes occur to different individuals at known rates even as it remains unknown who experiences which outcome. It fits less well in the context of probability estimates for individual
patients, because individuals experience only outcomes, not probabilities. The second major type, epistemic or "second-order" uncertainty (also known as "ambiguity"), pertains to a lack of knowledge needed to predict future outcomes and encompasses uncertainty about the adequacy, reliability, or credibility of probability estimates themselves. The resulting imprecision in probability estimates is then typically expressed by confidence intervals. Epistemic uncertainty and ambiguity in risk information arise from multiple sources, ranging from limitations in empirical evidence to methodological problems including mis specification of risk prediction models, which limit the precision and accuracy of probability estimates.

An understanding of these inherent uncertainties of probability estimates is arguably an essential element of informed decision making. However, the communication of these uncertainties can also be psychologically aversive and needs to be undertaken cautiously, as it may bias choices away from options with ambiguity.

As of the 2013 review, only a few studies had explored the optimal methods and outcomes of communicating aleatory or epistemic uncertainty in risk information. The communication of aleatory uncertainty related to probability estimates had been examined in a small number of studies of both textual and novel visual methods of representing randomness, which have suggested that these methods have no significant effect on risk perceptions. However, evidence was lacking regarding their effects on patient understanding and other important outcomes. The communication of second-order epistemic uncertainty (ambiguity) had also been examined in only a small number of studies, which have shown mixed effects on outcomes such as patient understanding, perceptions of the credibility of risk information, and medical decision making.

The communication of uncertainty has attracted increasing attention since the previous review, as attested by the emergence of literature reviews on this topic. Time-Based Risk Formats

The previous review highlighted the issue of limited data for long-term outcomes given short trial time frames but identified several ways this might be conveyed to patients when available: 1) the chance of a specific outcome at a single point in the future, such as 10-years risk of cardiovascular disease used in estimates of risk/benefit for cholesterol medications; 2) the chance of an outcome at multiple points in the future, such as presenting the risk of repeat bypass surgery at 5 years and 10 years after the initial procedure; 3) mortality or survival graphs showing risks over time, in which a balanced approach using both survival and mortality graphs is recommended; 4) cumulative future or lifetime chance of an outcome, such as describing cancer risk in patients with BRCA gene mutations; and 5) rate of occurrence of an outcome that is likely constant over time, such as the annual risk of pregnancy with a specific birth control method. With such a wide range of ways to present risk over time, it is important to ensure outcomes are presented in the same way for different intervention options, to avoid biasing patients toward one over the other. For example, a longer time frame will make the risk appear...
bigger because of base-rate neglect (i.e., ignoring the time period), but a shorter time frame may be more salient and avoid the issue of discounting future outcomes.4 Several emerging time-related formats with new evidence since the last review are detailed below.

“Biological age” is an increasingly popular risk format that converts an absolute risk to a younger or older age by comparing risk factors to ideal or average levels, resulting in various labels such as real age, fitness age, heart age, lung age, kidney age, and bone age.82,83 Age is a time-based concept, but biological age could also be conceptualized as an evaluative label or a relative risk, as it involves comparing a person’s risk to ideal or average values. There is of particular interest in heart age, which is increasingly used around the world,84 but the methods used to calculate these risk formats are highly variable: the same person may get a younger or older heart age depending on the model used and whether they are compared with ideal or average risk factors.85

In terms of risk communication, heart age formats are often used for persuasive behavior-change purposes, but they also appear to elicit a greater emotional response, are easier to remember, and increase risk perceptions compared with absolute risk formats. Trials in applied settings have found better risk factor control using heart age interventions as compared with usual care (e.g., refs. 86, 87), but these tended to include multiple behavior-change techniques, so the effect of biological age as a risk format cannot be isolated. Direct comparisons between heart age and absolute risk are less conclusive. An experiment to test this88 found higher emotional responses and risk perception in participants who received a heart age message compared with participants who received a 10-years absolute risk percentage. However, heart age did not increase lifestyle change intentions in this study or another that tested the addition of heart age to 10-years risk.89 Another experiment found that personalized heart age was better recalled than a 5-years risk percentage, but it also reduced credibility, inflated risk perceptions in low-risk participants, and did not promote behavioral intentions to see a general practitioner or change their lifestyle.90

When hypothetical heart age based on averages was compared with percentage or natural frequency, it improved recall, comprehension, and evaluations of the information and also led to higher behavioral intention for some but not all outcomes.91 A rapid review of biological age formats in 2020 concluded that it is unclear whether these formats have a positive impact on lifestyle behaviors overall.82 Preliminary results from a heart age review92 presented at the Society for Medical Decision Making (SMDM) in 2020 concurred that there is limited evidence for heart age formats affecting behavior but that it does affect emotional response and risk perception, so decision aid developers should be mindful of this.

