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1 Introduction

In the paper [K], the second author has studied the structure of nonarchimedean
exponential fields, i.e., nonarchimedean ordered fields admitting an order isomor-
phism between the additive group and the multiplicative group of positive elements.
Among other results, a necessary and sufficient criterion was given for countable
nonarchimedean fields to be exponential. In view of the recent development in the
model theory of exponential fields (cf. [W], [D-M-M]), however, it is desirable to
have criteria for the existence of exponentials satisfying well known axioms that are
also satisfied by the usual exponential on [R. In particular, the usual exponential

*This paper was written while the second author was supported by a research grant from the
university of Heidelberg.
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satisfies axioms which relate its growth with the growth of polynomials, and (an
infinite scheme of ) Taylor axioms which express that it is the limit of the sequence
of finite partial sums

n x’L

E.(x) = 257

Our approach in this paper is to give a valuation theoretical interpretation of the
growth and Taylor axioms. Such an analysis is developped in chapter 2 and will be
used in chapter 3 to obtain a strengthening of the Countable Case Characterization
Theorem (Theorem 3.32 of [K]).

We are mainly interested in constructing exponential fields (K, f) satisfying at
least the following theory Va € K : T(f, ) satisfied also by IR with f = exp:

r>n* = f(z)>a" (
>0 — f(z)> F,.(2) (
T(f,z) = <0 — f(z)> Ey(x) (k€ 2IN —1)
r<0 — f(z)< Ex(x) (
2 <1 = |f(2) = Eu(2)] < [2"H] (

In this case, f will be called a strong exponential.

For the definition and basic properties of the natural valuation v on an ordered
field K and the natural valuation v on an ordered Abelian group (7, see [K]. For
a € K, the residue class modulo v will be denoted by @. Further, K denotes the
residue field, and we will write G := v(K*) for the value group. The valuation
ring R, and the valuation ideal [, are convex subgroups of the additive group
(K,+,0,<). Since this group is divisible, there are group complements A to R, in
(K,+,0,<) and A’ to I, in R, such that it may be represented as the (internal)
lexicographic sum

(K,+,0,<)=AIIA'Il],, (1)
and A’ is (canonically) isomorphic to (K, +,0, <) through the residue map. As it
was done in [K], we will only consider exponentials f which satisfy:

1) f(1,) is equal to the subgroup 1 + [, of 1-units in the ordered multiplicative
group (K>° - 1, <) of positive elements of K,

2) f(R,) is equal to the subgroup U>° of all units in (K>, -, 1,<).

(Note that an element ¢ € K is called a unit if v(a) = 0.) For such an exponential
f, we find that B := f(A) is a group complement to 2% in (K>, - 1, <) and that
B’ := f(A’') is a group complement to 1+ 1, in &°, and we have a decomposition

(K>°,-,1,<)=BIB I (1+1,) (2)

(cf. Theorem 3.8 of [K]). If such decompositions (1) and (2) are given and if fz, is
an isomorphism between the ordered groups A and B, then f; will be called a left
exponential. Similarly, an isomorphism fj; between the ordered groups A’ and B’
will be called a middle exponential, and an isomorphism fr between the ordered
groups [, and 1 + I, will be called a right exponential. Every exponential (which
satisfies conditions 1) and 2)) induces a left, a middle and a right exponential.
According to this decomposition of exponentials, we decompose also T" as follows:

T(f,x)=
(v(z) <0 —=Tu(f,2) A (v(@)=0—=T(f,2)) A (v(z) >0—=Tr(f,2z)) (3)
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with

Tr(f,x) = /\WTLm(f,:z;) and  Tr(f,z):= /\WTRm(f,:z;)

where
>0 — f(z)>a™ (m € IN, m <n) (L1 (f,2))
Ton(foz) = 4220 = J@)>En(z) (meN,m<n)  — (12,(/,2))
A <0 — flzr)>FEp(z) (k€2IN—-1,k<n) (L3 (f x))
r<0 — flz)< Ey(z) (k€2IN, k<n) (L4, (f,z))
>0 — f(z)> FEu(x) (meIN, m<n) (RL,(f,2))
Tun(f.2) = <0 — f(z)>Ey(z) (k€2IN—-1,k<n) (R2(f 2))
RmiJo T ) 2<0 — f(x)< Eyx) (ke€2IN, k<n) (R3,(f,z))
[f(x) = Ep(2)] < |2™*] (m € IN, m <n) (R4, (f,2))

Note that v(z) < 0 implies [z| > 1 and # > 0 — x > n?; similarly, v(z) > 0
implies |z| < 1 and x < n?. Conversely, if > n? then v(z) <0 and if |z| < 1 then
v(x) > 0. So indeed, (K, f) satisfies Va : T(f,x) if and only if it satisfies the three
theories in (3).

Let f be an exponential on K (resp. a left exponential f: A — B). It will
be called left strong if it satisfies Tr(f,x) for all x such that v(x) < 0 (resp. for
all z € A). In section 2.1, we will study the axiom scheme T}, ,.(f,x) and show its
logical relation to the assertions of the form

([ (@) <v(a")

(cf. Corollary 2.5). The crucial notion introduced in section 2.1 is that of a strong
exponential group. Given an archimedean ordered Abelian group A, an exponential
group (G, @) in A is an ordered Abelian group whose archimedean components are
all isomorphic to A and such that ¢ is an order isomorphism from G<° := {g €
G| g <0} onto I'™ := vg(G \ {0}). The exponential group (G, ) is said to be a
strong exponential group if ¢(g) < vg(g) for all g € G<°. With G = v(K ™), every
exponential f of KA induces a group exponential ¢ = ¢, on G, as it was shown in
Remark 3.21 of [K]. We will prove that (G, ;) is a strong exponential group if and
only if for every positive x with v(z) < 0 (resp. « € A), we have v(f(x)) < v(z")
for all n € IN. It is then deduced that f is left strong if and only if (G, ¢y) is a
strong exponential group.

In section 2.2, we will then consider the relation between the exponential (or
middle exponential) f on K and the exponential f that it induces on the residue
field. Since this residue field with respect to the natural valuation is archimedean,
we are able to show that f satisfies T'(f, ) for all @ with v(z) = 0 (resp. for
all z € A') if and only if f coincides with the usual exponential exp on K (cf.
Theorem 2.12).

In section 2.3, we will consider the right part. Let f be an exponential on K
(resp. a right exponential f : [, — 1+1,). It will be called right strong if it satisfies
Tr(f,x) for all # such that v(z) > 0 (that is, for all © € [I,). We will study the

axiom scheme Tg,(f, ) and show its logical relation to assertions of the form
v(f(x) = En(x)) > v(2")
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(cf. Lemma 2.13). We will then deduce that f is right strong if and only if for every
x with v(x) > 0, we have v(f(x)—E,(x)) > v(z") for all n € IN (cf. Corollary 2.14).

The results of these three sections are put together in section 2.4 to obtain a
necessary and sufficient condition for an exponential to be strong (Theorem 2.17)
and to reduce the axiom system 7' to just two axiom schemes (Theorem 2.18). Also,
exponentials may be constructed from given left, middle and right exponentials, in-
heriting their growth and Taylor properties (Theorem 2.20). If the value group G is
a strong exponential group having an additional property, then a given exponential
may be improved to an exponential which is left strong (Theorem 2.21).

