Kapitel 5

Analyse von lokalen parasitären Widerständen

In diesem Kapitel werden realistische Simulationsmodelle für lokale Parallel- und Serienwiderstände vorgestellt und der Einfluss auf die globale Kennlinie analysiert. Damit kann die Beschreibbarkeit dieser lokalen Verlustmechanismen durch das Zweidiodenmodell analysiert und die Aussagekraft der üblichen angegebenen globalen Werte für R_a (Abschnitt 5.1) und R_p (Abschnitt 5.2) überprüft werden. Zusätzlich werden lokale parasitäre Widerstände, die durch typische Fehler in der Prozessierung entstehen (z.B. Justierungsfehler beim Siebdruck), modelliert und die Auswirkung auf die Gesamtkennlinie untersucht.

5.1 Analyse von lokalen Serienwiderständen

Mehrere Ursachen tragen zum Gesamtserienwiderstand einer Solarzelle bei: der Halbleiterserienwiderstand in Emitter und Basis, der Kontaktwiderstand zwischen Metallisierung und Halbleiter und der Leitungswiderstand der Metallisierung. Im Zweidiodenmodell (s. Abschnitt 2.2) werden all diese Einflüsse in einem den Dioden vorgeschalteten Widerstand zusammengefasst, R_s, lumped,\(^1\) der im Folgenden mit globaler Serienwiderstand bezeichnet wird.

Weit verbreiteter Standard in der Solarzellencharakterisierung ist die Ermittlung von

\(^1\)Von lumped (engl.) = konzentriert, pauschal
\(^2\)Die „Hellkennlinie“ ist dann durch $U \approx R_s I - J_{sc}$ beschreibbar.
$R_{s,\text{lumped}}$ aus dem Fit des Zweidiodenmodells an die gemessene Dunkel- oder Hellkennlinie. Bestimmte Verteilungen von Serienwiderständen lassen sich jedoch nicht mehr mit einem $R_{s,\text{lumped}}$ beschreiben, d.h. die Kennlinien nicht mehr mit dem Zweidiodenmodell anfitten.

Im Unterschied zu den detaillierten, aufwendigen Analysen mittels mehrdimensionaler Halbleitersimulation soll in diesem Kapitel untersucht werden, welche Information aus den globalen Hell- und Dunkelkennlinien der Solarzelle erhalten werden kann. Dazu werden Hell- und Dunkelkennlinien mit realistischen Solarzellenmodellen simuliert und aus diesen Kennlinien Serienwiderstandsverwerte mit verschiedenen Auswertemethoden extrahiert. Es werden dabei nur Methoden ausgewählt, die sich ohne zusätzlichen zielorientierten Aufwand direkt an die Messung der Hell- und Dunkelkennlinie anfügen lassen. Ziel des Kapitels ist ein Vergleich der Methoden und eine abschließende Bewertung der Aussagekraft der einzelnen R_s-Werte (Abschnitt 5.1.7).

5.1.1 Methoden zur Bestimmung des Serienwiderstandes

Die gängigen Methoden zur Bestimmung des Serienwiderstandes lassen sich in zwei Gruppen unterteilen:

1. Bestimmung von R_s durch Fit von gemessenen Kennlinien an Mehrdiodenmodelle.

 (a) Fit der Dunkelkennlinie an das Zweidiodenmodell ($R_{s,\text{dark}}$, F_d).

 (b) Fit der Hellkennlinie an das Zweidiodenmodell ($R_{s,\text{light}}$, F_d, $R_{s,\text{light}}/F_d$).

 (c) Fit der Kennlinien an Mehrdiodenmodelle ($R_{s,\text{IVcc}}$).

2. Ein Vergleich von Messdaten, die durch R_s beeinflusst sind und R_s-freien Messdaten, erlaubt die Berechnung des Serienwiderstandes.

 (a) Berechnung eines Dunkel- und Hellserienwiderstandes aus Dunkel- und Hellkennlinie ($R_{s,\text{dark}}$ und $R_{s,\text{light}}$).

 (b) Berechnung eines spannungsabhängigen Serienwiderstandes aus Dunkel-, Hell- und $J_{sc}V_{oc}$-Kennlinie (bzw. $S_{	ext{meas}}V_{oc}$-Kennlinie).

In Klammern ist die in dieser Arbeit verwendete Bezeichnung des mit der jeweiligen Methode erhaltenen Serienwiderstandes angegeben, sie werden in den nächsten Abschnitten näher erläutert. Gängige Methode aus der Gruppe 1 ist der Fit von gemesserer Hell- und Dunkelkennlinie an das Zweidiodenmodell. Da Effekte von verteilten Serienwiderständen, z.B. des Emitterschicht-
widerstandes, nicht durch einen vorgeschalteten Widerstand (Abb. 5.1 a) modelliert werden können, ist die naheliegende Erweiterung die Parallelschaltung mehrerer Dioden (Abb. 5.1 c), welche jeweils durch einen konstanten Widerstand, R_i, abgeschirmt sind. R_i stellt die Näherung an den infinitesimalen verteilten Widerstand $\rho \, dx$ in der korrekten analytischen Beschreibung $dR = \int \rho(x) \, dx$ dar, wie sie zur analytischen Berechnung von Serienwiderständen benutzt wird. B. Fischer entwickelte ein Programm, das den Fit von gemessener Dunkel- und Hellkennlinie an Modell c) Abb. 5.1 erlaubt [FFB00]. Zur Verdeutlichung des Einflusses lokaler Serienwiderstände, z.B. örtlich begrenzte hohe Kontaktwiderstände durch Justierungsfehler beim Siebdruck, wird hier zusätzlich ein Modell untersucht, bei dem nur ein Teil der Solarzelle durch einen Serienwiderstand abgeschirmt ist (Abb. 5.1 b).

![Diagram](image)

Abbildung 5.1: Modelle zur Beschreibung von Serienwiderständen. Die einzelnen Dioden stellen je nach Anwendung eine Kennlinie nach dem Ein- oder Zweidiodenmodell dar. Die Modelle beschreiben a) $R_{s, is \, mpp}$, b) $R_{s, to \, at}$ und c) $R_{s, dist}$. U_k ist die an den Kontakten der Solarzelle angelegte Spannung.

Diese Modelle erlauben eine generelle Unterscheidung der einzelnen Einflüsse, ihre Gültigkeit für konkrete Prozessierungsfehler in der Solarzelle muss aber jeweils überprüft werden, da z.B. laterale Ströme in der Basis auftreten können, welche nicht in den Modellen wiedergegeben werden.

Die Methoden der Gruppe 2 benutzen Messungen, die nicht oder nur leicht vom Serienwiderstand beeinflusst sind. Dies ist bei der Hellkennlinie bei V_{oc} der Fall (da kein Strom fließt) und bei der Dunkelkennlinie bei $V_{dark, mpp}$ näherungsweise, da an diesem Punkt ($J_{sc} - J_{mpp}$) fließt und somit nur ein kleiner Effekt des Serienwiderstandes auftritt. Dies erlaubt die Berechnung von jeweils einem Serienwiderstand unter Dunkel- und Hellbedingungen. Für eine Beurteilung des Effektes des Serienwiderstandes auf den Wirkungsgrad der Solarzelle ist der Hellserienwiderstand die entscheidende Größe, die — wie im Folgenden untersucht wird — i.A. vom Dunkelserienwiderstand abweicht.

Die Unterscheidung in Dunkel- und Hellserienwiderstand aufgrund unterschiedlicher Stromflussmuster ist bereits von A. Cuevas für abgeschattete Solarzellenbereiche beschrieben worden [CRA85]. A. Aberle gibt im Zuge seiner Arbeiten zur J_{sc}-V_{oc} Messmethode ([AWG93], [ARW+93]) auch eine Formel zur Berechnung von $R_{s, dark}$ und $R_{s, light}$ aus Dunkel- und Hellkennlinie an:

$$R_{s, dark} = \frac{V_{dark, sc} - V_{oc}}{J_{sc}}$$ \hspace{1cm} (5.1)

$$R_{s, light, Aberle} = \frac{V_{dark, mpp} - V_{mpp}}{J_{mpp}}$$ \hspace{1cm} (5.2)

Zur Definition von $V_{dark, mpp}$ und $V_{dark, sc}$ siehe Abb. 5.2.

Die von Aberle angegebene Formel für $R_{s, light}$ geht von der Annahme aus, dass am MPP
vernachlässigbar wenig Serienwiderstandsverluste in der Dunkelkennlinie auftreten, d.h.

\[J_{sc} - J_{mpp} \ll J_{sc}. \] \hspace{1cm} (5.3)

Für typische Solarzellen beträgt der Fehler bei der Bestimmung von \(R_{s, \text{light}} \) nach 5.2 jedoch \(\Delta R_{s, \text{light}} \approx 5\% \) (siehe Abb. 5.3). Dieser Fehler lässt sich mit folgender Überlegung korrigieren: Da \(R_{s, \text{dark}} \) bekannt ist, lässt sich die Spannung \(V_{R_{s, \text{dark}}} \), welche in der Dunkelkennlinie bei der Stromdichte \(J_{sc} - J_{mpp} \) an \(R_{s, \text{dark}} \) abfällt, mittels

\[V_{R_{s, \text{dark}}} = (J_{sc} - J_{mpp}) R_{s, \text{dark}} \] \hspace{1cm} (5.4)

berechnen und die Formel 5.2 korrigieren:

\[R_{s, \text{light}} = \frac{(V_{\text{dark, mpp}} - V_{R_{s, \text{dark}}}) - V_{\text{mpp}}}{J_{\text{mpp}}} = \frac{V_{\text{dark, mpp}} - (J_{sc} - J_{mpp}) R_{s, \text{dark}} - V_{\text{mpp}}}{J_{\text{mpp}}}. \] \hspace{1cm} (5.5)

Abbildung 5.3: Vergleich der Formeln 5.2 und 5.5 mittels Zweidiodenmodell abhängig von \(R_{s, \text{twoDiode}} \). Da im Zweidiodenmodell \(R_{s, \text{twoDiode}} \) der tatsächliche Serienwiderstand der Hellekennlinie ist, gibt die Gerade \(x = y \) den korrekten Zusammenhang wieder. Der relative Fehler von Formel 5.2 wird durch die gepunkte- te Linie wiedergegeben (rechte Y-Achse).

Die korrigierte Formel 5.5 erfordert keinen Mehraufwand, da alle benutzten Größen auch für 5.2 verwendet werden. Abbildung 5.3 zeigt, dass die Korrektur den Fehler für das Zweidi- odencodem behandelt: Für verschiedene \(R_{s} = R_{s, \text{twoDiode}} \) wurden mit dem Zweidiodenmodell Helle-
5.1. Analyse von lokalen Serienwiderständen

und Dunkelkennlinie erzeugt und nach Formeln 5.2 und 5.5 ausgewertet. Die korrekten Werte für \(R_{s, \text{light}} \) liegen demnach auf der Geraden \(x = y \). Man erkennt die steigende Abweichung von \(R_{s, \text{light}, \text{Aberle}} \) vom korrekten Wert mit steigendem \(R_s \), da auch die bei \(V_{\text{dark, mpp}} \) am Serienwiderstand abfallende Spannung mit \(R_s \) steigt. Formel 5.5 liefert die korrekten Werte. Bei sehr großen \(R_s \) (wenn \(R_s, J_{sc} \) limitiert) wird auch Formel 5.5 fehlerhaft, da die am Serienwiderstand abfallende Spannung dann nicht mehr durch Formel 5.4 beschrieben werden kann. In diesem Fall ist der Füllfaktor jedoch bereits nahe 25\%, d.h. die Hellkennlinie stellt keine Diodenkennlinie mehr dar.

Ein weiterer wichtiger Test ist die Sensibilität der ermittelten Serienwiderstandswerte auf Rekombinationseinflüsse. Wird \(J_{02} \) groß, so reduziert sich dadurch auch der Füllfaktor der Solarzelle. Diese Füllfaktorreduzierung sollte keinen Einfluss auf die ermittelten \(R_s \)-Werte haben, da sie nicht in Serienwiderstandsvorlusten begründet ist. Daher wurden Hell- und Dunkelkennlinien mit Modell a) (Abb. 5.1) simulierte mit

\[
I_{01} = 1 \times 10^{-12} \text{ A/cm}^2, \quad J_{\text{SC}} = 30 \text{ mA/cm}^2, \quad R_S = 1.0 \Omega \text{ cm}^2 \quad \text{und} \quad R_p = 10^{10} \Omega \text{ cm}^2,
\]

wobei \(J_{02} \) variiert wurde. Für jede Kennlinie wurde eine \(R_s \)-Auswertung nach Formeln 5.1, 5.2 und 5.5 durchgeführt.

Abbildung 5.4: Abhängigkeit von \(R_s, \text{light, Aberle} \) und \(R_s, \text{light} \) und \(R_s, \text{dark} \) von \(J_{02} \). Zusätzlich ist der Füllfaktor der Solarzelle aufgetragen (rechte Y-Achse). \(R_s, \text{light, Aberle} \) steigt mit sinkendem Füllfaktor und gibt somit auch rekombinationsbedingte Füllfaktorverluste wieder, wohingegen \(R_s, \text{light} \) nur die serienwiderstandsbedingten Verluste angibt.