Heart age calculators can work well as a marketing tool to get attention and direct consumers to appropriate clinical assessments or lifestyle change,93 but caution is needed to ensure they are not used to nudge low-risk people toward medications and tests that they are unlikely to benefit from in the short term.94 A registered trial (ACTRN12620000806965) will soon test the effect of adding heart age to a cardiovascular disease prevention decision aid for the first time, to investigate how it affects decision making.

There also appears to be increasing interest in prolongation-of-life data, which can also be framed as postponement of death.95 A study comparing absolute risk reduction (e.g., risk reduced by x\%) to prolongation of life (e.g., life extended by x months) in relation to statin use found no difference for decision confidence or satisfaction with risk communication, but the prolongation-of-life format reduced prescription uptake.95 A review including 6 prolongation-of-life trials found that medication was acceptable if it prolonged life by >8 months for 48\% of participants on average, which increased to 64\% for 8 months or more.96 Delay-of-event formats are analogous to prolongation-of-life formats if the “event” is death, but other outcomes such as heart attacks or cancer recurrence may also be presented. One study found that delay-of-event formats were associated with positive views of treatment benefits and a high willingness to initiate/pay for treatment. There is also some indication that health care providers and patients value survival gain differently, for example, where doctors’ recommendations are associated with their own perceptions of survival gain and insensitive to patient preferences.97,98

Skills for Understanding Numerical Estimates

Numeracy is the ability to understand and apply mathematical concepts. It relates strongly to the use and interpretation of numerical information. Higher numeracy can facilitate computations, the interpretation of numbers, information seeking, depth of processing, and trust in numerical formats, leading to improved risk comparisons, risk estimates, and value elicitations.43,99 On the other hand, lower numeracy is associated with overestimation of risk probabilities,100,101 higher susceptibility to factors other than numerical data (e.g., framing, mood states, labels used to interpret quantitative results and feedback from others),21,102 and more denominator
Numeracy research has progressed considerably, and enough evidence exists in this field now to complete a systematic review, although currently only narrative reviews exist. Furthermore, basic research findings in objective numeracy imply that especially less numerate patients and consumers will be helped by decision aid developers using communication techniques that 1) draw and maintain attention to numeric information, 2) highlight the importance of doing the math for patients, and 3) provide evaluative meaning to numeric information in decision aids. Without additional assistance in decision aids, less numerate people may rely more on compelling stories and emotional reactions in decisions rather than the hard facts and, as a result, potentially may make worse decisions when numbers are involved. Although people may believe they understand and effectively use numbers in their decisions, this is not always the case. Decision aid developers, however, can choose evidence-based methods to present numeric information that will help less numerate patients in particular. Finally, another communication technique that can help less numerate patients is the use of simple visual displays such as icon arrays or bar graphs (see the accompanying article for further details). See also use of evaluative labels above.

Discussion

This review provides key recommendations for decision aid developers deciding how to present numerical probabilities about health outcomes and the risks and benefits of intervention options. The overarching principles include using numerical formats, using consistent risk formats for options and outcomes to make it easy to compare, and testing risk formats with the end users, particularly if contextual information such as evaluative labels are used or skills are limited. More specifically, we recommend 1) using frequencies or percentages over a set period of time with a clear denominator to convey comparisons and/or considering use of evaluative labels; 2) choosing risk formats that enable unbiased comparisons between outcomes and interventions (e.g., avoid using different 1-in-x formats for different options); 3) addressing the needs of patients with varying skill levels by drawing attention to the numbers, doing any mathematical operations for the reader, and using targeted evaluative explanations with care; and 4) using consistent formats across health outcomes and intervention effects wherever possible (e.g., numerical frequency out of 100 over 5 y). The last recommendation is particularly relevant whenever facilitating comparisons and/or considering use of evaluative labels or symbols, representations of uncertainty, or time-based risk formats.