In the case of countable nonarchimedean exponential fields, strong methods are
available for the construction of exponentials satisfying many of the above axioms.
It turns out that the following theories are the most adequate for this case, for

n € IN:

T.(f,x) =
(v(z) <0 —=T(f,x)) AN (v(@)=0—=T(f,2)) A (v(x) >0 —= Tr.(f,2)).

The ultimate result obtained in chapter 3 is Theorem 3.7. It shows that under
the hypothesis that K be countable, non—archimedean and root closed for positive
elements, given a strong exponential f on K, it can be lifted to an exponential
f on K satisfying Vo € K : T1(f,z) if and only if G ~ [[o(K,+,0 <). If K is
henselian for its natural valuation (as it is the case if K is real closed), then T} may
be replaced by T, for arbitrary fixed n € IN. This is the promised strengthening
of Theorem 3.32 of [K]. It is shown by proving that a nontrivial countable divisible
exponential group is always strong exponential (cf. Proposition 3.1), and that the
(existing) isomorphism f : [, — 1 + I, can be replaced by (and improved to) an
isomorphism f, : [, — 1 + [, satisfying Va € [, : Tr,(fn,z) (cf. Lemma 3.6).
Both results are shown using back and forth constructions.

For n = 1, we get the theory Yo € K : Ti(f, ), where

x>n* = f(z)>a" (n € IN)
v(z)<0Az>0 — f(z)> E,(x) (n € IN)
v(z)<0Az <0 — f(z)> Eg(x) (k€ 2IN — 1)
Ti(f,z) =< v(2)<0Az <0 — flz) < E,(x) (k€ 2IN)
t#0 — flz)>1+z
r<0 — f(z)<l1
2l <1 > f@) (14 2)] < Jel?

Now if an exponential f satisfies Va € K : f(x) > 1 4+ =, then it is continuous,
differentiable and equal to its own derivative (cf. Theorem 14 of [D-W]). We have
thus shown that for countable real closed fields, any exponential on the archimedean
residue field K which is continuous, differentiable and equal to its own derivative,
may be lifted to an exponential on the field itself, satisfying the same properties,
provided that G ~ [g(K,+,0,<). This gives a complete answer to problem 3)
stated in the introduction of [K], for the countable case.

In the last chapter, we will give a further discussion of the structure induced by
an exponential on the value group GG of a nonarchimedean ordered field. For this
discussion, we will introduce a new concept. It is inspired by the idea of studying
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a “shift” on the value group. At this point, we would like to thank A. Macintyre
for bringing this idea to our attention. We are also endebted to Arne Ledet for
hints concerning these notes, and to all other participants of our seminar for their
interest and patience.

2 The valuation theoretical interpretation of the
growth axioms for exponentials

Recall that the natural valuation on an ordered field A has the following properties,
for all a,b € K:

v(a) > v(b) = la| <0 (4)
v(a—b) >v(a) = sign(a) = sign(b) (5)

and, if v(a) > 0 and v(b) > 0,
a>b=a>b and a>b=a>b. (6)

We will consider the following formulas:

Pule,y) =y — Eu(x)] < |2
Pie,y) = |y — En(x)] < |a"
Qu(z,y) = vy — En(x)) > v(z") .

In the following, we will have a closer look at these formulas and make some
basic observations. Note first that @, (a,b) trivially holds if @ # 0 and b = F,(«a).
From (4), we obtain: for every n, Q,(a,b) implies P, (a,b) and if v(a) < 0, then
P,(a,b) implies P!(a,b). Similarly, P!(a,b) implies P,(a,b) if v(a) > 0.

Lemma 2.1 i) Q,(a,b) implies b > F,_1(a) whenever n is even or a > 0, and it
implies b < F,_1(a) whenever n is odd and a < 0.

ii) Qnla,b) implies P_,(a,b), for every n > 2.
iii) Qn(a,b) implies Qm(a,b), whenever v(a) > 0 and m < n.
i) Pl(a,b) implies Q,—1(a,b), whenever v(a) > 0.
Proof: i): Q.(a,b) implies a # 0 and
a® " a®
v(b—En_l(a)—H) > v(a") :U<H) , (7)

so by (5)

: : a”

sign(b — E,—1(a)) = sign (ﬁ)
But a”/n! > 0 holds if and only if n is even or a is positive. This proves i).

ii): Equation (7) implies

an
o~ Erala)] = | +a




for some ¢ € a"1,. But then, v(c¢) > v(a™/n!) which yields

n

—|—c

7’L
_l

<2

< |a”|

for n > 2. This proves assertion ii).
iii): Equation (7) implies

a?’L

o(b— Ey_y(a)) = v ( ) — v(a") . (8)

If v(a) > 0, then v(a") > v(a™ '), and thus, equation (8) yields @,_1(a,b). Our
assertion now follows by induction.

iv): Since |a| < |b] implies v(a) > v(b), P.(a,b) implies v(b — E,(a)) > v(a"t)
which in view of v(a) > 0 yields equation (7). This in turn yields

a?’L

o(b = By (a)) = v ( ) = v(a®) > v(a™Y)

which is Q,—1(a,b). O

n!

We need a further lemma about the (), —predicates. Note that if K is an ordered
field and root closed for positive elements, then for every y € K>° and ¢ € (), the
element y? is a (uniquely defined) element in the divisible (and torsion free) group
(K>°,-,1,<).

Lemma 2.2 Let K be root closed for positive elements. Suppose that a # 0, v(a) >
0 and v(e) > 0. Assume that Q,(a,b) and Q,(c,d) hold. Then Q,(qa,b?) holds for
every ¢ € @, ¢ # 0. Further, Q,(a + ¢,bd) holds if v(a 4+ ¢) = min(v(a),v(c)).

Proof:  From the theory of binomial coefficients, it is known that

52) 59254

|
i=0 U i=0 =0

where A is a sum consisting only of monomials ¢, ,a"¢” for which p+v > n + 1.

W.l.o.g., let v(a) < v(c). Then v(A) > v(a"t!), and we obtain

(Z“—) (Z ) zn;“fc mod a1 R, . (9)

|
i=0 i=0

Suppose now that Q,(a,b) and Q,(c,d) hold. Since both sums on the left side of
(9) have v—value 0 and since v(a) > 0 and a # 0, it follows that

= Z a—l—c mod a" 1, .

=0

Since v(a + ¢) = min(v(a),v(c)) by the assumption of our lemma, we have v(a) =
v(a + ¢), and the above equivalence is thus nothing else than @, (a + ¢, bd).



Let r,s > 0 be arbitrary natural numbers. Replacing both a and ¢ by %a we
obtain from (9) by induction up to s:

£ - ) -

! !
=0 & =0 &

(Z a—') mod «"'R, .
7

=0 “°
Since the sums have v—value 0, it follows that

(znj(?a)i) = (znj “i)g mod a"' R,

H
=0 =0 L

and, by virtue of @, (a,b) and v(a) >0, a # 0,

(Z (E,C:) ) = b: mod a"I, .
7!