Abbildung 5.4 zeigt das Ergebnis. Zusätzlich wurde der Füllfaktor der Solarzelle aufgetragen (rechte Y-Achse). Für \(J_{02} > 10^{-8} \text{ A/cm}^2 \) sinkt der Füllfaktor der Solarzelle und \(R_s, \text{light, Aberle} \) steigt. Dies ist dadurch erklärt, dass mit steigendem \(J_{02} \) sich die Spannungen \(V_{\text{sc}}, V_{\text{dark, sc}}, V_{\text{mpp}} \) und \(V_{\text{dark, mpp}} \) gleichmäßig verschieben, die Differenz bleibt näherungsweise konstant. \(J_{\text{mpp}} \) verringert sich mit steigendem \(J_{02} \) und damit nimmt die Gültigkeit der Bedingung 5.3 ab, d.h. \(R_s, \text{light, Aberle} \) weicht immer stärker vom korrekten Wert ab. Bei der Definition von \(R_s, \text{light} \) wird die Abweichung von \(J_{\text{mpp}} \) jedoch berücksichtigt, daher ändert sich der Wert nur geringfügig mit \(J_{02} \).

5.1.2 Lokale Serienwiderstände

In den oben zitierten Arbeiten wurde der Einfluss unterschiedlicher Stromflussmuster bei Dunkel- und Hellbedingungen bzw. injektionsabhängige Effekte (z.B. Rekombinationsmechanismen) als Ursache für ungleiche \(R_s, \text{light} \) und \(R_s, \text{dark} \) untersucht. Unterschiede können jedoch auch von
lokalen ohmschen Widerständen verursacht werden. Zur Verdeutlichung wird im Folgenden eine Solarzelle nach Modell b) (Abb. 5.1) analysiert, bei der 40% der Gesamtfläche durch einen lokalen Serienwiderstand abgeschirmt sind. Abbildung 5.5 a) zeigt die berechneten Dunkelkennlinien für verschiedene lokale Serienwiderstände: $R_{s,\text{local}} = 0 \ \Omega \ \text{cm}^2$ entspricht einer homogenen Solarzelle, $R_{s,\text{local}} = \infty \ \Omega \ \text{cm}^2$ beschreibt eine homogene Solarzelle, bei der 40% der Fläche entfernt wurden. Die Dunkelkennlinien für $R_{s,\text{local}} = 1 \ \Omega \ \text{cm}^2$ und 100 \ \Omega \ \text{cm}^2 liegen für kleine Spannungen auf der Kennlinie für 0 \ \Omega \ \text{cm}^2 und für große Spannungen auf der für $\infty \ \Omega \ \text{cm}^2$. Dazwischen gibt es einen Übergangsbereich, in dem die Form der Dunkelkennlinie nicht durch das Zweidiodenmodell beschrieben werden kann. In der Dunkelkennlinie wirkt sich der $R_{s,\text{local}}$ derart aus, dass er bei hohen angelegten Spannungen U_a an den Kontakten die Spannung an der lokalen Diode reduziert und damit auch den Gesamtstrom der Solarzelle reduziert. Diese Stromreduktion ist nur bei großer Steigung der Kennlinie signifikant, d.h. bei großen Spannungen. Wenn ein Teil der Solarzelle durch einen $R_{s,\text{local}}$ abgeschirmt wird, so kann sich der Strom maximal um den prozentualen Anteil des abgeschirmten Bereiches an der Gesamtsolarzellenfläche reduzieren. Dies führt zu einem Übergang von der R_s unbeeinflussten Kennlinie ($R_{s,\text{local}} = 0 \ \Omega \ \text{cm}^2$) zur Kennlinie der Solarzelle mit völlig abgetrenntem zweiten Bereich ($R_{s,\text{local}} = \infty \ \Omega \ \text{cm}^2$). Die Größe von $R_{s,\text{local}}$ bestimmt den Spannungsbereich des Übergangs: Je größer $R_{s,\text{local}}$, desto kleiner die Spannung, bei der der Übergang beginnt.

In der Hellkennlinie hingegen wirkt sich die Verringerung des Stroms des abgeschirmten Solarzellenbereiches bei hohen Spannungen direkt auf eine Verringerung von J_{mpp} aus. Dies führt zu einer Verschiebung des Maximum Power Point zu kleineren Spannungen hin und einer Abnahme des Füllfaktors (und damit des Wirkungsgrads).

Das übliche Verfahren zur Bestimmung des R_s, der Fit der Dunkelkennlinie an das Zweidiodenmodell ist sensitiv auf ein Abrunden der Dunkelkennlinie zu hohen Spannungen hin. Da die Dunkelkennlinie einer Solarzelle mit lokalem Serienwiderstand nach dem Übergangsbereich wieder einer R_s-freien Kennlinie gleicht, wird ein lokaler Serienwiderstand durch Methode 1a) nicht detektiert. Hinzu kommt, dass die Änderung im Strom in den Übergangsbereichen klein ist und j.a. bei einer Messung nicht vom Rauschen der Messwerte unterschieden werden kann. So erhält man einen vertrauensrechenden Fit nach Methode 1a), der einen vernachlässigbaren Gesamtserienwiderstand ergibt, obwohl $R_{s,\text{local}}$ die Ursache für den Füllfaktorverlust in der Hellkennlinie ist. Dies ist bei $R_{s,\text{local}}$ nach Formel 5.5 nicht der Fall, siehe Abschnitt 5.1.4.

Die untere gepunktete Linie in Abbildung 5.5 b) zeigt eine Hellkennlinie nach Modell a) (Abb. 5.1), welche den identischen Füllfaktor besitzt wie die berechnete lokale Kennlinie. Man erkennt die unterschiedliche Steigung der Kennlinie bei Spannung größer V_{mpp} (oberhalb des MPP). Sie führt dazu, dass auch eine Auswertung nach Methode 1b) einen zu niedrigen Serienwiderstand für lokale Serienwiderstände liefert.

Ein quantitatischer Vergleich der Auswertemethoden findet sich ab Kapitel 5.1.4.

3Z.B. könnte ein Fehler beim Auftragen der Metallisierungspaste zu Lücken im Metallisierungsgitter führen, so dass 40% der Solarzelle nur über einen zusätzlichen Serienwiderstand mit den Kontaktspielen verbunden sind (die Ladungsträger müssen aus den Kontakten über den Emittor die Metallisierungslücke überbrücken).
5.1. ANALYSE VON LOKALEN SERIENWIDERSTÄNDEN

Abbildung 5.5: Kennlinien für verschiedene $R_s,local$ bei einem Flächenanteil der abgeschirmten Diode von 40%. Im Grafen a) sind zwei verschiedene Übergangsreiche für Dunkelkennlinien mit $R_s,local$ von 1 Ω cm2 und 100 Ω cm2 dargestellt. Graf b) verdeutlicht den Einfluss der abgeschirmten Diode auf den Gesamtstrom der Zelle im Bereich um 500mV und damit auf den Füllfaktor. Zum Vergleich ist eine Hellkennlinie nach Modell a) (Abb. 5.1) mit identischem Füllfaktor aufgetragen (untere gepunktete Linien).

5.1.3 Verteilte Serienwiderstände

In Abbildung 5.6 sind zwei Dunkelkennlinien aufgetragen, die mit Modell a) und c) (Abb. 5.1) simuliert wurden, mit $R_{s, lumped} = 1.91$ Ω cm2 bzw. $R_{s, dist} = 150$ Ω cm2. Dargestellt ist der für die Bestimmung des Serienwiderstandes nach Methode 1a) aus der Dunkelkennlinie kritische Bereich bei hohen Spannungen. Beide Simulationen führen zu einem identischen Füllfaktor der Hellkennlinie von 74.1%. Man erkennt die geringere Abflachung der Kennlinie mit verteiltem Serienwiderstand, d.h. der Fit an das Zweidiodenmodell ergibt einen kleineren Gesamtserienwiderstand. Die geringe Abweichung der Kennlinien führt bereits zu einem Unter-
schied von $R_s = 1.52 \ \Omega \ \text{cm}^2$ für den verteilten (gestrichelte Linie) und $R_s = 1.91 \ \Omega \ \text{cm}^2$ für den globalen (durchgezogene Linie) Serienwiderstand bei Auswertung nach Methode 1a).

Im nächsten Abschnitt werden die Auswertemethoden quantitativ verglichen.

5.1.4 Methodenvergleich für Zwei- und Mehrdiodenmodelle

Mit den oben beschriebenen Modellen wurde ein Vergleich der Methoden 1a, 1b und 2a zur Bestimmung des Serienwiderstandes durchgeführt. Dabei wurden die Serienwiderstände in den einzelnen Modellen jeweils so gewählt, dass die Simulation unter Hellbedingungen die gleichen Füllfaktoren ergab. Da V_{oc} und $-\beta$ bei den gewählten moderaten Serienwiderständen – auch J_{sc} nicht durch den Serienwiderstand beeinträchtigt sind, ergeben sich für alle Modelle identische Helligkeitslinienparameter. Die Basisdaten für das Zweidiodenmodell wurden mit einem Serienwiderstand von 0.4 $\Omega \ \text{cm}^2$ für alle Zellbereiche gewählt. Dieser stellt den homogenen Serienwiderstand der Solarzelle dar, verursacht z.B. durch den Leitungswiderstand im Halbleiter und der Metallisierung. Die unbeeinträchtigte Solarzelle hätte damit einen Füllfaktor von 80.7%.

Abbildung 5.7 zeigt das Ergebnis des Vergleichs. Es wurden zwei verschiedene R_s-Klassen gewählt, die zu einem Füllfaktor von 76.7% und 74.2% führen, was einem globalen Serienwiderstand von $R_{s, \text{global}} = 1.33 \ \Omega \ \text{cm}^2$ bzw. $R_{s, \text{global}} = 1.92 \ \Omega \ \text{cm}^2$ entspricht.
5.1. ANÁLYSE VON LOKALEN SERIENWIDERSTÄNDEN

Abbildung 5.7: Vergleich der Methoden zur Bestimmung des Serienvorderstandes für mit den erweiterten Zweidiodenmodellen simulierten Kennlinien:
- $R_{\text{S, dark Fit}}$ nach Methode 1a,
- $R_{\text{S, light Fit}}$ nach Methode 1b.
Hierfür wurde jeweils der Fehler χ in [Å cm2] als Kriterium für die Güte des Fits angegeben. $R_{\text{S, dark}}$ wurde nach Formel 5.1, $R_{\text{S, light}}$ nach Formel 5.5 bestimmt.
In allen Modellen wurden die Serienvorderstände so gewählt, dass die Gesamthellkennlinie einen Füllfaktor von 76.7% (Graph a) bzw. 74.2% (Graph b) ergibt, d.h. die verschiedenen Modelle können nicht anhand der Hellkennlinienparameter unterschieden werden. Für Modell b) (Abb. 5.1) wurde der durch den lokalen Serienvorstand abgetrennte Bereich mit 15% angenommen.

Was ist der richtige Wert?
Für eine Beurteilung der Ergebnisse der einzelnen Methoden muss zunächst die Interpretation des Serienvorderstandswertes näher bestimmt werden. Für die üblichen Serienvorderstandsauwertungen ist die entscheidende Frage, inwiefern der Serienvorderstand den Füllfaktor der Hellkennlinie und damit den Wirkungsgrad der Solarzelle beeinflusst. Wird die Solarzelle durch das Zweidiodenmodell beschrieben, so ist im Graf a) 1.33 Ω cm2 und in Graf b) 1.92 Ω cm2 der korrekte Wert. Diese Interpretation geht allerdings von der Annahme aus, dass auch die resultierenden Kennlinien für R_{S} Modell b) und c) (Abb. 5.1) durch das Zweidiodenmodell beschrieben werden können, was nicht zutriffft. Dennoch lässt sich folgende Interpretation aufrechterhalten:
Die Referenzwerte des Zweidiodenmodells sind ein Maß für die Beeinflussung des Füllfaktors durch den Serienwiderstand und erlauben somit eine Beurteilung der Serienvorderstandsverluste. Dies bedeutet **nicht**, dass die gesamte Hellkennlinie durch ein Zweidiodenmodell beschrieben werden kann.

Für die Simulationen mit Modell a) (Abb. 5.1) ergeben alle Methoden den korrekten Wert.
wieder. Dies ist auch zu erwarten, da in diesem Fall die Hellkennlinie der um J_{sc} verschobenen Dunkelkennlinie entspricht und daher auch der Serienwiderstand unter Dunkel- und Hellbedingungen identisch ist.