Tradeoffs sometimes need to be made between the pros and cons of different probability formats, and such decisions should be made with the aim of presenting...
options in a consistent and unbiased way. For decision aid developers, the possible risk formats may be limited by the available evidence. For example, if comparing 2 interventions in which outcomes are assessed over 5 years for one outcome but 10 y for the other, we suggest using the 5-years time point for both to enable a consistent format that can be compared. Or if comparing 2 outcomes in which one risk is less than; greater than 1% and the other is >1%, we suggest showing this as a frequency out of 1000 people to ensure both risks are presented as a whole number with the same base rate (instead of requiring decimal points or use of inconsistent base rates). The skills of the intended audience should also be considered when choosing the risk format, and ideally, the final materials should be tested with end users in that population.

This review highlights the importance of acknowledging inherent uncertainty when applying objective probabilities of a single event to an individual person. Objective probabilities are empirically observed frequencies of repeated events. However, because an individual has only one life to live—and either will or will not experience the event—frequencies have no logically coherent meaning. At the individual, single-event level, probability estimates represent subjective expressions of confidence, not objective "facts." Decision aids may help this basic level of uncertainty become more transparent to patients, but more complex uncertainty concepts may cause confusion until research identifies more effective communication strategies.

A major limitation of this review is that it was not done systematically, relying instead on the expertise and interests of the authors. We were not able to assess the overall strength of evidence for different risk communication formats using this method but have highlighted where findings are based on reviews versus single trials. We encourage other researchers to pursue systematic reviews for the numerous topics identified in the article to inform revisions to future IPDAS guidelines. At least 2 systematic reviews are currently in progress: 1) comparing the effects of different quantitative risk communication formats across health issues on comprehension, perceptions, and decisions (Prospero registration CRD42018086270) 2) investigating the quantitative and qualitative effects of communicating cardiovascular risk as heart age on behavioral and psychological outcomes (protocol available as preprint; with preliminary results from 9 quantitative trials presented at SMDM 2020). Further research is needed in several areas to guide future decision aid developers, including the issue of conveying different types of uncertainty, how to phrase evaluative labels and comparisons for different cultural groups, and how to choose time points across disease areas to avoid biasing perceptions (e.g., if cancer risk is presented over a lifetime while cardiovascular disease risk is presented over shorter time frames, then cancer will be perceived as a greater risk). Another interesting but relatively unstudied question is whether numerical information is always necessary for every risk communication: are there some contexts in which this is unhelpful to patients? Interventions to address the needs of numeracy and health literacy in specific patient subgroups and among health professionals also requires further investigation. This article may be useful for other areas of science communication, in which unbiased presentation of probabilities is important, but the overall purpose of communication must be carefully considered: a different approach may be needed if the goal is persuasion, myth busting, or behavior change.

In conclusion, this article outlines the fundamental principles for decision aid developers to consider when deciding how to present probabilities, updating the earlier IPDAS review. It is complemented by advanced concepts in our accompanying article. Overall, our recommendation stands to provide numerical risk information to patients, with an emphasis on using consistent forms to improve understanding and unbiased presentation of options in patient decision aids. Understanding how different risk formats can affect risk perception will help decision aid developers avoid accidental "nudging" toward a particular option.

Acknowledgments

We would like to acknowledge the authors of the previous review on which this article is based, who were not able to contribute to the update.

ORCID iDs

Carissa Bonner https://orcid.org/0000-0002-4797-6460
Lyndal J. Trevena https://orcid.org/0000-0003-1419-1832
Wolfgang Gaissmaier https://orcid.org/0000-0001-6273-178X
Paul K. J. Han https://orcid.org/0000-0003-0165-1940
Yasmina Okan https://orcid.org/0000-0001-7963-1363
Elissa Ozanne https://orcid.org/0000-0001-5352-9459
Dannielle Timmermans https://orcid.org/0000-0002-3602-3875
Brian J. Zikmund-Fisher https://orcid.org/0000-0002-1637-4176

References

22. Zikmund-Fisher BJ. The right tool is what they need, not what we have: a taxonomy of appropriate levels of precision in patient risk communication. *Med Care Res Rev*. 2013;70(1 suppl):37S–49S.

66. Han PK, Klein WMP, Lehman T, Massett H, Lee SC, Freedman AN. Laypersons’ responses to the communication...