=0

This proves Q,(ga, b?) for all positive rationals ¢. Finally, it remains to show that
@Qn(a,b) implies @, (—a,b™!). From (9), for ¢ = —a we obtain that

n ai n (_a)z B 1

Again, since the sums have v—value 0, this yields

(an (_@—?)) = (znj “i)_l mod a™' R,

H
=0 =0 L

and, by virtue of @, (a,b) and v(a) >0, a # 0,

() = vt ot

!
i—0 1.

This proves Q,(—a,b™!) and consequently, Q,(qa, b?) for all rationals g # 0. O

2.1 Left exponentials and the value group

In this section, we will consider the growth axioms Tp(f,x) for exponentials f
on the left, that is, for v(x) < 0. More generally, we may also consider a left
exponential f which is only defined on a group complement of R,. In any case, we
only have to deal with elements € K of negative value. We will first show that
in this situation, (L3,(f,«)) and (L4,(f,x)) are always satisfied, for all n € IN.
Giving a valuation theoretical interpretation for (L1, (f, z)) and (L2,(f, x)), we will
then derive a simple assertion which is equivalent to Tr(f, x), and we will express
it by a condition on the map ¢ induced by f on the value group G = v(K*).

Assume that v(a) < 0. Then

0 (Bafa)) =0 (5] = of@) (10)



and
v (En(a) _ —) = v (Epi(a) > 0 (En(a)) | (11)
hence by (5),

Note that the latter holds if and only if @ > 0 or n is even. Consequently, for a < 0
and v(a) < 0 we have
E.(a) >0 <= nis even. (12)

Now let f be an exponential or a left exponential on K and a € dom (f). If
a > 0 then f(a) > 1 and v(f(a)) < 0. If a <0, then f(a) < 1 and v(f(a)) >0
Hence, if @ < 0 and v(a) < 0, then for n > 1,

v(a") <0< o(f(a)) (13)

and in view of (10),
o (Ba(a)) < 0 < o f(a)) (14)

and

v(fla) = En(a)) = min{v(f(a)),v(En(a))} = v(a") .
Lemma 2.3 Let f be an exponential or a left exponential on K and a € dom (f).
Assume that v(a) <0 and a < 0. Then:
i) fla) > a" holds if and only if a” is negative, that is, if and only if n is odd. On
the other hand, f(a) < a™ holds if and only if a™ is positive, that is, if and only if
n is even.

ii) fla) > E,(a) holds for every odd n. On the other hand, f(a) < E,(a) holds

for every even n.

Consequently, f satisfies (L3,(f,a)) and (L4,(f,a)) for every n € IN.

Proof: i): From (13), we infer v(a”) < v(f(a)). Since f(a) is positive, this yields
that f(a) > ™ if a” is negative, and that f(a) < a” if a” is positive.

ii): Using (14) in the place of (13), we now obtain that f(a) > FE,(a) if a™ is
negative, and that f(a) < F,(a) if " is positive. Our assertion thus follows
from (12). O

Lemma 2.4 Assume that v(a) < 0.
i) Ifb>0, then v(b) < v(a™) implies b > a™ and b > F,(a).
i) Assume thata >0 and b> 0. Ifb > a"t' orifb> E,1(a), then v(b) < v(a™).

Proof: i): If b > 0, then v(b) < v(a™) implies b > a”, and in view of (10), it also
implies b > E,(a).

ii): Ifa >0 and b > 0, then b > «"*" implies v(b) < v(a"*!), and b > F,41(a) im-
plies v(b) < v(E,41(a)). In view of (10) and v(a) < 0, we obtain v(b) < v(a"t!) <
v(a™) in both cases. O

From this lemma together with Lemma 2.3, we obtain:
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Corollary 2.5 Let [ be any partial function from K to K>° and a € dom (f)
such that v(a) <0 and a > 0. If v(f(a)) < v(a"), then f satisfies (L1,(f,a)) and
(L2,(f,a)). Conversely, if f satisfies (L1,41(f,a)) or (L2,41(f,a)), thenv(f(a)) <
v(a™).

If in addition f is an exponential or a left exponential on K, then

Tppsi(fra) = v(f(a)) <v(a") (15)
v(f(a)) <v(a") = Tra(f,a) (16)

and Tr(f,a) is equivalent to
Vne IN : v(f(a)) <v(a) (17)
which in turn may be expressed as

va(v(f(a))) < vg(v(a)) . (18)

Note that assertion (18) holds for « if and only if it holds for —a. This is true

because v(a) = v(—a) and ve(v(f(—a))) = va(v(f(a)™)) = va(-v(f(a))) =
ve(v(f(a))). But this invariance does not hold for assertion (17). Hence, both
assertions are not equivalent in the case of an element a with v(a) < 0 and a < 0.

Now let (G4, ) be an exponential group and consider the following condition
on ¢:
Vg € G »(g) < valg) . (19)
By the definition of ¢ (cf. Remark 3.21 of [K]) and by the foregoing corollary,
we obtain the main result of this section:

Theorem 2.6 Let f be an exponential or a left exponential on K. Then the fol-
lowing assertions are equivalent:

a) @ = @y satisfies condition (19)

b) Ve € dom(f): v(z) <0 = vg(v(f(x))) <vg(v(z))

¢) [ satisfies Tr(f,x) for all @ € dom (f) with v(z) <0

d) f satisfies f(x) > 2" for all positive x € dom (f) with v(x) <0 and all n € IN

e) [ satisfies f(x) > E,(x) for all positive v € dom (f) with v(z) < 0 and all
n € IN.

We will say that an exponential group (G, ¢) is a strong exponential group if ¢
satisfies (19). Hence, we have the following

Theorem 2.7 For every exponential (resp. left exponential) f on K,
fis left strong <= (G, ;) is a strong exponential group.
Let us also note:

Lemma 2.8 Let f be an exponential or a left exponential on K and a € dom (f).
Assume that v(a) < 0 and a < 0. Then P,(a, f(a)) and thus also P!(a, f(a)) holds
for alln > 0.



Proof: ~ The assertion is trivial for n = 0 because of f(a) < 1. This also yields
fla)—1—a < —a and since —a > 0 by hypothesis and f(a) > 1+a by the foregoing
corollary, this gives our assertion in the case of n = 1. Now the remaining cases
(where n > 2) may be proved by induction:

fla) = Eu(a)] = (@)= Euia) = %
< |f(a) — E,_1(a)| + Z—T
< la” 1|+‘H‘<2 —T < la"|

in view of

The following theorem gives a condition on the value group G which enables
“improving” a left exponential to a left strong exponential. This condition on G’ is
to have the lifting property, that is, that every automorphism o of the rank of ¢
lifts to an order automorphism 7 of (¢ (which means that 7 induces o on the rank).

Theorem 2.9 Suppose that K admits a left exponential h and that its value group
G is a strong exponential group having the lifting property. Then K admits also a
left strong exponential with the same domain and range as h.

G has the lifting property if (K,+,0,<) (or G itself) admits a valuation basis
or if it is maximally valued (e.g. if K is a power series field).