In Abschnitt 5.1.2 wurde gezeigt, dass ein lokaler Serienwiderstand zu einem Knick in der Dunkelkennlinie im Bereich des MPP führt, jedoch nicht zu einer Abflachung bei hohen Spannungen. Somit ist zu erwarten, dass Methode 1a) und $R_{s,\text{dark}}$ nach Methode 2a) nicht einen Serienwiderstand ergeben, der den Füllfaktor der Hellkennlinie erklärt. Die Auswertung der Simulationen mit Modell b) (Abb. 5.1) zeigt, dass Methode 1a) und $R_{s,\text{dark}}$ nur den globalen Serienwiderstand der Simulation (0,4 Ω cm2) wiedergeben. Der Fit der Hellkennlinie an das Zweidiodenmodell ergibt einen hohen Fehler (χ), d.h. die Hellkennlinie ist nur schlecht durch das Zweidiodenmodell beschreibbar und $R_{s,\text{tight fit}}$ besitzt wenig Aussagekraft. Die Bestimmung von $R_{s,\text{tight}}$ nach Methode 2a) liefert einen wesentlich realistischeren Serienwiderstand zur Beschreibung der Hellkennlinie. Darüber hinaus zeigt dieses Beispiel, dass ein Unterschied zwischen $R_{s,\text{dark}}$ und $R_{s,\text{tight}}$ zusätzlich zu den in den oben zitierten Arbeiten erwähnten inkjektionsabhängigen Rekombinationsmechanismen durch inhomogene ohmsche Serienwiderstände verursacht werden kann.

Auch für Modell c) (Abb. 5.1) liefert die Serienwiderstandsbestimmung für $R_{s,\text{tight}}$ nach Methode 2a) einen guten Wert zur Beschreibung des Füllfaktors. Aufgrund der kontinuierlich abflachenden Dunkelkennlinie liegen auch die Werte für $R_{s,\text{dark}}$ nach Methode 2a) und der Dunkelkennlinienfit nach Methode 1a) näher an $R_{s,\text{tight}}$ als bei Modell b). Erst bei sehr großen verteilten Serienwiderständen konnten vom Autor starke Abweichungen zwischen $R_{s,\text{dark}}$ und $R_{s,\text{tight}}$ nachvollzogen werden. Bei großen verteilten Serienwiderständen muss jedoch die Gültigkeit von Modell c) hinterfragt werden (siehe Abschnitt 5.1.6).

5.1.5 Methodenvergleich bei signifikantem Metall- und Kontaktwiderstand

Die simulierten Hell- und Dunkelkennlinien wurden mit den auch im vorherigen Kapitel angewandten Methoden ausgewertet. Zusätzlich wurde noch das Programm $IV\alpha$ von B. Fischer ([FFB00]) angewandt, um einen Vergleich mit einer Auswertung nach Methode 1c) zu ermöglichen.

| Was ist bei komplexen Serienwiderstandsverteilungen der Referenzwert? |
|----------------|----------------|
| R_s-Werte | $R_{s,\text{tight fit}}$ |
| Beurteilung | Aus der Dunkelkennlinie wurde durch Fit |
| extrahiert | an das Zweidiodenmodell J_{01} und J_{02} |

Im homogenen Fall ist der Einfluss eines erhöhten Metallisierungswiderstandes oder eines
erhöhten Kontaktwiderstandes nicht unterscheidbar, daher sind im Vergleich nur die Ergebnisse für den homogen erhöhten Metallisierungswiderstand dargestellt.

Abbildung 5.8 gibt das Ergebnis der Auswertung wieder. Das Basismodell ergab einen Füllfaktor von 77.9% (Spalte a). Für die zusätzlichen Serienwiderstände ist der dadurch entstandene zusätzliche Füllfaktorverlust jeweils über den Balken angegeben. Für $R_{s,IV_{cc}}$ (weisse Balken) ist noch zusätzlich der vom Programm ermittelte Verteilungsgrad X angegeben.

Wie in Abschnitt 5.1.4 erläutert, führen verteilte Serienwiderstände zu $R_{s,dark} < R_{s,tight}$. Dies trifft auch für die Vermengung unterschiedlich verteilter Serienwiderstandsbeiträge zu.

$R_{s,tight \, F_{dl}}$ ist im Fall der homogen verteilten Serienwiderstände (Spalte a und b) vergleichbar mit den Ergebnissen für $R_{s,tight}$ und $R_{s,tight \, 2df_{dl}}$. Bei inhomogener Verteilung lässt sich die Hellkennlinie nicht mehr anführen, die Werte sind aufgrund des hohen Fehlers nicht aussagekräftig. $R_{s,tight}$ und $R_{s,tight \, 2df_{dl}}$ sind für alle Fälle vergleichbar.

Eine Zusammenfassung des Methodenvergleichs und eine ausführliche Bewertung befindet sich in Abschnitt 5.1.7.
5.1.6 Methodenvergleich bei signifikantem Emitterschichtwiderstand

Um diese Effekte zu berücksichtigen, wurden die Hell- und Dunkelkennlinien für den Methodenvergleich in zwei Dimensionen mit DESSIS simuliert. Abbildung 5.9 zeigt das Ergebnis der Auswertung.

\begin{equation}
\begin{aligned}
R_{s, \text{analytic}} &= \rho_{\text{sheet}} \frac{A_F^2}{12} \\
\end{aligned}
\end{equation}

\textbf{Abbildung 5.9:} Vergleich der Methoden zur Bestimmung des Serienwiderstandes für unterschiedliche Emitterserienwiderstände \(\rho_{\text{sheet}} \). Die Hell- und Dunkelkennlinien wurden in zwei Dimensionen mit DESSIS simuliert, d.h. laterale Ströme in der Basis sind möglich.

Zusätzlich zu den Werten der vorherigen Kapitel ist in dieser Abbildung noch \(R_{s, \text{analytic}} \) angegeben. Dies ist der analytisch berechnete Serienwiderstand aufgrund des Emitterschichtwiderstandes

\(R_{s, \text{analytic}} = \rho_{\text{sheet}} \frac{A_F^2}{12} \)

mit dem Fingerabstand \(A_F^2 \) und dem Emitterschichtwiderstand \(\rho_{\text{sheet}} \) (siehe [Dic98], S.85 oder [GVK94], S.122).

Die DESSIS-Simulation beinhaltet weder Kontakt- noch Metallisierungswiderstand. Der Serienwiderstand der Basis (\(\rho = 1 \Omega \text{ cm} \)) ist vernachlässigbar.

Für moderate Emitterschichtwiderstände sind die fünf Werte für Hellbedingungen\(^4\) vergleichbar. Bei \(\rho_{\text{sheet}} = 225 \Omega/\square \) ist auch hier der Fit der Hellkennlinie an das Zweidiodenmodell \((R_{s, \text{light Fit})} \) nicht aussagekräftig. \(R_{s, \text{IVcc}} \) entspricht \(R_{s, \text{analytic}} \), \(R_{s, \text{light}} \) und \(R_{s, \text{light 2dfit}} \) sind vergleichbar. In allen Fällen lieferte das IVcc-Programm einen Verteilungsgrad \(X = 100\% \).

\(^4\)\(R_{s, \text{light Fit}}, R_{s, \text{analytic}}, R_{s, \text{IVcc}}, R_{s, \text{light}} \) und \(R_{s, \text{light 2dfit}} \)
5.1.7 Zusammenfassung Methodenvergleich

Aus den Ergebnissen der letzten beiden Abschnitte ergibt sich folgende Bewertung der Methoden zur Bestimmung von Serienwiderständen aus Dunkel- und Hellkennlinien:

- **Methode 1a, \(R_{s,\text{dark fit}} \):** Die unterschiedlichen Simulationsmodelle zeigten deutlich, dass lokale oder verteilte Serienwiderstände in realistischen Szenarien zu unterschiedlichen Serienwiderstandswerten unter Dunkel- und Hellbedingungen führen. Insofern ist \(R_{s,\text{dark fit}} \) i.A. nicht für die Interpretation des Füllfaktors der Hellkennlinie benutzbar.

- **Methode 1b, \(R_{s,\text{light fit}} \) und \(R_{s,\text{light 2d fit}} \):** \(R_{s,\text{light fit}} \) ist in vielen Fällen nicht anwendbar. Da die aus komplexen Stromflußmustern in der Solarzelle resultierenden Hellkennlinien nicht durch das Zweidiodenmodell beschreibbar sind, ergibt der Fit wenig aussagekräftige Ergebnisse für verteilte und lokale Serienwiderstände. Dies ist auch bei injektionsabhängigen Rekombinationseigenschaften der Fall (siehe [Alt94]). Die Aussagekraft von \(R_{s,\text{light fit}} \) kann jedoch durch den Fehler des Least-Square-Fits beurteilt werden.

Dies trifft auf \(R_{s,\text{light 2d fit}} \) nicht zu: Hier wird ein Zweidiodenmodell simuliert, dessen Füllfaktor der realen zu charakterisierenden Solarzelle angepaßt wird. Der erhaltene Wert sagt somit etwas über einen fiktiven Serienwiderstand aus, wenn die Solarzelle Zweidiodenverhalten zeigt würden. Insofern ist \(R_{s,\text{light 2d fit}} \) ein Maß für die Beeinträchtigung der Solarzelle durch Serienwiderstandsfehler, die Aussagekraft hängt aber von der Genauigkeit der bestimmten \(I_{01} \) und \(I_{02} \) Werte (z.B. aus dem Dunkelkennlinienfit) ab. Im Gegensatz zu \(R_{s,\text{light fit}} \) liefert \(R_{s,\text{light 2d fit}} \) aber auch bei stark vom Zweidiodenmodell abweichenden Kennlinien immer noch innerhalb dieser Interpretation sinnvolle Ergebnisse.

- **Methode 1c, \(R_{s,IV_{cc}} \):** Der Fit der Kennlinie an Modell c) (Abbildung 5.1) für verteilte Serienwiderstände liefert neben dem Serienwiderstand auch noch den Faktor \(X \), ein Maß für das Verhalten des Serienwiderstandes: \(X = 0\% \) entspricht Modell a), \(X = 100\% \) entspricht Modell c). Im Fall des Emitterschichtwiderstandes (Abschnitt 5.1.6) ergab \(R_{s,IV_{cc}} \) die besten Ergebnisse, es konnte der analytisch berechnete Wert des Serienwiderstandes aus den Kennlinien reproduziert werden. Für Vermengungen von Serienwiderständen, wie in Abschnitt 5.8 untersucht, konnten die gemessenen Hell- und Dunkelkennlinien mit dem Modell c) am besten reproduziert werden. Das Verhaltensmaß \(X \) konnte jedoch in keinem Fall mit lokalen oder verteilten Serienwiderständen korreliert werden. Auch der erhaltene \(R_{s,IV_{cc}} \) ist schwer zu interpretieren, da er z.B. für lokale Serienwiderstände kleiner ist als für gleichmäßig verteilte, bei identischem Füllfaktor. Das Modell c) ist jedoch von den untersuchten Modellen am besten geeignet, den Verlauf einer Kennlinie wiederzugeben, die nicht dem Zweidiodenmodell entspricht. Für Kennlinien, die signifikant von einem hohen Emitterschichtwiderstand dominiert sind, gibt das Modell sehr gut den aus dem Emitterschichtwiderstand analytisch berechneten Serienwiderstand wieder.

- **Methode 2a, \(R_{s,\text{dark}} \) und \(R_{s,\text{light}} \):** Die Werte für \(R_{s,\text{light}} \) entsprechen in guter Näherung den Werten von \(R_{s,\text{light 2d fit}} \). Dies unabhängig davon, ob der Serienwiderstand verteilter oder lokaler Natur ist. Somit stellt Methode 2a eine einfache, fehlerunabhängige Möglichkeit dar, den Einfluss des Serienwiderstandes auf eine Solarzelle abzuschätzen, auch wenn die Kennlinien nicht durch das Zweidiodenmodell beschreibbar sind. Für die Interpretation gilt
die gleiche Einschränkung wie für $R_{s,tight \ 2dfit}$ (Methode 1b): Der erhaltene Serienwiderstandsverlauf ist ein gutes Maß zur Beurteilung des Einflusses von Serienwiderstandseffekten auf den Füllfaktor der Hellkennlinie, ist in manchen Fällen quantitativ aber nur eingeschränkt interpretierbar. Wird z.B. der Füllfaktor durch einen verteilten Serienwiderstand dominiert, so lässt sich auch über $R_{s,tight}$ kein äquivalenter Schichtwiderstand dieser Verteilung berechnen.

Fazit: Aufgrund der Einfachheit der Methode und der Robustheit bei lokalen und verteilten Serienwiderständen sollten $R_{s,dark}$ und $R_{s,tight}$ in jede Software von Kennlinienmessplätzen integriert werden. $R_{s,tight}$ nach der korrigierten Formel 5.5 erlaubt die Bewertung der Serienwiderstandserinnerungen und wird nicht durch den Füllfaktor reduzierende Rekombinationseffekte (J_{02}) beeinträchtigt. Im Gegensatz zu $R_{s,tight \ 2dfit}$ benötigt $R_{s,tight}$ keine Bestimmung von J_{01}, J_{02} und R_p und ist somit auch anwendbar, wenn die Dunkelkennlinie nicht durch das Zweidiodenmodell beschrieben werden kann.