Proof: ~ Assume the decompositions given in (1) and (2) with 2 : A — B. By
Theorem 3.8 of [K], B is isomorphic to G. Hence, B has the same properties that
we have assumed for (7. Following Remark 3.21 of [K], the isomorphism h induces
an isomorphism ¢y, : G<° = I'~. By our hypothesis that G be a strong exponential
group, there exists

@ : G0 =T~ such that Vg: ¢(g9) < va(g) -

Then ¢ o ;! is an order isomorphism on I'". By our hypothesis on G & B, it is
induced by an isomorphism 7 of B. We set fr = 7o h. Then fr : A — B is an
order isomorphism, and we have ¢y, = . Hence,

va(v(fr(a))) = ¢(v(a)) <vg(v(a))

which by virtue of Theorem 2.6 yields that f;, satisfies Tp(fr,x) on A.
Concerning the lifting property of (7, let us consider the case where (K, +,0, <)
admits a valuation basis. Then A admits a valuation basis (cf. Lemma 2.18 of [K]),
and via the isomorphism /£, the same is true for B which in turn is isomorphic to G.
That is, G is a Hahn sum over its skeleton and as such, admits a canonical lifting
of every automorphism of its rank. This also holds for Hahn products, and indeed,
if (K, +,0,<) is maximally valued, then by Lemma 2.17 of [K], the same is true for
A and thus by Corollary 2.8 of [K], A and also B and G are Hahn products. O
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Note that also certain intermediate groups between Hahn sum and Hahn prod-
uct have the lifting property, namely the k~bounded Hahn products (the subgroups
of all elements of a Hahn product whose support has cardinality < ). But it does
not seem likely that every value group of an exponential field has the lifting prop-
erty; however, we do not know of an example (which necessarily would have to be
uncountable, as it will turn out in chapter 3).

To close this section, let us note that the preceding theorem is not true if we drop
the assumption “K admits a left exponential”. In fact, if K is a nonarchimedean
power series field such that G admits a valuation basis, then A admits no left
exponential at all. This is a consequence of Proposition 3.26 of [K].

2.2 Middle exponentials and the residue field

In this section, we will consider the axiom scheme
Vee K:v(x)=0 — T(f, )

and determine its relation to the corresponding axiom scheme Vo € K : T(f, ).
For the first basic results, f need not be an exponential; the only hypothesis re-
quired is that f be a (partial) map on K which induces a well defined map f
on K through f(@) = f(a) for all @ € dom(f) N R,. In this case, the following
facts hold in view of (6). If f(@) > @, then f(a) > a". If f(@) > E,(@), then
fla) > E,(a), and if f(a) < E,(a), then f(a) < E,(a). If |f(@) — E.(@)] < |[a*!],
then |f(a) — E.(a)| < |a"t'|. Hence:

Lemma 2.10 Let [ be as above. If f satisfies Vo € K : T(f,x), then f satisfies
Vo € dom (f): v(x)=0 — T(f, ).

Now we have to ask for the converse. Again by (6), the following facts hold.

If f(a) > a”, then f(a) > a". If f(a) > E,(a), then f(a) > F,(a), and if f(a) <
(@), then 7(@) < B,(@). I | (@) — Bo(a)] < [a™*1], then [[(@) — B, (@)] <[]
In other words, in passing from the field K to its residue field, the strictness of
the inequalities is lost. In particular, if f satisfies T'(f, x) for all © € dom (f) with

v(x) = 0, then f satisfies the corresponding “weak version of 7”7 on K. However,
the axiom scheme

>0— f(x) > F.(xz) (n€lIN)

is equivalent to the axiom scheme
r>0— f(x)> E,(xr) (n€lIN),
and for |z| < 1 and ng as big as to satisfy (ng+1)! > (1 —|z|)~', the axiom scheme
[f(2) = Ea(@)| < |2 (o < n € IN)
is equivalent to

|[f(2) = En(2)] <" (no <n € IN).
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But for the other axiom schemes of 7', such an equivalence is not immediately
seen, even if f is an exponential. Nevertheless, we may use the important additional
information that A is an archimedean field since it is the residue field of the natural
valuation on K.

Lemma 2.11 Let f be an exponential or a middle exponential on K. If f satisfies
the axiom scheme

Ve cdom (f)\ 1, : |z| <1 = |f(x) — E.(2)] < ="t (Vn € IN), (20)

then f coincides with the usual exponential exp and is thus a strong exponential on

K.

Proof: ~ By what we have said preceding to this lemma, the axiom scheme (20)
implies that f satisfies the axiom scheme

Vee K: |z| <1 —|f(z)— E.(2)] < |2 (¥n € IN).

But for @ € K with [@] < 1 this yields that f(@) is a limit of the series Y720 %-.
Since K is archimedean, it is the only limit and thus equal to exp(@).

We have shown that f coincides with exp on the interval (—1,1). But for every
@ € K there is some n € IN such that @/n € (—1,1) (using again that K is
archimedean). By the homomorphism property of f and exp, it follows that

f@ = f(@/n)" = exp(a/n)" = exp(a) ,

showing that f coincides with exp on all of K. a

As a corollary to the foregoing two lemmata, we obtain:

Theorem 2.12 Let [ be an exponential or a middle exponential on K. Then the
following assertions are equivalent:

a) f satisfies Vo € dom (f): v(x)=0 — T(f,x),
b) f is a strong exponential (and thus coincides with exp),

¢) [ satisfies (20).

2.3 Right exponentials

Lemma 2.13 Let f be any partial function from K to K and a € I, an element
of dom (f). Then:

i) Quyila, f(a)) implies Tr,(f,a)
i) (R (f,a)) implics Qu(a. f(a).

Proof: i): Assume the hypothesis. Then by virtue of part iii) of Lemma 2.1,
Qm(a, f(a)) holds for 1 < m < n+ 1. By part i) of Lemma 2.1, it follows that
fla) > E.,(a) whenever m is odd or @ > 0, and that f(a) < F,,(a) whenever
m is even and a < 0. This shows that (R1,(f,a)), (R2,(f,a)) and (R3,(f,a))
hold. Finally, by part ii) of Lemma 2.1, P! (a, f(a)) holds for m < n, showing that
(R4,(f,a)) holds.
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ii): If (R4,41(f,a)) holds, then in particular, P}, (a, f(a)) holds. Now the asser-

tion follows from part iv) of Lemma 2.1. a

Corollary 2.14 Let f be any partial function from K to K and a € I, an element
of dom (f). Then Tr(f,a) is equivalent to

Vn e IN: Qu(a, f(a)), (21)

and this in turn is equivalent to ¥n € IN : (Rf,(f,a)).

As an important consequence of the last corollary, we have:

Theorem 2.15 For every exponential (resp. right exponential) f on K, the fol-
lowing assertions are equivalent:

a) f satisfies Ve € I, : Qn(x, f(x) for all n € IN,
b) [ is right strong,
c) f satisfiesVx € 1,: |f(x) — E,(x)| < |2"T] for alln € IN.

To close this section, we will have a look at the map ¢; induced by f on G>°
(cf. Remark 3.21 of [K]).

Lemma 2.16 Suppose that K admits an exponential f.

i) If f(e) > 1+4¢ for all positive e € I, then v ;(g) < g for all g € G>°. Conversely,
if ¥s(g) < g for all g € G>°, then f(e) > 1+ ¢ for all positive € € 1.
i) IfVae e I, : Qi(x, f(x)) holds, then vy = id.