5.1.8 Kontaktwiderstandsmodell für Siebdruckkontakte

![Abbildung 5.10](image)

Abbildung 5.10: a) REM-Aufnahme eines Querschnitts durch einen Al-Kontakt. Deutlich ist zu sehen, dass nur einzelne Al-Kugelchen einen Kontakt zur Si-Oberfläche bilden. b) Widerstandsmodell für den Siebdruckkontakt und dazugehöriges Ersatzschaltbild (aus [Ren02]).

In Zusammenarbeit mit D. Haljic und J. Rentzsch wurde ein Kontaktmodell entwickelt, das eine Analyse des Kontaktwiderstandes solcher einer Struktur ermöglicht. Abbildung 5.10 b) zeigt das Modell und das dazugehörige Ersatzschaltbild. In äquidistanten Abständen werden Mikrokontakte angenommen, wobei benachbarte Kontaktfäche lateral durch einen Widerstand verbunden sind, der dem Emitterschichtwiderstand für diese Entfernung entspricht. Im Grenzfall 100% Kontaktabdeckung stellt das Modell die numerische Annäherung an das etablierte Transmission Line Model [SM84] dar. Der einzige numerische Parameter ist die Breite d_{Mik} der Mikrokontakte.
5.1. Analyse von lokalen Serienwiderständen

Abbildung 5.11: a) Konvergenzverhalten des Modells für den Siebdruckkontaktwiderstand in Abhängigkeit der Mikrokontaktbreite d_{Mik}. b) Simulationsergebnisse für einen angenommenen spezifischen Kontaktwiderstand von $\rho_c = 1 \times 10^{-4} \ \Omega \ cm^2$.

In Abbildung 5.11 a) ist das Konvergenzverhalten des Modells in Abhängigkeit von d_{Mik} für 100% Kontaktabdeckung zu sehen. Für $d_{Mik} < 0.1 \ \mu m$ entspricht das Modell mit hoher Genauigkeit dem Transmission Line Model, somit kann z. B. ein $100 \ \mu m$ breiter Kontakt mit 1000 Mikrokontakten hinreichend genau beschrieben werden. Die einzelnen kontaktierten Bereiche unterhalb eines Fingers werden im Folgenden gleichverteilt angenommen.

In Abbildung 5.11 b) sind Simulationsergebnisse zweier Emitterschichtwiderstände in Abhängigkeit der Kontaktabdeckung für einen $130 \ \mu m$ breiten Kontaktfinger wiedergegeben. Die offenen Symbole zeigen die Werte für einen Kontakt ohne Zwischenräume, d. h. einen durchgängigen Kontakt mit Breite $= $ Kontaktabdeckung/$100 \cdot 130 \ \mu m$. Der Unterschied zwischen den offenen und geschlossenen Symbolen zeigt den Einfluss des Emitterschichtwiderstandes unter dem Kontakt, der den resultierenden Kontaktwiderstand erhöht. Erst bei kleinen Kontaktabdeckungen steigt auch der Kontaktwiderstand des durchgängigen Kontaktes, da die Transferlänge5 größer als die Kontaktbreite wird.

5Die Transferlänge ist ein Maß für die Breite, über die der Strom aus dem Wafer in den Kontakt fließt. Ist die Transferlänge größer als die Kontaktbreite, so erhöht sich der Kontaktwiderstand - man spricht von current crowding [SM84].
5.2 Analyse von lokalen ohmschen Shunts

In der Dunkelkenmlinie bewirkt ein ohmscher Shunt ein Abrunden bei niedrigen Spannungen. Der Einfluss ist bei kleinen Spannungen am größten, da Rekombinationseffekte näherungsweise proportional zu e^{-V} bzw. $e^{-V/\Phi}$ sind (V ist die an die Solarzelle angelegte Spannung, Φ die thermische Spannung bei Raumtemperatur) und daher erst bei höheren Spannungen überwiegen. Bei den Hellkenmlinienparametern reduziert ein Parallelwiderstand den Füllfaktor, mit zunehmender Größe auch V_{oc} (siehe z.B. [Ghu95] S.29). Im Unterschied zu einem globalen ohmschen Serienwiderstand reduziert ein ohmscher Shunt für typische Solarzellen V_{oc} schon signifikant bei Füllfaktoren kleiner 70%, wohingegen der ohmsche Serienwiderstand J_{sc} erst signifikant reduziert, wenn der Füllfaktor unter 30% gefallen ist.

In diesem Kapitel werden die Einflüsse von lokalen ohmschen Shunts unter Berücksichtigung ihrer Position auf die globale Kenmlinie der Solarzelle analysiert.

5.2.1 Einzugsbereich eines ohmschen Shunts

Die Untersuchungen in den nächsten Abschnitten gehen von der Annahme aus, dass ein ohmscher Shunt nicht nur Strom einsammelt, der in den umliegenden Zellbereichen generiert wird, sondern über das Metallisierungsgitter Strom aus der ganzen Solarzelle. Im Folgenden soll die Spannungsverteilung um einen Shunts erläutert und eine Abschätzung des Einzugsbereiches durchgeführt werden. Abbildung 5.12 a) zeigt die Spannungstopografie im Umfeld eines Shunt bei Kurzschlussbedingungen. Simuliert wurde eine $2 \times 2 \, \text{mm}^2$ große Solarzelle, die von Metallisierungsfingern eingerahmt ist und in deren Mitte ein moderater Shunt ($R_{p,norm} = 5000 \, \Omega \, \text{cm}$) angenommen wurde. Der weiße Bereich ($U \approx 350 \, \text{mV}$) gibt das Maximum der Spannungsverteilung an, d.h. die Grenze des Einzugsbereichs: Innerhalb dieser Grenze fliess der Strom in den Shunt, außerhalb wird er von den Metallisierungsfingern eingesammelt und trägt zum Strom der Solarzelle bei. Je größer der Emitterschichtwiderstand, desto größer ist die Amplitude der Spannungsverteilung um den ohmschen Shunt (s. Abbildung 5.12 b). Für stärkere Shunts (d.h. kleiner $R_{p,norm}$) nähert sich die Grenze des Einzugsbereiches immer weiter der Metallisierung an, bis schließlich auch Strom von den Metallisierungsfingern durch den Emitter zum Shunt fließt. Der Shunt besitzt dann über die Metallisierung die gesamte Solarzelle als Einzugsbereich.

Für typische $10 \times 10 \, \text{cm}^2$ Industriesolarzellen soll nun der Einzugsbereich für signifikante Shunts abgeschätzt werden. Dazu schätzt man den maximalen Einfluss eines Shunts ab, der keinen Strom aus der Metallisierung abführt. Für ein typisches H-förmiges Metallisierungsgitter, wie in Abbildung 5.13 a) dargestellt, beträgt der Fingerabstand 2 mm und der Busabstand 5 cm. Die maximale x-Ausdehnung (parallel zu den Busbars) des Einzugsbereiches ist somit $x_{max} = 2 \, \text{mm}$. Generell kann die Amplitude des Spannungsabfalls im Emitter nicht größer sein als V_{oc} der Solarzelle, da sonst die Zellbereiche im Spannungsmimum keinen Strom mehr liefern.
5.2. Analyse von lokalen ohmschen Shunts

Abbildung 5.12: Spannungstoptgrafie eines ohmschen Shunts bei Kurzschlusbedingungen. Abbildung a) zeigt die Spannungsverteilung des Shunts, der in der Mitte eines 2 × 2 mm² Feldes sitzt, das durch Metallisierungsfinger eingefaßt ist. Der Emitterschichtwiderstand beträgt 80 Ω/□. Abbildung b) zeigt Schnitte bei y = 1 mm für Emitterschichtwiderstände 40 und 80 Ω/□.

und selbst als Shunts aktiv wären, was keinem quasistatischen Gleichgewicht entspricht. Somit läßt sich die maximale Ausdehnung des Einzugsbereiches in y-Richtung (parallel zu den Fingern) abschätzen: Der Widerstand eines dl langen und b breiten Emitterteilkreises ist \(\rho_{\text{sheet}} \frac{dl}{b} \). Der in diesem Bereich maximal generierte Strom ist \(J_{\text{sc}} l b \). Der Spannungsabfall \(\Delta V_{\text{emitter}} \) zwischen Shunt und einem \(y_{\text{max}} \) entfernten Punkt im Emittter ist somit

\[
\Delta V_{\text{emitter}} = \int_{0}^{y_{\text{max}}} \rho_{\text{sheet}} J_{\text{sc}} 2 l dl.
\]

Da \(\Delta V_{\text{emitter}} \) kleiner als \(V_{\text{oc}} \) der Solarzelle sein muss, läßt sich \(y_{\text{max}} \) zu

\[
y_{\text{max}} \leq \sqrt{\frac{V_{\text{oc}}}{\rho_{\text{sheet}} J_{\text{sc}}}}
\]

und die maximal vom Shunt abgeführte Stromdichte mit

\[
J_{\text{Shunt, max}} \leq \frac{y_{\text{max}} x_{\text{max}} J_{\text{sc}}}{A_{\text{cell}}} (5.7)
\]

abschätzen (\(A_{\text{cell}} \) ist die Größe der Solarzelle). Für eine typische 10 × 10 cm² Solarzelle mit \(J_{\text{sc}} = 30 \text{ mA/cm²} \) und \(V_{\text{oc}} = 620 \text{ mV} \) und \(\rho_{\text{sheet}} = 40 \Omega/\square \) ergibt sich \(J_{\text{Shunt, max}} = 0.031 \text{ mA/cm²} \). \(J_{\text{mpp}} \) liegt für diese Solarzelle bei etwa 28 mA/cm², d.h. \(J_{\text{Shunt, max}} \) beträgt nur etwa 0.1% von \(J_{\text{mpp}} \) und hat damit kaum Einfluss auf den Füllfaktor.

Somit ist der Einzugsbereich aller relevanten (den Füllfaktor signifikant reduzierenden) Shunts der in diesem Kapitel betrachteten Solarzellen größer als ein Fingerabstand. Die Shunts führen i.A. Strom von der gesamten Solarzelle ab.

Diese Abschätzung gilt nicht, wenn eine große Anzahl von moderaten Shunts in einer Solarzelle vorzufinden ist, die nur lokal Strom abführen. Für den oben betrachteten Fall müßten z.B. für eine \(J_{\text{mpp}} \)-Reduktion um 1 mA/cm² ca. 30 Shunts mit maximaler lokaler Stromabführung auf der Solarzelle vorzufinden sein.
5.2.2 Definition von lokalen ohmschen Shunts

Der für eine Solarzelle angegebene Parallelwiderstand wird üblicherweise durch den Fit der Dunkelkennlinie an das Zwei diodenmodell bestimmt. Der Shunt wird auf die Fläche der Solarzelle normalisiert, d.h. in den Einheiten $\Omega \ cm^2$ angegeben. Dieser Wert beschreibt den Einfluss des Shunts auf die Gesamt kennlinie der Solarzelle, nicht den tatsächlichen physikalischen Wert, R_p, des Parallelwiderstandes auf der Solarzelle. Er wird daher in diesem Kapitel mit $R_{p, \text{eff}}$ bezeichnet. Die in diesem Kapitel verwendeten Definitionen des Parallelwiderstandes sind in Tabelle 5.1 zusammengefasst.

<table>
<thead>
<tr>
<th>Bezeichnung</th>
<th>Einheiten</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>R_p</td>
<td>Ω</td>
<td>Tatsächlicher physikalischer Wert des ohmschen Shunts</td>
</tr>
<tr>
<td>$R_{p, \text{norm}}$</td>
<td>$\Omega \ cm^2$</td>
<td>Tatsächlicher physikalischer Wert des ohmschen Shunts, normiert auf $1 \ cm^2$</td>
</tr>
<tr>
<td>$R_{p, \text{eff}}$</td>
<td>$\Omega \ cm^2$</td>
<td>Auf die Fläche der Solarzelle normalisierter ohmscher Shunt, ermittelt durch den Einfluss auf die globale Hell- oder Dunkelkennlinie</td>
</tr>
<tr>
<td>$R_{p, \text{elendiode}}$</td>
<td>$\Omega \ cm^2$</td>
<td>Auf $1 \ cm^2$ normierter Parallelwiderstand einer Elementardiode in der Netzwerksimulation</td>
</tr>
</tbody>
</table>

Tabelle 5.1: Definitionen der ohmschen Shunts.

Für die Netzwerksimulation muss der Parallelwiderstand für jede Elementardiode definiert werden. Auch hier wird der eigentliche Parallelwiderstand, R_p, mit der Fläche der Elementardiode normiert. Der Zusammenhang zwischen den oben definierten Größen ist demnach:

$$ R_{p, \text{eff}} = R_{p, \text{norm}} = R_p \ A_{\text{Cell}} = R_{p, \text{elendiode}} \frac{A_{\text{Cell}}}{A_{\text{elendiode}}}, $$

wobei A_{Cell} und $A_{\text{elendiode}}$ die Größe der Solarzelle bzw. Elementardiode in cm^2 bezeichnen. Unter welchen Bedingungen $R_{p, \text{eff}}$ von $R_{p, \text{norm}}$ abweicht, wird in den nächsten Abschnitten untersucht.