Proof: i): =: Assume that f(g) > 1 + ¢ for all positive ¢ € I,. Let g € G>° and
e > 0 such that v(e) = g. We know that f(e)—1 > ¢ > 0. Hence, v(f(c)—1) < v(e)
by the convexity of the valuation.

Now assume that ¢;(g) < g for all g € G*°. Let 0 <e € I,. If f(g) <1 +¢, then
fle) =1 < e. But e > 0 implies f(¢) — 1 > 0. In view of the convexity of the
valuation, this shows that v(f(g) — 1) > v(¢e), contradicting our hypothesis.

ii): By hypothesis, for v(a) > 0 we have

v(f(a) = (1 +a)) > v(a);

but then, we must have v(f(a) — 1) = v(a). O

2.4 (De)composing exponentials

From Theorems 2.7, 2.12, 2.15 and Lemma 2.13 we obtain the following criterion
for strong exponentials:
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Theorem 2.17 Let [ be an exponential on K. Then f is a strong exponential if
and only if
1) (G,ey) is a strong exponential group,
2) f is a strong exponential,
3) f satisfies Ve € I, : Qu(x, f(x)) for alln € IN.

More generally, the following holds. If f satisfies Vo € K : T,(f,x), then 1)
and 2) hold and f satisfies Vo € I, : Q. (x, f(x)). Conversely, if 1) and 2) hold
and f satisfies Vo € I, © Qni1(2, f(2)), then f satisfies Vo € K @ T,(f, x).

Also from Theorems 2.7, 2.12, 2.15 together with Theorem 2.6, we obtain the
following information on our system of growth and Taylor axioms:

Theorem 2.18 The following theories are equivalent:

a) Yo T(f, z),

b) Vo: (x>0 f(z) > B (2)) A(Jz| <1 = |f(z) — Eu(2)] < |2"H]) (n € IN),
c) VYo: (x>n? = f(z)>a") A (Jz| <1 = |f(z) — E.(2)] < |2"tY]) (n € IN).

For the construction of (more or less) strong exponentials, we need the following
lemma which puts left, middle and right exponentials together:

Lemma 2.19 Suppose that A (resp. B) is a group complement to R, (resp. to
U°) in (K,4,0,<) (resp. in (K>°-1,<)), and that A" (resp. B') is a group
complement to I, (resp. to 1 + 1,) in R, (resp. in U>°), so that we have the
decompositions (1) and (2). Suppose moreover that

1) fr: A — B is aleft strong exponential,

2) € : A" = B is a middle exponential satisfying Vo € A': T(€, z),

3) fr:l, = 141, is a right exponential satisfyingVa € I, : Tr,(fr, ).

Let

f:fLHG/HfR: ([(7+707<) — (I(>07'717<)
at+d +e — frla)-€(d)- fr(e)

(where a € A, o' € A', e € I,). Then [ is an exponential satisfying VYV : T,(f, ),
and f is equal to the exponential e which is canonically induced by € on K. If
moreover, fr is right strong, then f is a strong exponential.

Proof:  The (finite) lexicographic sum of order preserving isomorphisms is again
an order preserving isomorphism, so f is indeed an exponential on K. Since on A’
it coincides with ¢’, it induces e on K.

Assuming hypothesis 1), 2) and 3), we want to show that f satisfies Va :
T.(f,x). By 3), it satisfies Tr,(f,2) on I, since there it coincides with fgr (simi-
larly, if fr satisfies Tr(fr,x) on I,, then also f satisfies Tr(f,x) on [,). Since ¢’
satisfies T'(¢/,z) on A’, we know by Theorem 2.12 that e is a strong exponential
on K. Applying Theorem 2.12 a second time, we find that f satisfies T'(f,z) for
all # € R, \ I,. Further, since f, satisfies Tr,(fr,x) on A, Theorem 2.7 shows that
(G,@y,) is a strong exponential group. But since f coincides with f on A, we
have ¢ = ¢y, , and Theorem 2.7 now shows that f satisfies T7(f, x) for all « with
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v(x) < 0. All in all, we find that f satisfies Vo : T,,(f, 2), and that it even satisfies
Va: T(f,x)if fr satisfies Tr(fr, ) on I,. O

Let us mention that this lemma may be generalized by replacing 77, by 77, ,,. In
view of (15) and (16) of Corollary 2.5, we obtain that f satisfies 17 ,(f, x) for all
x with v(x) < 0if fr, satisfies Tp ,41(fr, x) for all @ € A.

As a corollary to the last lemma and Theorem 2.12, we obtain

Theorem 2.20 Let K be an ordered field, root closed for positive elements. If
there exist

1) a left exponential fr, on K which is left strong,

2) a strong exponential e on K,

3) a right exponential fr on K which satisfies Vo € I, : Tpu(fr, ),

then K admits an exponential f which satisfies Yo € K : T,(f,x) and such that

[ = e. If in addition, fr is right strong, then f may be chosen to be a strong
exponential on K.

Proof:  The only thing that is left to show is the existence of a middle exponential
¢ as required in Lemma 2.19. Since K is assumed to be root closed for positive
elements, there is a decomposition (2), according to Theorem 3.8 of [K]. (Since the
additive group of every field is divisible, the decomposition (1) does always exist.)
By Remark 3.21 of [K], e induces a middle exponential ¢’ : A" — B'. If e is a strong
exponential on K, then by Theorem 2.12, ¢’ satisfies T'(¢/,x) on A’ a

We can now extend Theorem 2.9 as follows:

Theorem 2.21 Suppose that K is an exponential field such that its value group
G is a strong exponential group having the lifting property. Then K admits an
exponential  which is left strong. If in addition, K admits a strong exponential
e, then f may be chosen such that it also satisfies T(f,x) for all x with v(x) =0,
and that f = e.

Proof: Let f be any exponential on K. Then f induces a right exponential
fr: L, = 1+1,. Wemay assume the decomposition (1), and setting B = f(A) and
B' = f(A'), we also obtain a decomposition (2). If K admits a strong exponential
e, then there exists a middle exponential € : A" — B’ that satisfies T'(¢’,z) for all
x € A’ and that induces ¢, as we have already shown in the proof of Theorem 2.20.
If K does not admit such an exponential then we take ¢’ to be the restriction
of f to A’. From Theorem 2.9, we infer the existence of a left strong exponential
fr: A — B. Now we put f = frIe'II fr. It follows from the proof of Lemma 2.19
that f satisfies T(fr,x) for all  with v(x) < 0 and T'(¢', x) for all & with v(z) = 0.
That is, f satisfies T'(f, x) for all  with v(z) < 0, as required. O

Corollary 2.22 Let E((G)) be a power series field, root closed for positive ele-
ments. Let e be a strong exponential on E. Then FE((G)) admits a strong expo-
nential lifting e if and only if G is a strong exponential group in £ and mazimally
valued.
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Proof: = follows from Theorem 2.7 together with Proposition 3.26 of [K].

<: Since G is a strong exponential group in £ and maximally valued, it follows
by Corollary 3.27 of [K] that F((()) admits an exponential. By Theorem 2.9,
(¢ has the lifting property. By Theorem 2.21, we obtain that E((()) admits an
exponential which is left strong and satisfies f = e. As observed by Alling in [ALL],
section 3, pp. 709-710, using a result due to B. H. Neumann (cf. [N]), it can be
shown that every power series field admits a right exponential which is right strong.