5.2.3 Analytisches Modell für den Serienwiderstand zur Metallisierung

Das lineare Gleichheitszeichen in Formel 5.8 ist gültig, wenn kein signifikanter Serienwiderstand $R_{s, \text{shunt}}$ zwischen dem ohmschen Shunt und den Kontakten der Solarzelle besteht, der den durch R_p fließenden Strom verringert. Für alle Shunts, die nicht direkt unter der Metallisierung der Vorderseite liegen, erwartet man somit $R_{p, \text{eff}} < R_{p, \text{norm}}$. Damit wäre das lineare Gleichheitszeichen in Formel 5.8 i.A. nicht gültig und der Serienwiderstand zwischen Metallisierung und Shunt müßte berücksichtigt werden, wenn der Einfluss des ohmschen Shunts auf die Gesamt kennlinie analysiert werden soll.

Beiträge zu $R_{s, \text{shunt}}$ stammen z.B vom Emitterschichtwiderstand, ρ_{sheet}, dem Kontaktwiderstand und dem Leitungswiderstand der Metallisierung, wobei für typische Solarzellen der wesentliche Beitrag vom Emitterschichtwiderstand zu erwarten ist.

Im Folgenden soll der Beitrag von ρ_{sheet} zu $R_{s, \text{shunt}}$ durch ein einfaches analytisches Modell abgeschätzt werden: Unter Vernachlässigung des Stromes, der in der Umgebung des Shunts durch
5.2. ANÄLYSE VON LOKALEN OHMSCHEN SHUNTS

b) Ausschnitt aus dem H-Grid um Position X mit Definition der Größen zur analytischen Berechnung von $R_{s,\text{shunt}}$.

das absorbierte Sonnenlicht generiert wird, lässt sich der Serienwiderstand zwischen Shunt und Metallisierung in den vier Bereichen R_{1-4} mit Emitterchichtwiderstand ρ_{sheet} durch

$$R_i = \left(\int_0^{L_i} \frac{1}{\rho_{\text{sheet}} l_1(y)} \, dy \right)^{-1} \quad \text{beschreiben, wobei} \quad l_1(y) = \sqrt{(Y_R - y)^2 + X_R^2}$$

den Abstand der Shuntposition (X_R, Y_R) zur Position y auf der Geraden L_1 angibt und für die Bereiche 2-4 entsprechend eingesetzt wird (siehe Abbildung 5.13 b).

$$R_{s,\text{shunt}} = \left(\sum_{i=1}^{4} \frac{1}{R_i} \right)^{-1} \quad (5.9)$$

ergibt die Abschätzung für den Serienwiderstand zwischen Shunt und Metallisierung.

Abbildung 5.14: $R_{s,\text{shunt}}$ nach Formel 5.9 für verschiedene Emitterchichtwiderstände ρ_{sheet}. Der Fingerabstand der berechneten Zelle beträgt 2 mm, der Busabstand 5 cm.

Abbildung 5.14 zeigt $R_{s,\text{shunt}}$ nach Formel 5.9 für verschiedene Emitterchichtwiderstände. Es wurde eine Solarzelle mit 10×10 cm² Fläche, Fingerabstand 2 mm und Busabstand 5 cm angenommen. Der Shunt lag in der Mitte zwischen den beiden Busbars und die Position wurde vom linken Finger bis zur Mitte zwischen den Fingern variiert. Liegt der Shunt unter dem Metallisierungsfinger, so ist $R_{s,\text{shunt}} = 0 \, \Omega$, steigt in den ersten 0.2 mm stark an und nähert sich danach langsam dem Maximum bei 1.0 mm (Mitte zwischen den Fingern). Für einen typischen
5.2.4 Abstandsvariation Shunt – Metallisierungsfinger

In Kapitel 2.2 wurde die Gültigkeit des Netzwerkmödells für ohmsche Shunts bereits gezeigt. Es können somit realistische Untersuchungen des Einflusses der Shuntposition auf den Füllfaktor der Gesamthellkennlinie durchgeführt werden. Als Grundlage wurden die Daten für eine typische 10 x 10 cm² Solarzelle mit aufgedampften Fingern benutzt, mit Emitterschichtwiderstand ρ\textunderscore sheet = 40 Ω/□ und 80 Ω/□. Abbildung 5.15 zeigt das Ergebnis der Simulationen.

Aufgetragen ist der absolute Füllfaktorverlust durch den ohmschen Shunt gegen den Abstand Shunt-Metallisierungsfinger. Wie aufgrund der Ergebnisse des analytischen Modells im vorherigen Abschnitt erwartet, sinkt der Füllfaktorverlust mit den ersten 0.2 mm Abstand vom Metallisierungsfinger stark ab und nähert sich danach langsam dem Minimum bei 1.0 mm (Mitte zwischen den Fingern). Die Simulationen für Solarzellen mit einem höheren Schichtwiderstand (ρ\textunderscore sheet = 80 Ω/□) zeigen eine größere Abhängigkeit von der Shuntposition aufgrund der stärkeren Abschirmung durch den Emitterschichtwiderstand. In allen Simulationen war die Änderung in \(J_{sc} \) kleiner als die Rechengenauigkeit (< 0.1%) und die Differenz in \(V_{oc} \) kleiner als 1 mV.

Da die Werte für \(R_{s,shunt} \) wie in Formel 5.9 definiert mit zunehmendem Abstand vom Finger steigen, steigt auch \(R_{p,eff} \). Dies bedeutet, dass auch die Differenz zwischen dem Füllfaktorverlust für zwei verschiedene \(R_{p,norm} \) mit steigendem Abstand vom Finger abnimmt, z.B. nähern sich die gestrichelte und die durchgezogene Linie mit Sternsymbolen in Abbildung 5.15 an.
5.2. Analyse von lokalen ohmschen Shunts

Exemplarisch wurde für \(\rho_{\text{sheet}} = 40 \Omega/\square \) und \(R_{p,\text{norm}} = 600 \, \Omega \, \text{cm}^2 \) der effektive ohmsche Shunt bestimmt (gestrichelte Linie, rechte Y-Achse). Erwartungsgemäß stimmen \(R_{p,\text{eff}} \) und \(R_{p,\text{norm}} \) überein, wenn der Shunt unter dem Metallisierungsfinger der Solarzelle liegt. Mit steigendem Abstand zum Finger vergrößert sich der Wert von \(R_{p,\text{eff}} \) von 600 \(\Omega \, \text{cm}^2 \) auf 1400 \(\Omega \, \text{cm}^2 \).

Aus diesen Simulationsergebnissen lassen sich zwei generelle Schlüsse ableiten:

- Der aus dem Dunkelkennlinienübergang ermittelte Wert \(R_{p,\text{eff}} \) stimmt mit dem physikalischen Wert \(R_{p,\text{norm}} \) des ohmschen Shunts überein, wenn der Shunt unter dem Finger liegt. Liegt der Shunt um nur wenige 10 \(\mu \text{m} \) neben dem Finger, so steigt \(R_{p,\text{eff}} \) bereits signifikant an.

5.2.5 Variation des Shuntwiderstandes für typische Positionen

Abbildung 5.16: Variation von \(R_{p,\text{norm}} \) an drei typischen Positionen (unter dem Metallisierungsfinger und Position A und B wie Abbildung 5.13 a) definiert. Deutlich ist der geringere Einfluss des Shunts in der Ecke der Solarzelle gegenüber an der Kante und unter dem Metallisierungsfinger gelegenen Shunts zu sehen.

Simulationen durchgeführt, bei denen unter dem Metallisierungsfinger (als Referenz mit \(R_{p,\text{eff}} = R_{p,\text{norm}} \)) und an den Positionen A und B die physikalischen Werte des Shunts, \(R_{p,\text{norm}} \), variiert wurden. Abbildungen 5.16 und 5.17 zeigen die Ergebnisse dieser Simulationen.

Aufgrund der unterschiedlichen Geometrie der drei Positionen erwartet man verschiedene starke Füllfaktorverbesserungen. Aus Abbildung 5.13 wird deutlich, dass der Wert für \(R_{s,\text{shunt}} \) höher für einen Shunt in Position A ausfallen wird als an Position X, da z.B. der Strom nur aus einem
Finger gezogen werden kann. Für einen Shunt in Position B erwartet man einen nochmals größeren \(R_{s, \text{shunt}} \), da nur die Hälfte des Einzugsgebiets verglichen mit Position A zur Verfügung steht. Shunts in der Ecke einer Solarzelle sind somit besser von der Metallisierung abgeschirmt. Wie in Abbildungen 5.16 dargestellt, hat dadurch für die simulierten Solarzellen z.B. ein Shunt von \(R_{p, \text{norm}} = 730 \, \Omega \, \text{cm}^2 \) unter dem Metallisierungsfinger den gleichen Effekt auf die Gesamthelligkeitslinie wie ein Shunt mit \(R_{p, \text{norm}} = 100 \, \Omega \, \text{cm}^2 \) an der Ecke der Solarzelle! Dieser Zusammenhang erweist sich für viele Industriesolarzellen als vorteilhaft, da starke Shunts oft aufgrund mangelnder Kantenisolation an der Kante oder Ecke der Solarzelle auftreten.

Die Offenklemmspannung in Abbildung 5.17 zeigt qualitativ das gleiche Verhalten wie der Füllfaktor. Allerdings ist der prozentuale Verlust wesentlich geringer, d.h. die Änderungen im Wirkungsgrad der Solarzelle sind durch den Füllfaktorverlust dominiert.

Die in diesem Abschnitt vorgestellten Effekte skalieren mit der Größe der Solarzelle. Wie aus Formel 5.8 ersichtlich, verringert sich bei konstantem \(R_{p, \text{norm}} \) \(R_p \) reziprok zur Zellgröße. Dies bedeutet, dass bei kleineren Solarzellen die Füllfaktorverluste für die verschiedenen Positionen geringer sind.

Abbildung 5.17: Hier sind die zu Abbildung 5.16 gehörigen \(V_{oc} \) (linke Y-Achse) und \(\eta \) (rechte Y-Achse) aufgetragen. \(V_{oc} \) zeigt qualitativ die gleiche Abhängigkeit von \(R_{p, \text{norm}} \) wie der FF für alle drei Positionen. Die prozentuale Änderung bei \(V_{oc} \) ist jedoch wesentlich kleiner als beim FF, so dass die Änderungen in \(\eta \) durch den Füllfaktorverlust dominiert sind.

5.3 Zusammenfassung

Der erste Teil behandelt Serienwiderstandseffekte. Zunächst wurden die gängigen Methoden zur Bestimmung eines globalen Serienwiderstandes aus Kennlinienmessungen vorgestellt und eine Korrektur für die Methode der Hellserienwiderstandsberechnung (\(R_{s, \text{tight}} \)) aus Dunkel- und Helligkeitskenntlinien vorgeschlagen. Diese Korrektur behebt einen grundsätzlichen Fehler (≥ 5% für typische Solarzellen) der in der Literatur vorgeschlagenen Formel zur Bestimmung von \(R_{s, \text{tight}} \). Darüber hinaus ist die in der Literatur vorgeschlagene Formel abhängig vom Rekombinationsparame-
ter \(J_{02} \), wohingegen die korrigierte Form nur die serienwiderstandsbedingten Füllfaktorverluste angibt, auch wenn \(J_{02} \) den Füllfaktor reduziert.

Anhand von erweiterten Zweidiodenmodellen wurden die Einflüsse von lokalen und verteilten Serienwiderständen aufgezeigt und der Effekt auf die einzelnen Auswertemethoden für typische Solarzellenwerte quantifiziert. Es zeigt sich, dass die gängigste Bestimmungsmethode (Serienwiderstandsbestimmung aus dem Fit des Zweidiodenmodells an die Dunkelkennlinie) für lokale und verteilte Serienwiderstände zu kleine Werte ergibt.

Für mittels Siebdruck hergestellte Kontaktierungsfinger wurde ein Kontaktwiderstandsmodell vorgestellt, das eine Abschätzung des Kontaktwiderstandes abhängig von der Kontaktabdeckungsfläche der gedruckten Metallisierung ermöglicht.

KAPITEL 5. ANALYSE VON LOKALEN PARASITÄREN WIDERSTÄNDEN
Kapitel 6

Ortsaufgelöste Messung von Shunt-Widerständen

Shunt-Widerstände können bei der Zellprozessierung auf unterschiedliche Weise entstehen. Die häufigsten Ursachen sind:

- Beim Aufbringen des Kontaktierungsgitters auf der Vorderseite der Solarzelle kann Metall den Emitter durchdringen und so die Basis der Solarzelle mit dem Emitter kurzschließen. Dies tritt vor allem bei mittels Siebdruck erstellten Kontakten auf, vor allem bei durch Passivierungsschichten durchgefeuerten Kontakten.

- Bei multikristallinem Material kann Metall von der Vorderseitenkontaktierung durch kleine Spalten zwischen den Körnern in die Basis oder sogar bis zur Rückseite fließen.

- Wird der Emitter durch Diffusion einer mit Siebdruck aufgebrachten Paste erstellt, so kann die Phosphorpaste am Rand überlaufen oder durch Spalten im multikristallinen Wafer zur Rückseite laufen und so einen Kontakt zwischen Emitter und Rückseite bilden. Ebenfalls kann sich bei der Diffusion mit Phosphorpaste eine zusätzliche Diffusion aus der Gasphase ergeben, welche den Rand der Solarzelle dotiert und so eine Verbindung zum Rückseitenkontakt erstellt.

- Bei der Herstellung der Siliziumwafer können Fremdatome beim Kristallwachstum Präzipitate (Einschlüsse) bilden und somit Kristalldefekte bilden. Liegen diese Defekte im Bereich des p-n-Übergangs, so kann ein Leckstrom über die Raumladungszone entstehen.

Beim multikristallinen Kristallwachstum kommt ein hoher Eintrag an Fremdatomen aus den Tiegeldämpfen und dem Tiegelboden. Dies führt zu einer erhöhten Fremdatomkonzentration im Boden- und Randbereich des Blocks, was in diesen Bereichen zu einer erhöhten Anzahl von Präzipitatent führt. Aufgrund der Segregation zwischen flüssiger und fester Phase verbleibt während der Kristallisation des Blocks ein hoher Anteil Fremdatome in
der flüssigen Phase, der zu einer erhöhten Fremdatom- und damit Präzipitation konzentration im oberen Bereich des Blocks führt.

- Bei Solarzellen mit Einseitenkontaktierung sind i.A. Basis- und Emittenvonkontaktierung kammartig ineinanderverschrankt. Hier kann durch Metallsplitter oder Ausdiffusion des Emitters ein Kontakt zwischen Basis und Emitter entstehen.

- Passivierungsschichten, die eine hohe ortsfeste positive Ladungsträgerkonzentration aufweisen, erzeugen auf p-Material einen Inversionskanal. Dieser kann in ungünstigen Fällen den pn-Übergang bis zum Rückseitenkontakt verlängern und dort kann sich durch Kristalldifekte ein Shunt ausbilden.

Die folgenden Abschnitte geben die Grundlagen der Shunt-Thermografie wieder und verglei-
chen analytische Modelle zur Beschreibung von Wärmewellen im Siliziumwafer. Anschließend
werden die Ergebnisse der quantitabten Überprüfung der Auswertemethoden dargestellt. Als
Beispiel einer vollständigen Shunt-Analyse wird die Untersuchung einer 10 cm x 10 cm Siebdruck-
Solarzelle im letzten Abschnitt wiedergegeben (s. auch [Est02]).

6.1 Grundlagen der quantitativen Shunt-Thermografie

Die Thermografie erlaubt eine zerstörungsfreie, ortsaufgelöste Messung der von der Solarzelle
emittierten Infrarotstrahlung. An die Solarzelle wird eine äußere Spannung angelegt, so dass
der durch die Zelle fließende Strom die Zelle erwärmt. Bereiche mit lokalen Lockstücken oder
hoher Rekombinationsaktivität haben eine höhere Strömdichte und erwärmen sich stärker als
die Umgebung auf der Solarzelle. Die mit einer Infrarotkamera gemessene Wärmevektorverteilung
der Solarzelle wird mit den analytischen Modellen verglichen, um die dissipierte Leistung an den
stärker erwärmten Stellen zu ermitteln. So können lokale Parameter gewonnen werden, wie z.B.
der Leitungswiderstand eines lokalen ohmschen Shunts.

Die Messungen wurden mit einem Thermografiesystem der Firma Thermosensorik [The00]
durchgeführt, das bereits die LockIn-Ansteuerung und die digitalisierte Auswertung der Messwer-
teneinbehalten. Die Grundlagen der Thermografie für Shuntmessungen an Solarzellen sind von O.
Breitenstein bereits ausführlich behandelt ([BLed], [BLRZ01]). Der Schwerpunkt dieses Kapitels
liegt in der quantitativen Messung von lokalen ohmschen Shunts.

Die mit der Thermografie gemessenen Shunts sind effektive Shunts: Die Abschirmung durch
die Schichtanbänder der Metallisierung und evtl. des Emitters werden in der hier vorgestell-
ten Auswertung mit berücksichtigt. Insofern entsprechen die gemessenen Werte den mit \(R_p, \text{eff} \)
bezeichneten Größen in Abschnitt 5.2.2.

6.1.1 Grundlagen der Wärmestrahlung

Ein Körper, der einem Photonenfluss der Intensität \(I_0 \) ausgesetzt ist, lässt sich durch den absor-
bieren \((a) \lambda I_0 \), reflektierten \((r) \lambda I_0 \) und transmittierten \((t) \lambda I_0 \) Anteil charakterisieren. Für
die Koeffizienten gilt:

\[
a(\lambda) + r(\lambda) + t(\lambda) = 1.
\] \((6.1) \)
Planck'sches Strahlungsgesetz

Die spezifische spektrale Ausstrahlung eines schwarzen Körpers der Temperatur \(T \) wird durch das Plancksche Strahlungsgesetz beschrieben:

\[
M_{\lambda,SK}(T) = \frac{2\pi\hbar c^2}{\lambda^5} \exp\left(\frac{\hbar c}{\lambda k_B T}\right).
\]

Hierbei ist \(\hbar \) das Plancksche Wirkungsquantum, \(c \) die Lichtgeschwindigkeit im Vacuum, \(k_B \) die Boltzmann Konstante und \(\lambda \) die Wellenlänge. Für die Sonne \((T = 5800 \text{ K}) \) ergibt sich das in Abbildung 6.1 a) dargestellte Spektrum, wobei der Raumwinkel, den die Sonne von der Erde aus gesehen einnimmt, berücksichtigt wurde. Abbildung 6.1 b) zeigt das Spektrum für eine als schwarzen Körper idealisierte angenommene Solarzelle bei Raumtemperatur. Wie durch das Wiensche Verschiebungsgesetz

\[
\lambda_{\text{max}} = \frac{2898 \text{ } \mu\text{m} \text{ } K}{T}
\]

beschrieben, verschiebt sich das Maximum des Spektums, \(\lambda_{\text{max}} \), mit sinkender Temperatur zu größeren Wellenlängen.

Der gestrichelte Balken in Abb. 6.1 b) gibt den Empfindlichkeitsbereich der Kamera an. Da das Kernmodul der Kamera für militärische Zwecke entwickelt wurde, ist der Empfindlichkeitsbereich auf ein atmosphärisches Fenster optimiert, d.h. einen Wellenlängenbereich, in dem die Erdatmosphäre durchlässig ist. Die Entwicklung des CCD-Chips und der Auswerte- und Kühlunggebung ist sehr kostspielig, so dass sich eine Optimierung für die Solarzellenthermografie finanziell nicht abbilden lässt.

Stefan-Boltzmannsches und Kirchoffsches Strahlungsgesetz

Integriert man Gleichung 6.2 über die Wellenlänge, so ergibt sich die vom Körper emittierte Energiestromdichte \(j_E \)

\[
j_E = \epsilon(\lambda)\sigma T^4.
\]
Dies ist das Stefan-Boltzmannsche Strahlungsgesetz mit der Stefan-Boltzmann Konstante \(\sigma = 5.67 \times 10^{-8} \frac{W}{m^2K^4} \). Der Faktor \(\epsilon(\lambda) \), der Emissionsgrad, ist für einen schwarzen Körper \(k \), unabhängig von der Wellenlänge. Körper mit \(\epsilon(\lambda) = \text{const} < 1 \) werden als graue Strahler, Körper mit wellenlängenabhängigem \(\epsilon(\lambda) \) als selektive Emitter bezeichnet.

Das Kirchhoffsche Strahlungsgesetz besagt, dass der Absorptionsgrad \(a(\lambda) \) (Formel 6.1) eines Körpers für jede Wellenlänge gleich seines Emissionsgrades ist:

\[
\epsilon(\lambda) = a(\lambda).
\]

6.1.2 Messaufbau

Die örtliche Auflösung des Messplatzes in der verwendeten Konfiguration liegt bei ca. 350 \(\mu m \) für eine \(10 \times 10 \text{ cm}^2 \) Zelle bzw. bei ca. 175 \(\mu m \) für eine \(5 \times 5 \text{ cm}^2 \) Zelle. Sie wird durch die Anzahl der Pixels des CCD-Chips der Kamera begrenzt (288 \(\times \) 288). Durch Zoomen eines Bereichs der Solarzelle sind beider verwendeten Optik Auflösungen bis zu 30 \(\mu m \) möglich.

Funktionsweise des verwendeten LockIn-Systems

Die Solarzelle wird bei Raumtemperatur vermessen, die zu detektierenden Signale liegen jedoch im \(mK \)-Bereich. Die notwendige Empfindlichkeit wird über ein LockIn-System erreicht: An die Zelle wird eine periodische Rechteckspannung angelegt (Abb. 6.3 a). Diese eingebrachte Leistung erzeugt eine periodische Erwärmung der Solarzelle. Ein erwärmter Bereich kühlt sich in den
Perioden, in denen keine Leistung eingebracht wird, durch Wärmeleitung innerhalb des Siliziumwafers, durch Wärmeabstrahlung über die Folie und durch Wärmeleitung an den Messblock ab. Der Wärmestrom an die Umgebung ist zu Beginn der Messung kleiner als die eingebaute Leistung, d.h. die mittlere Zelltemperatur steigt zu Beginn, bis sich ein Gleichgewicht einstellt. Je nach Wahl der angelegten Frequenz und Spannung stellt sich dieses Gleichgewicht in 1 – 5 min ein. Nach diesem Einschwingvorgang verläuft die Temperatur an einem Punkt der Solarzelle näherungsweise sägezahnförmig (Abb. 6.3 b).

Die Kamera nimmt während einer Periode in äquidistanten Zeitabständen Messwerte auf. Die Frequenz der Kamera wird als ganzzahliges Vielfaches \(n \) der Anregungsfrequenz \(f \) gewählt, so dass für jede Periode \(n \) Messpunkte vorliegen. Die Messdauer für einen Messpunkt wird Belichtungszeit oder Integrationszeit genannt, da während dieser Zeitspanne das Messsignal für jeden Kamerapixel kumuliert wird.

Die Einzelbilder der Zeitpunkte \(t_i \) werden mit den Funktionen

\[
K^{0^\circ} = \sin(2\pi f t) \quad \text{und} \quad K^{-90^\circ} = -\cos(2\pi f t)
\]

korreliert. Jeder einzelne Messwert \(D_i \) wird nun mit den beiden obigen Funktionen für eine Periode korreliert und das Ergebnis vier Perioden gemittelt. Man erhält den (mit 0° korrelierten) Realteil \(S^{0^\circ} \) und den (mit -90° korrelierten) Imaginärteil \(S^{-90^\circ} \) des Messsignals.

\[
S^{0^\circ} = \frac{1}{nN} \sum_{i=1}^{n} \sum_{j=1}^{N} D(t_{i,j}) \sin(2\pi ft_{i,j})
\]

\[
S^{-90^\circ} = -\frac{1}{nN} \sum_{i=1}^{n} \sum_{j=1}^{N} D(t_{i,j}) \cos(2\pi ft_{i,j}).
\]

Hierbei ist \(t_{i,j} \) der den einzelnen Messwerten zugeordnete Zeitpunkt, \(n \) die Anzahl der Bilder pro Periode, \(f \) die Frequenz der Anregung und \(N \) die Anzahl der gemittelten Perioden. Statt \(D \) steht für Digits, d.h. ganzzahlige, nicht normierte Werte, die für je einen Pixel des CCD-Chips ausgelesen werden.
Real- und Imaginärteil lassen sich auch Betrag \(S^{\text{Betrag}} \) und Phase des Signals angeben, wobei der Betrag unabhängig von einer globalen Phase \(\varphi \) ist:

\[
S^{\text{Betrag}} = \sqrt{(S^0)^2 + (S^{-90^\circ})^2} = \sqrt{(S^0 + \varphi)^2 + (S^{-90^\circ} + \varphi)^2}.
\]

(6.9)

Auf die Phasenverschiebung \(\varphi \) wird in Abschnitt 6.1.5 näher eingegangen.

6.1.3 Analytische Lösungen für die WärmeAusbreitung einer oszillierenden Quelle

In diesem Abschnitt werden zwei analytische Modelle zur Beschreibung der Wärmewellen in der Solarzelle vorgestellt. Dabei handelt es sich um zwei Lösungen der zweidimensionalen Wärmeleitgleichung mit Neumannschen Randbedingungen, direkt analytisch oder in zwei Schritten gelöst, mit Hilfe der Methode der Spiegelquellen.