Our assertion now follows from Theorem 2.20. O

Remark 2.23 We can slightly improve the conclusion of the last theorem: In the
case where (K, 4,0, <) admits a valuation basis or is maximally valued, f may be
constructed such that it satisfies in addition Ve € [, : @ >0 — f(z) > 14+ 2. In
fact, in that case every automorphism of the rank of [, (i.e. every automorphism
of G>?) lifts to an automorphism of I, itself. On the other hand, since K admits
an exponential f, its value group ( is divisible, so there exists an automorphism
of G*? such that ¢ < id (e.g. take 1/(g) = g/2). Consider now the automorphism
Y ots of G0, and let h be an automorphism of 1 + I, inducing ¢ o (. (note
that 1 + I, has the same lifting property as I, since fr: [, ~ 1+ [,). Now replace
f by ho frin the proof of the preceding theorem. The resulting function f has
now the additional property that ¢y = ¢, so by part i) of Lemma 2.16, it satisfies
flz) > 1+ for all > 0 with v(x) > 0.

If f satisfies Va : v(x) <0 — Tr(f,x) and VYo : v(x) =0 — T(f,x), then it
follows that f(x) > 1 4+  whenever v(x) <0, and we have Vo > 0: f(z) > 1+ 2.

In the next chapter it will be shown that in the case where K is countable, the
conclusions of the theorem can be improved in a much better way, i.e. so that at

least we have

Ve: flz)>14x.

3 The structure theory for countable exponential

fields

In [K], the second author has shown that a countable divisible ordered Abelian
group (7 is an exponential group in A (where A is a countable divisible archimedean

ordered Abelian group) if and only if G ~ [Jg A (cf. Proposition 3.33 of [K]).

Proposition 3.1 Suppose that A # 0 is any countable divisible archimedean or-
dered Abelian group, then [[gA is a strong exponential group. Hence, every non-
trivial countable divisible exponential group is a strong exponential group.

Proof: We shall in fact show more: Suppose that {A(q);q € @} is a fam-
ily of nontrivial countable dense archimedean ordered Abelian groups and set
G = 1l,eqA(q) (hence also G is dense). Then we will show the existence of an
isomorphism

w: G0 — (@

such that Vg : ¢(g) < va(g).
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Let ® be the family of all maps ¢ which are order preserving isomorphisms of
a finite subset of G<? onto a finite subset of @ such that Vg : ¢(g) < va(g).

We show that @ is a nonempty Karpian family. Once we have shown that, ¢ is
obtained by a back and forth argument, using induction on countable enumerations
of G<Y and @. We use the fact that ) is dense and without endpoints.

® is nonempty: let ¢ € G<° and ¢ € @ such that ¢ < vg(g). Set ¢(g) = q,
then ¢ € ®. Now let ¢ € F and dom¢ = {go,...,9,} with g0 < ... < ¢g,,, and
range ¢ = {qo, ..., qn} with go < ... < @, and ¢(g;) = ¢; for 0 <1 < n.

® has the back property: Let g € G<°, g ¢ dom ¢.

If g < go, let ¢ < min{ve(9), qo}-
If ¢ > gn, we have ¢, < vg(g,) < va(g); so let g, < g < va(g).
If g; < g < git1, we have ¢; < vg(g:) < va(g); so let ¢; < ¢ < min{vg(9), giv1}-
In all cases, set ¢(g) = q.
® has the forth property: Let ¢ ¢ range ¢, ¢ € @.
If ¢ < qo, let ¢ € @ such that ¢ < ¢ < vg(go).
If ¢ > ¢, let ¢ > max{vg(gn), ¢}
If ¢ < g < giy1 then ve(g:) < va(giv1) and g < ve(gig1). Assume first that
ve(9i) < va(git1), then choose ¢’ € @ s.t. max{va(gi), ¢} < ¢ < va(giv1)-
Now let ¢ € G<° such that vg(g) = ¢/, in the above three cases. Finally, if

v6(g:) = va(gip1), choose g € G<Y such that ¢; < g < ¢i41 (here, we have to use
that (G is dense).

In all cases, set ¢(g) = q. O

Remark 3.2 In a straightforward manner, the above procedure may be changed
such that it produces a map

¢ : G — @ satisfying Vg: ¢(g9) > va(g) -

On the other hand, we can also achieve that “<” holds at some part of the group,
while “>” holds at some other part. Indeed, we may partition @ into countably
many disjoint open intervals I; with j € J C IN, and construct ¢ such that for all
g € Gwithvg(g) € [, ¢(g) > va(g) whenever j is odd and ¢(g) < vg(g) whenever
J is even.

Corollary 3.3 Assume that K admits a left exponential and that G = v(K*) is
countable. Then K admits a left exponential which is left strong.

Proof: If G =0 then A = 0 = B and there is nothing to prove. If G # 0
then it is of the form G ~ [[5 A as we have remarked above. Hence, it admits a
valuation basis (cf. Corollary 2.5 of [K]), and by the preceding proposition, it is a
strong exponential group. The conclusion now follows from Theorem 2.9. O

If also K is supposed to be countable, we may replace the condition that
it admits a left exponential by the condition that ¢ is an exponential group in

(K, +,0,<).
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Corollary 3.4 Assume K to be a countable nonarchimedean ordered field, root
closed for positive elements. If G is an exponential group in (K,+,0,<), then K
admits a left exponential which is left strong.

Proof: By part b) of Corollary 3.34 of [K], K admits a left exponential. Since
K is countable, so is G. Now the argument is the same as in the proof of the
preceding corollary. a

It now remains to consider right exponentials in the countable case. By Corol-
lary 3.16 of [K], we know that there exists an isomorphism f: [, — 1+ [, if K is
countable and root closed for positive elements. But we want to realize additional
conditions for that isomorphism.

Lemma 3.5 Suppose that K is root closed for positive elements. Let B be a subset
of I,, n >1 and

B,=A{FE.(a)|aeB}yC1+1,.
Then B is valuation independent in I, if and only if B, is valuation independent in
1+ 1, and B is mazimal with this property if and only if B, is. If B is valuation
independent, then the map

fa: Boaw— E,(a) € B,

extends additively to an order preserving isomorphism f, from (B) onto (B,) sat-

isfying Qn(a, fu(a)) for all a € (B).

Proof: Taking over the notation from [K], for “the smallest convex subgroup
containing x” resp. “the biggest convex subgroup not containing x” we will write
Cy resp. D, for elements = in the additive group of K, and C, resp. D, for x in
the multiplicative group of positive elements of K.

First note that for all n > 1 and all a € B,

w(l+a) =w(L,(a)) (hence, D1y, =Dpg, ()
and moreover,

(14a)-Diya = Ey(a) Diya (e, w (%) > w(l+a)).

In fact, by Corollary 3.13 of [K],

w(l +a)=uv(a)=v (; “—) = w (1 + ; “—) = w(E,(a))

and




So by Proposition 2.10 of [K] we see that for all n > 1, B,, is valuation independent
in 1+ [, if and only if By is. Similarly, by Corollary 2.11 of [K] we see that B,
is maximal with this property if and only if By is. So in order to prove the first
assertion of our present corollary, we may assume w.l.o.g. that n = 1.