Zweidimensionale Wärmeleitgleichung

Betrachtet man ein quaderförmiges Volumenelement in der Solarzelle mit Grundfläche \(k \times k \) und Höhe \(d \), so berechnet sich die zeitliche Änderung der im Volumenelement gespeicherten Wärmemenge \(Q \) zu

\[
\frac{\partial Q}{\partial t} = d k^2 \rho c \frac{\partial T}{\partial t}
\]

mit der spezifischen Wärmekapazität \(c \), der Materialdichte \(\rho \) (in unserem Fall \(\rho_{\text{Si}} \)) und der Temperatur \(T \).

Denkt man den Quader um den Ursprung \((0,0,0) \) zentriert, so lassen sich die Wärmeflüsse an den Seiten des Quaders durch

\[
-d k \kappa \frac{\partial T}{\partial x} \bigg|_{x=-\frac{k}{2}} + d k \frac{\partial T}{\partial x} \bigg|_{x=\frac{k}{2}} - d k \kappa \frac{\partial T}{\partial y} \bigg|_{y=-\frac{k}{2}} + d k \kappa \frac{\partial T}{\partial y} \bigg|_{y=\frac{k}{2}}
\]

(6.11)

mit der Wärmeleitfähigkeit \(\kappa \) beschreiben. Die Ober- und Unterseite des Quaders wird als thermisch isolierend angenommen. Die Wärmeabstrahlung an der Vorderseite und die Konvektion an den erwärmten Punkten der Solarzelle ist klein gegen die Wärmeleitung im Siliziumwafer und daher vernachlässigbar. An der Rückseite der Solarzelle stellt sich nach dem Einschwingvorgang ein im Mittel einer Periode konstanter Wärmeübergang ein, so dass sich die Solarzelle im Mittel nicht erwärmt. Im Modell beschreibt man den Leistungsseintrag eines im Ursprung liegenden Shunts daher durch

\[
P(t) = P_0 \sin(2\pi ft),
\]

d.h. im Modell wird die Solarzelle eine halbe Periode lang erwärmt und anschließend gekühlt, im Mittel wird keine Leistung eingebracht. Durch diese Näherung reduzieren sich die Gleichungen auf zwei Dimensionen. Die Beschreibung des Leistungsablaufs als Sinusfunktion (und nicht als Rechteckfunktion) wird in Abschnitt 6.1.4 näher erläutert.

Die zeitliche Änderung der Wärmemenge \(Q \) im Quader ist die Summe aus den Formeln 6.11 und 6.12. Eingesetzt in Formel 6.10 ergibt sich für den betrachteten Quader eine zweidimensionale Differentialgleichung erster Ordnung:

\[
\frac{P(t)}{\kappa} + 1 \kappa \left(- \frac{\partial T}{\partial x} \bigg|_{x=-\frac{k}{2}} + \frac{\partial T}{\partial x} \bigg|_{x=\frac{k}{2}} - \frac{\partial T}{\partial y} \bigg|_{y=-\frac{k}{2}} + \frac{\partial T}{\partial y} \bigg|_{y=\frac{k}{2}} \right).
\]

(6.13)
6.1. GRUNDLAGEN DER QUANTITATIVEN SHUNT-THERMOGRAFIE

Für den Fall eines infinitesimal kleinen Quaders, d.h.

\[\frac{P(t)}{dk^2 \kappa} \xrightarrow{k \to 0} \frac{P(t)}{dk} \delta(x-x_0) \delta(y-y_0) \] (6.14)

und

\[\frac{1}{k} \left(\frac{\partial T}{\partial x} \bigg|_{x=b/2} - \frac{\partial T}{\partial x} \bigg|_{x=-b/2} \right) \xrightarrow{k \to 0} \frac{\partial^2 T}{\partial x^2} \bigg|_{x=0} \] (6.15)

erhält man eine Differentialgleichung zweiter Ordnung: die zweidimensionale Wärmeleitgleichung

\[\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} - \frac{\rho c}{\kappa} \frac{\partial T}{\partial t} = - \frac{P_0}{\kappa} \sin(\omega t) \delta(x-x_0) \delta(y-y_0). \] (6.16)

Analytische Lösung mit Randbedingungen

Da die Fläche der Zellrückseite gegenüber der Randfläche sehr groß ist (eine typische Solarzelle ist ca. 300 \(\mu \text{m} \) dick) und zudem der Rand der Solarzelle nur über die Folie oder Konvektion Wärme mit dem Messblock beschränkt, kann der Rand als thermisch isolierend angesehen werden. Für eine Solarzelle mit Länge \(a \) und Breite \(b \) ergibt sich:

\[\frac{\partial T}{\partial x} \bigg|_{x=0} = 0 \quad \frac{\partial T}{\partial x} \bigg|_{x=-a} = 0 \quad \frac{\partial T}{\partial y} \bigg|_{y=0} = 0 \quad \frac{\partial T}{\partial y} \bigg|_{y=-b} = 0. \] (6.17)

Mit diesen Neumannschen Randbedingungen ergibt sich als Lösung von Formel 6.16

\[T(x, y, t) = T_0 + \frac{1}{ab} \sum_{n=1}^{\infty} \cos\left(\frac{n\pi x}{a} \right) \cos\left(\frac{n\pi y}{b} \right) \frac{P_0 - P_0 \cos(\omega t)}{cd\omega} \] (6.18)

mit den Koeffizienten

\[d_{00} = \frac{P_0 - P_0 \cos(\omega t)}{cd\omega} \] (6.19)

\[d_{0n} = \frac{P_0 \omega \rho - b^4 c P_0 \omega \rho \cos(\omega t) + b^2 m^2 P_0 \pi^2 \kappa \sin(\omega t)}{d m^2 \pi^4 \kappa^2 + b^4 c^2 d \omega^2 \rho^2} \] (6.20)

\[d_{n0} = \frac{a^4 c e \omega^2 \left(- \frac{a^2 \pi^2 \kappa^2}{m^2 \rho^2} \right) P_0 \omega \rho - a^4 c P_0 \omega \rho \cos(\omega t) + a^2 n^2 P_0 \pi^2 \kappa \sin(\omega t)}{a n^4 \pi^4 \kappa^2 + a^4 c^2 d \omega^2 \rho^2} \] (6.21)

\[d_{n0} = \frac{a^2 b^2 P_0 \omega \rho - a^2 b^2 c \omega \rho \cos(\omega t) + (a^2 m^2 + b^2 n^2) \pi^2 \kappa \sin(\omega t))}{a^4 \left(m^4 \pi^4 \kappa^2 + b^4 c^2 \omega^2 \rho^2 \right)} \] (6.22)
Die Exponential-Terme gehen für große \(n, m \) und \(t \) gegen Null. Dadurch lassen sich die Koeffizienten 6.20 bis 6.22 zu

\[
d_{0m} = \frac{-b^4 c P_0 \omega \rho \cos(\omega t) + b^2 m^2 P_0 \pi^2 \kappa \sin(\omega t)}{d m^4 \pi^4 \kappa^2 + b^4 c^2 d \omega^2 \rho^2}
\]

(6.23)

\[
d_{n0} = \frac{-a^4 c P_0 \omega \rho \cos(\omega t) + a^2 n^2 P_0 \pi^2 \kappa \sin(\omega t)}{d n^4 \pi^4 \kappa^2 + a^4 c^2 d \omega^2 \rho^2}
\]

(6.24)

\[
d_{nm} = \frac{a^2 b^2 P_0 (-a^2 b^2 \omega \rho \cos(\omega t) + (a^2 m^2 + b^2 n^2) \pi^2 \kappa \sin(\omega t))}{d (2a^2 b^2 m^2 \pi^4 \kappa^2 + b^4 n^4 \pi^4 \kappa^2 + a^4 (m^4 \pi^4 \kappa^2 + b^4 c^2 \omega^2 \rho^2))}
\]

(6.25)

vereinfachen.

Für die analytische Lösung vereinfachen sich die Formeln 6.7 und 6.8 zu

\[
S^{0^v} = \frac{\pi}{2} \frac{1}{t_F} \int_0^{t_F} \sin(\omega t) T(t) \, dt
\]

(6.26)

\[
S^{0^v} = -\frac{\pi}{2} \frac{1}{t_F} \int_0^{t_F} \cos(\omega t) T(t) \, dt,
\]

(6.27)

da nicht über mehrere Perioden gemittelt werden muss. Der Faktor \(\frac{\pi}{2} \) wird aufgrund der Fourierzerlegung des Rechtecksignals eingeführt und in Abschnitt 6.1.4 erläutert. \(t_F \) ist die Dauer einer Periode. Für das \(0^v \)-Bild der Zelle ergibt sich somit die zeitunabhängige Funktion

\[
T_{Lock-\{n,0\}^v}(x, y) = \frac{1}{ab} d_{00,Lock-\{n,0\}^v}
\]

\[+ \frac{2}{ab} \sum_{n=1}^{\infty} \cos\left(\frac{n \pi}{a} x\right) \cos\left(\frac{n \pi}{a} x_0\right) d_{n0,Lock-\{n,0\}^v}
\]

\[+ \frac{2}{ab} \sum_{m=1}^{\infty} \cos\left(\frac{m \pi}{b} y\right) \cos\left(\frac{m \pi}{b} y_0\right) d_{0m,Lock-\{n,0\}^v}
\]

\[+ \frac{4}{ab} \sum_{n=1}^{\infty} \left(\sum_{m=1}^{\infty} \cos\left(\frac{n \pi}{a} x\right) \cos\left(\frac{n \pi}{a} x_0\right) \cos\left(\frac{m \pi}{b} y\right) \cos\left(\frac{m \pi}{b} y_0\right) d_{nm,Lock-\{n,0\}^v} \right)
\]

(6.28)

mit den Koeffizienten

\[
d_{00,Lock-\{n,0\}^v} = 0
\]

(6.29)

\[
d_{0m,Lock-\{n,0\}^v} = \frac{b^2 m^2 P_0 \pi^3 \kappa}{4 d m^4 \pi^4 \kappa^2 + 4 b^4 c^2 d \omega^2 \rho^2}
\]

(6.30)

\[
d_{n0,Lock-\{n,0\}^v} = \frac{a^2 n^2 P_0 \pi^3 \kappa}{4 d n^4 \pi^4 \kappa^2 + 4 a^4 c^2 d \omega^2 \rho^2}
\]

(6.31)

\[
d_{nm,Lock-\{n,0\}^v} = \frac{a^2 b^2 (a^2 m^2 + b^2 n^2) P_0 \pi^3 \kappa}{4 d (2a^2 b^2 m^2 \pi^4 \kappa^2 + b^4 n^4 \pi^4 \kappa^2 + a^4 (m^4 \pi^4 \kappa^2 + b^4 c^2 \omega^2 \rho^2))}
\]

(6.32)
6.1. GRUNDLAGEN DER QUANTITATIVEN SHUNT-THERMOGRAFIE

Für das 90°-Bild der Zelle ergibt sich analog die zeitunabhängige Funktion

\[
T_{\text{Lock-}1n,90°}(x, y) = \frac{1}{ab} d_{00, \text{Lock-}1n,90°} + \frac{2}{ab} \sum_{n=1}^{\infty} \cos\left(\frac{n\pi}{a} x\right) \cos\left(\frac{n\pi}{a} x_0\right) d_{n0, \text{Lock-}1n,90°} + \frac{2}{ab} \sum_{m=1}^{\infty} \cos\left(\frac{m\pi}{b} y\right) \cos\left(\frac{m\pi}{b} y_0\right) d_{0m, \text{Lock-}1n,90°} + \frac{4}{ab} \sum_{n=1}^{\infty} \left(\sum_{m=1}^{\infty} \cos\left(\frac{n\pi}{a} x\right) \cos\left(\frac{n\pi}{a} x_0\right) \cos\left(\frac{m\pi}{b} y\right) \cos\left(\frac{m\pi}{b} y_0\right) d_{nm, \text{Lock-}1n,90°} \right) \right)
\]

mit den Koeffizienten

\[
d_{00, \text{Lock-}1n,90°} = -\frac{P_0 \pi}{4cd_0 \omega \rho} \tag{6.34}
\]

\[
d_{0m, \text{Lock-}1n,90°} = \frac{b^4 c P_0 \pi \omega \rho}{-4dm^4 \pi^4 \kappa^2 - 4b^4 c^2 d_0 \omega^2 \rho^2} \tag{6.35}
\]

\[
d_{n0, \text{Lock-}1n,90°} = \frac{a^4 c P_0 \pi \omega \rho}{-4dn^4 \pi^4 \kappa^2 - 4a^4 c^2 d_0 \omega^2 \rho^2} \tag{6.36}
\]

\[
d_{nm, \text{Lock-}1n,90°} = -\frac{a^4 b^4 c P_0 \pi \omega \rho}{4d(2a^2 b^2 m^2 n^2 \pi^4 \kappa^2 + b^4 n^4 \pi^4 \kappa^2 + a^4 (m^4 \pi^4 \kappa^2 + b^4 c^2 \omega^2 \rho^2))} \tag{6.37}
\]