Now note that for given ay, ..., a, € B we have: v(ay) = ... = v(ay) ifand only
ifw(l+a)=...=w(l+a,). Moreover, in that case we have: a1+ Dy, ..., amn +
D,,, are @—independent in C,,/D,, if and only if (1 +a1)-Dg,,...,(1 + an) D,

are )-independent in Ci1,, /D1y, - Indeed, this last statement is true because
the map

D14a, Cl+a1/D1+a1 — Cal/Dal
¢ Diteg, = (c=1)4 Dy,

is an order preserving isomorphism (cf. Lemma 3.14 of [K]). Hence, Proposition 2.10
of [K] shows that B is valuation independent if and only if B; is, and Corollary 2.11
of [K] shows that B is maximal with this property if and only if B is.

Finally, assume that B is valuation independent. Since v(a) = w(F,(a)), we
know by Lemma 2.13 of [K] that f, extends linearly to a valuation preserving
isomorphism f, : (B) — (B,). By Lemma 2.2, Qn(a,fn(a)) holds for all a € (B).
Consequently, if @ € (B), a > 0, then by virtue of part i) of Lemma 2.1, we have
fala) > E,—1(a) > 1, which shows that f,, preserves the order. O

Theorem 3.6 Suppose that K is a countable field, root closed for positive ele-
ments. Then for n = 1,2, there exists a right exponential f, : I, — 1+ [, and a
valuation basis {a; | j € IN} of I, such that:
(1) folaj) = Enfa;) for all j € IN,
(2) {fula;) |7 € IN} is a valuation basis of 1 + 1,
(3) Qnlx, fulx)) holds for all x € I,, v # 0 and thus, f, satisfies Vo € I, :
TRm_l(fn,l').

If in addition, K is henselian for its natural valuation v (which in particular is
the case if K is real closed), then there is such a right exponential f, for every n.

Proof:  We will construct the required isomorphism by a back and forth procedure.
Since K is assumed to be countable, I, admits a countable basis {a’ | j € IN} and
1 + I, admits a countable basis {0 | j € IN}. Given m > 0, assume that we
have already constructed an isomorphism f, ,, between an m-dimensional subvec-
tor space U,, of I, and a subvector space V,, of 1 4+ [, and a v-valuation basis
{ay,...,a,} of U, such that

(D fam(aj) = Fy(a;) for 1 <j <m,

(2)m {fom(a;) |1 <7 <m}isa w-valuation basis of V,,,

(3)m Qnl(x, fum(x)) holds for all @ € Uy, x # 0.

By Lemma 3.5, conditions (2),, and (3),, both follow from (1),,. By convention,
for m = 0 we set Uy = {0} and Vo = {l}. If m is even, then let a be the
basis element @ of smallest index j such that o) ¢ U,. If m is odd, then let
b be the basis element V) of smallest index j such that ¢, ¢ V,,. We want to
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construct a prolongation f, ,,+1 of f,, to U, + Qa resp. of fn_}n to V,,, - b% still
satisfying condition (1),,41 on the new domains. We may use the following well
known fact: iof W is a finite dimensional subvector space of a valued K—vector
space and a € V', then every valuation basis B of W can be extended to a valuation
basis of W + Ka (cf. Lemma 2.12 of [K]). So we may extend the v—valuation
basis {a1,...,a,} of U, to a v-valuation basis {ay,...,an,ant1} of U, + Qa
(respectively, the w—valuation basis { fm(a1), ..., fum(am)} of Vi, to a w—valuation
basis { from(a1)s .- fom(@m), by} of Vi, - 6%).

If m is even, we take f, n41(@mt1) to be equal to Fy(am41), which we will call
d. If m is odd, we are looking for an element ¢ € [, such that E,(¢) = b,,41. For
n = 1, this is just ¢ = b,,11 — 1. For n = 2, our task requires to solve an equation

X2 42X +2(1 —bytr) =0

which is always solvable in the root—closed field K since 1 —2(1 —by41) = 2b;,41 —
1 >0in view of b,,11 € 1 4+ [,. If n > 2, the equation

Z —'XZ - bm_|_1 - 0

1=0 ¢
is still solvable if the natural valuation on K is henselian. Indeed, v(1 —b,,11) >0
and hence, the above equation will then admit a root ¢ whose residue is 0, that is,
c€ I,

Now note that by Lemma 3.5, {a1,. .., a,,c} is again v-valuation independent
(resp. {fom(ar),..., fom(am),d} is again w-valuation independent). Hence, we
set apy1 = c resp. by41 := d and obtain in both cases that f, ,(@mi1) = bpmy-

So indeed, we are able to extend f, ,, to an isomorphism f, 41 such that a €
dom f, ;41 resp. b €im f,, 4.

We set f, = UpenSnm- Since by our back and forth construction, every a’ is
contained in some U, and every b’ is contained in some V,,, we find that f, is an
isomorphism from [, onto 1 + I,. Since for every m € IN, the isomorphism f, .,
has the properties (1)m41, (2)mt+1 and (3),41, the induced isomorphism f, ,, has
the properties (1), (2) and (3). Finally, since every finite subset {aq,...,an} of
{a; | 7 € IN} is a valuation basis of U,,, the set {a; | j € IN} itself is a valuation
basis of I, = U,,enUn- O

Finally, let us put left, middle and right together.

Theorem 3.7 Let K be a countable nonarchimedean ordered field, root closed for
positive elements. Assume that its value group G is isomorphic to ]_[@(F, +,0,<)
and that its residue field K admits a strong exponential e. Then K admits an
exponential f satisfying Vo : Ti(f,z) and f = e.

If in addition, K is henselian for its natural valuation, then for every fived
n > 1, K admits an exponential f satisfying Vx : T,(f,z) and f = e.

Conversely, if K admits an exponential satisfying Va : T, (f,z) for somen > 1,
then G ~ ]_[@(F, +,0,<) and K admits a strong exponential.

Proof: We may assume the decompositions (1) and (2) of the hypothesis of
Lemma 2.19, the latter because by hypothesis, K is root closed for positive ele-
ments. If G ~ ]_[@F, then by Corollary 3.4, K admits a left strong exponential
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f1.. Further, the exponential ¢ of K induces a middle exponential ¢’ (cf. the proof
of Theorem 2.20). Since e is a strong exponential, Theorem 2.12 yields that ¢’
satisfies Vo € R, \ [, : T(€/,x). From Theorem 3.6 we infer the existence of a
right exponential fr which satisfies Va € I, : Tr1(fs, ). Under the additional
assumption that K be henselian for its natural valuation, we may replace Tr; by
TR, for an arbitrary fixed n. By virtue of Lemma 2.19, the resulting exponential
f=fr eI fr will satisfy Ty (f, ) respect. T,,(f,z) on K, as well as f = e.

For the converse, assume that K admits an exponential f satisfying Va : T,,(f, x)
for some n > 1. Then f induces a left strong exponential and thus, GG is a strong
exponential group by Theorem 2.7. On the other hand, f is a strong exponential
on K by virtue of Theorem 2.12. a

Let us mention that the last theorem is the best that can be expected, in the fol-
lowing sense. If we would try to obtain a strong exponential, we would have to
construct a right strong exponential, that is, an exponential fr satisfying Vz €
I, 0 Qu(x, fr(x)) simultaneously for all n € IN. With our approach, the existence
would only be guaranteed if we would ensure some convergence, but this usually
contradicts the countability condition. Certainly, countable fields with strong ex-
ponentials can be constructed in a different way, but not in the sense of giving a
criterion for a countable field to admit a strong exponential.

4 Contraction groups

The disadvantage of the group exponential ¢ that we have used so far is that it is
not a map from G to GG. Instead, it is an isomorphism between G<° and the value
set '™ = ve(G\ {0}). But if we compose its inverse with the natural valuation
vg : G — vg(G), then we obtain a map ¢ 'ovg : G\{0} — G<°. This map is onto
G<Y. Further, it contracts archimedean classes, that is, archimedean comparable
elements are sent to the same element; this follows since v already has the same
property by definition.

The map ¢! o vg has an obvious disadvantage: its range is only G<°, and it
shows no symmetry between the positive and the negative part of GG. Although this
corresponds quite well to the behaviour of the exponential, it appears to us that
the idea of a map contracting archimedean classes is better expressed if it shows
symmetry between positive and negative. To achieve symmetry, we may set

e lovglg) € GO if g e GO
Xelg) = —¢7 1o valg) € G ifge G™°

Now, we have x,(—¢g) = —x.(g), and x, is a surjective map from G onto . On
G<Y, the map vg preserves <, and on G7°, it reverses <. Since ¢ is order preserving
and a — —o is order reversing, it follows that x, preserves < on all of G. Note
that x,(g) =0 & g=0.

Let us now extract an axiomatization from the structure that we have derived
so far. Let G be an ordered abelian group and y a map from ' into G. Then y
will be called a contraction if it satisfies the following axioms:
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X(9) =0 g=0,
Y 1s surjective,

x(=9) = —x(9),

C4) if ¢ is archimedean equivalent to ¢’ and sign(g) = sign(¢’), then x(g) = x(¢’)
Note that by axioms (C2) and (C1) it follows that x(G<°) = G<° and y(G>?)
G0,

In the language of ordered abelian groups, the last axiom is not an elementary
sentence, but it is equivalent to a (recursive) axiom scheme; in the presence of
axiom (C3), it suffices to state it for the positive elements of G
(C4) Yo,y: a2y>0Any>a = x(z)=x(y)  (n€IN)

We will call y a natural contraction if y(z) = x(y) implies that = and y are
archimedean equivalent. This notion is not elementary: by general model theory,
it can be shown that in every RNg-saturated model, the contraction will contract
elements that are not archimedean equivalent.

(C0)

(C1)

(C2) x preserves <,
(C3)

(

The same definition of a contraction works for an ordered vector space. We
have seen that the value group & of an exponential field K is actually an ordered
K -vector space. Here, K was an archimedean field, and in this case, axiom scheme
(C4") is equivalent to
(C4") Va,y: w>y>0Aky>a = x(v)=x(y)  (keK)

However, if exponential fields with a predicate for a (compatible) valuation are
considered, then it is not possible to axiomatize elementarily that this valuation
be the natural one, and the residue field will in general not be archimedean. In a
multisorted language with a sort for the residue field, (C4”) will then express that
x contracts K-archimedean classes (which are larger than the natural archimedean
classes if, and only if, K is nonarchimedean). For this case, (C4") turns out to be
stronger than (C4’). The language with a sort for the residue field has the advantage
that we can express that y contracts precisely the K-archimedean classes:

(C4")y Va,y: 2>y>0 — (x(2)=x(y) < Tk e K :ky>a).

Since a contraction x sends archimedean equivalent elements of the same sign
to the same element, it induces a map p, from the rank of G into G<° through
vi(g) = x(g) for g € G<°. Since Y is surjective, the same is true for p,. Further, p,
is an isomorphism if and only if x is a natural contraction. If p, is an isomorphism,
then its inverse is a group exponential ¢ such that y = y,. On the other hand, if
X = X, 1s induced by the group exponential ¢, then y is a natural contraction such
that ,0;1 = . Hence, the concept of a group exponential and that of a natural
contraction are interchangeable. If x = x, is induced by the group exponential
¢ = s which in turn is induced by the (left) exponential f, then y; may be given
as follows: y;(0) =0 and

xs(0(f (b)) = { 11(52@ EZ i 8

where b runs through all elements b € dom(f) of value v(b) < 0.
More generally, we may consider the K—natural valuation of an ordered K-
vector space whose value set is represented by the K -archimedean classes; it may
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be viewed as a coarsening of the natural valuation. If a contraction on this vector
space contracts precisely the K—archimedean classes (i.e., it satisfies (C4")), then
Y induces an isomorphism ,of between the value set of the K -natural valuation
and G<°. Let us also mention that from every contraction x, a valuation v, can
be defined elementarily, having the property that two elements have the same v, —
value if and only if they have the same image under y, up a change of the sign.
Again, this valuation may be considered a coarsening of the natural valuation.

Up to this point, we have not yet considered strong exponential groups. If the
group exponential ¢ satisfies Vo € G<% : p(x) < vg(x), then it follows that

Ve e G2 < plovg(z) = x(2)

which by axiom (C3) implies Vo € GZ° : @ > y(x). That is, y maps towards
the center of the ordered group (which is the element 0). This gives rise to the
following definitions: a contraction y is centripetal, if it satisfies

(CP) Ve e G Jz] > (@),

and it will be called centrifugal, if it satisfies

(CF) Yz e G |z| < |x(x)].

The proof of the following observation is straightforward:

Lemma 4.1 Let (G, ) be an exponential group and x, the contraction induced by
. Then:

a) x is centripetal if and only if (G, ) is a strong exponential group.
b) x is centrifugal if and only if ¢ satisfies

Ve € G0 p(x) > va(x) . (22)

In view of this lemma, Proposition 3.1 has shown that the group [[pA may
be endowed with a group exponential inducing a centripetal contraction. By Re-
mark 3.2, it also admits a group exponential inducing a centrifugal contraction, as
well as a group exponential inducing a contraction which is neither centrifugal nor
centripetal. This shows that axioms (CP) and (CF) are independent of the other
contraction axioms.

Property (22) reflects a quite strange behaviour of an exponential. Indeed, if
@ = @y is the group exponential induced by an exponential (or a left exponential)
f on K, then (22) is equivalent to

Vee K: v(x) <0 = vg(v(f(x))) > vg(v(x)) .

This in turn means that for infinitely big @ € K we have that f(a) < a, that is, f(a)
is smaller than any root of a. In the presence of a predicate for the natural valuation,
it is possible to axiomatize such strange exponential fields where the exponential
induces the usual exponential on the “finite” part of the field (the convex hull of @,
which is the valuation ring of the natural valuation), but “reverses” its behaviour
on some “infinite” part of the field (some infinitely big elements). However, since
the natural valuation cannot be axiomatized elementarily, it is not possible to
axiomatize elementarily a class of exponential fields where this reversed behaviour
is shown at all infinitely big elements.

The model theory of divisible ordered abelian groups with contraction will is

studied in [KF1] and [KF2].
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