Die Gleichungen 6.28 und 6.33 geben die relative Temperatur zu der Umgebungstemperatur wieder, d.h. negative Werte sind auch für den Betrag möglich. Gleichung 6.28 strebt gegen \(\infty\) für \(x, y \to 0\). Im Idealfall von endlich vielen Summanden ergibt diese analytische Lösung eine glatte Kurve. Wie stark eine approximierte Lösung oszilliert, hängt von der Anzahl der Summanden, aber auch von der Frequenz \(f\) und den Zellmaßen \(a\) und \(b\) ab. In Abbildung 6.4 ist \(T_{\text{Lock-}1n,0°}\) für unterschiedliche Anzahlen von Summanden wiedergegeben. Es wurde ein \(4 \times 4\ cm^2\) großes Stück der Solarzelle simuliert, bei einer Frequenz von 20 Hz und einer Auflösung von 288 Punkten (dies

![Abbildung 6.4: \(T_{\text{Lock-}1n,0°}\) nach Gleichung 6.28 für unterschiedliche \(n\) und \(m\). \(T\) gibt die Temperaturänderung relativ zur Ausgangstemperatur des Wafers an. Selbst für \(n = m = 800\) sind die Oszillationen noch deutlich zu erkennen.]
Lösungen für unendlich große Siliziumwafer

Die Lösungen für die Wärmeleitgleichung in zwei Dimensionen im Falle eines unendlich ausgedehnten Körpers sind bereits Mitte letzten Jahrhunderts ausführlich untersucht worden [CJ59]. Die Lösung lässt sich mit Besselfunktionen (den Kelvinfunktionen \(\text{ker} \) und \(\text{kei} \)) beschreiben. Die Ergebnisse stimmen mit denen aus Abschnitt 6.1.3 für \(n, m \rightarrow \infty \) und \(a, b \rightarrow \infty \) überein, lassen sich numerisch jedoch wesentlich schneller bestimmen. Der Betrag des Lock-In-Signals ergibt sich z.B. zu

\[
T_{\text{Lock-in,Betrag}}(r) = AK_0(\sqrt{2r}/\Lambda) = A(\text{ker}(\sqrt{2r}/\Lambda) + i \text{kei}(\sqrt{2r}/\Lambda)). \tag{6.38}
\]

\(r \) ist der Abstand von der Wärmequelle, \(\Lambda \) die thermische Diffusionslänge

\[
\Lambda = \sqrt{\frac{k}{\pi \rho c f}}. \tag{6.39}
\]

Sie ist ein Maß für die Ausbreitung der Wärmewelle. Der Vorfaktor \(A \) ist abhängig von der Geometrie der Wärmequelle und dem Verhältnis von thermischer Diffusionslänge \(\Lambda \) zur Dicke \(d \) der Solarzelle. Ist die Zelldicke \(d \) kleiner als \(\Lambda \), so spricht man von einer thermisch dünnen Zelle. Für \(d > \Lambda \) spricht man von einer thermisch dicken Zelle. Für eine punktförmige Wärmequelle in einer thermisch dünnen Zelle ist

\[
A = \frac{P_0}{2\pi \rho \kappa d}. \tag{6.40}
\]

Die Kelvinfunktionen \(\text{ker} \) und \(\text{kei} \) können im Folgenden auch als 0\(^\circ\)-Bild und 90\(^\circ\)-Bild bezeichnet werden. \(S^{0\circ} \) und \(S^{90\circ} \) sind Bezeichnungen für Signale an den einzelnen Ortspunkten (Pixel) des 0\(^\circ\)-Bildes und des 90\(^\circ\)-Bildes. Statt \(S^{0\circ} \) erhält man für jeden Ortspunkt bei der Messung \(S^{-90\circ} \). Das liegt daran, dass nicht der Imaginärteil \(\text{kei} \), sondern der negative Imaginärteil \(-\text{kei} \) gemessen wird. Das Signal \(S^{-90\circ} \) liegt um 90\(^\circ\) hinter dem Signal \(S^{0\circ} \). Es entsteht also später als \(S^{0\circ} \) und nicht früher, wie es beim Imaginärteil der Fall wäre. Dies kann mit einem Minuszeichen berücksichtigt werden:

\[
S^{-90\circ} = -S^{90\circ}. \tag{6.41}
\]

Lösungsansatz mit Spiegelquellen für ein oder zwei Ränder

Unter der Annahme, dass am Rand der Solarzelle kein Wärmeaustausch stattfindet, lassen sich auch Wärmequellen am Rand einer Solarzelle mit Kelvinfunktionen beschreiben: Die Einführung von Spiegelquellen im gleichen Abstand zum Rand wie die Ursprungsquelle bewirkt ja gerade, dass die Ableitung der Funktion am Rand 0 wird. Vorteilhaft bei der Shuntthermografie ist, dass die thermische Diffusionslänge (Formel 6.39) klein gegenüber der Zellbreite bzw. -länge ist.
Somit reicht es aus, am unmittelbar benachbarten Rand einer Wärmequelle Spiegelquellen zu berücksichtigen.

In Abbildung 6.5 sind die Wärmequellen als Punkte und die Spiegelquellen als Kreuze für den Fall einer Wärmequelle am Rand und in der Ecke der Solarzelle aufgezeichnet. Abbildung 6.6 zeigt Ergebnisse für eine 12.2 mm breite Solarzelle, die einen Shunt in einer Ecke (1.7 mm von beiden Rändern entfernt) besitzt. Berechnet wurde das 0°-Bild bei einer Frequenz von 5 Hz. Dargestellt ist ein Linescan durch den Shunt, parallel zu einem der Ränder. Man sieht, dass die Lösung aus Abschnitt 6.1.3 sehr gut mit den Ergebnisse für drei Kelvinfunktionen übereinstimmt. Lediglich bei 0 = 0.5 cm zeigt sich eine leichte Abweichung, da die thermische Diffusionslänge nicht vernachlässigbar gegenüber der gewählten Zellbreite ist. Für die übrigen Solarzellen (5 × 5 cm² bis 10 × 10 cm²) ist die Näherung jedoch gültig. Im Gegensatz zu der Lösung ohne Spiegelquellen (unendlich ausgedehnter Wafer) zeigen die Lösungen mit Randbedingung Steigung 0 am Solarzellenrand bei 1.22 cm. Es findet kein Wärmeaustausch über den Rand statt.

Abbildung 6.5: Wärmequellen (Punkte) und Spiegelquellen (Kreuze) für Shunts am Rand und in der Ecke einer Solarzelle.

Abbildung 6.6: Vergleich von \(T_{\text{Lockin,0°}} \) für eine Wärmequelle in der Ecke der Solarzelle. Der Solarzellenrand liegt am rechten Rand des Grafen. Dargestellt ist ein Linescan durch den Shunt parallel zum Solarzellenrand.

6.1.4 Eichfaktoren

Fourierzerlegung des Rechtecksignals

Dies bedeutet, das gemessene Signal kann als erster Summand der Fourierreihe der rechteckförmigen Wärmestrahlung der Solarzelle interpretiert werden. Das Verhältnis der Amplituden (siehe Abbildung 6.7) ist

$$P_0 = \frac{2P}{\pi}.$$ \hspace{1cm} (6.42)

Dieses Verhältnis ist in den Gleichungen 6.26 und 6.27 durch den Faktor $\frac{\pi}{2}$ berücksichtigt.

Eichung mit Folie

$$D = j_E \Gamma = \epsilon_{\text{folie}}(\lambda) \sigma T^4 \Gamma$$ \hspace{1cm} (6.43)

describen.

Wie in Abschnitt 6.1.2 erwähnt, wird über die Solarzelle eine Folie gelegt. Diese besitzt einen örtlich homogenen Emissionsgrad ϵ_{folie}, der möglichst nahe bei 1 liegen sollte. Die Zuordnung eines gemessenen Digis D zu einer Temperatur T geschieht mit folgendem Eichverfahren: Man legt die Folie auf eine Heizplatte und misst bei zwei Temperaturen T_{high} und T_{low}, die sich nur um wenige Grad Kelvin unterscheiden und im Bereich der Raumtemperatur liegen sollten. Bei der später die Messung an der Zelle stattfindet. Im Messprogramm werden dann für T_{high} und T_{low} die gemessenen Digis D_{high} und D_{low} für jedes Pixel gespeichert, da die einzelnen Pixel des CCD-Chips unterschiedliche Empfindlichkeiten besitzen. Bei einer Temperatur von 25°C liegt D im Bereich von 8500 Digis, bei einer Integrationszeit von 3 ms.

Für kleine Temperaturänderungen (im mK-Bereich) lässt sich das Stefan-Boltzmann-Gesetz linear annähern, so dass sich ein mit LockIn-Methode gemessener Digis T über

$$T_{\text{Lock-in}} = \frac{T_{\text{high}} - T_{\text{low}}}{D_{\text{high}} - D_{\text{low}}} D_{\text{Lock-in}}$$ \hspace{1cm} (6.44)
6.1. GRUNDLAGEN DER QUANTITATIVEN SHUNT-THERMOGRAFIE

in eine Temperatur umrechnen lässt. \(T_{\text{Lock-}t_n} \) gibt (wie in Abbildung 6.7 schematisch dargestellt) die relative Änderung des Temperatursignals auf der Zelle wieder, im 0° Fall mit \(\sin(2\pi f t) \), im –90° Fall mit \(-\cos(2\pi f t) \) korreliert.

Jede Eichung ist nur für die verwendete Integrationszeit und den bei der Eichung eingestellten Abstand der Kamera zur Solarzelle gültig.

Eichung ohne Folie

Die im letzten Abschnitt beschriebene Eichung ermittelt für jeden Pixel einen Eichfaktor \(\Gamma \). Somit ist eine Folie mit homogenem Emissionsgrad für eine Thermografieermessung nicht zwingend erforderlich. Die folgenden Argumente zeigen jedoch, dass mit dem benutzten Messaufbau für quantitative Auswertungen zusätzlich der Emissionsgrad der Solarzelle und der Folie bekannt sein müssen:

Bei der Eichung ohne Folie ist der Emissionsgrad der Zelloseitefläche \(< 1 \). Das hat zur Folge, dass neben der Emission der Zelloseitefläche (Z) \(\epsilon_Z(\lambda)\sigma T_z^4 \) z. B. auch die Emission der Aluminiumrückseite (Al) \(\epsilon_{\text{Al}}(\lambda)\tau_{\text{Si}}(\lambda)\sigma T_{\text{Al}}^4 \) durch das Silizium (Si) transmittiert wird, und die Reflexion der Umgebungsstrahlung (U) an der Zelloseitefläche \(\epsilon_U(\lambda)\tau_Z(\lambda)\sigma T_U^4 \) und die an der Aluminiumrückseite reflektierte Umgebungsstrahlung \(\epsilon_U(\lambda)\tau_{\text{Si}}(\lambda)\sigma T_{\text{Al}}^4 \) berücksichtigt werden müssen.

Bei der späteren Messung fließen wegen des Lock-In-Verfahrens nur die Signale in den Messwert \(\Delta T_{\text{Lock-}t_n} \) mit ein, die die gleiche Frequenz wie die von außen angelegte Rechteckspannung haben. Das heißt, die Eichung passt nicht zu der späteren Messung, wenn der Emissionsgrad der Zelloseitefläche \(< 1 \) ist, siehe Abbildung 6.8. Im Eichbild (a) sind Metallisierung und unterschiedlich orientierte Kristallkörner aufgrund ihrer variierenden Reflexion der Umgebungsstrahlung zu sehen. Im LockIn-Bild ist nur noch die Emissivität der vom Shunt ausgehenden Wärmestrahlung entscheidend. Deshalb sind im Bild b) nur Bereiche mit unterschiedlicher Oberflächenemissivität - die Waferoberfläche und die Metalloberfläche des Kontaktierungsgitters - zu erkennen.

Bei der Eichung und Messung mit Folie hingegen wird jeweils nur die durch die Zelloseitefläche hervorgerufene Strahlung detektiert, so dass hier Eichung und Messung zusammenpassen.

Die Eichfaktoren der beiden Eichungen sind ungefähr gleich groß, da bei der Eichung ohne Folie die kleinere Zellemission durch die zusätzliche Rückseitenemission und die Reflexion der Umgebungsstrahlung kompensiert wird. Die Messwerte ohne Folie sind wegen der kleineren Emission kleiner als die Messwerte mit Folie. Berechnet man die jeweils zugehörigen Werte \(T_{\text{Lock-}t_n} \), so ergibt sich ein Faktor von ungefähr 1.7 zwischen den Werten mit und ohne Folie. Dies wird in Abschnitt 6.1.5 ausführlich beschrieben.

Abbildung 6.8: Eichbild (a) und LockIn-Bild (b) einer multikristallinen Zelle. Beide Bilder sind ohne Folie aufgenommen.
Quantitative Auswertung der Messung

Mit den Modellen aus Abschnitt 6.1.3 und den Eichfaktoren aus den vorherigen Abschnitten lassen sich die gemessenen Temperaturverläufe quantitativ auswerten. Ein Beispiel ist in Abbildung 6.9 zu sehen. Dargestellt ist ein Linescan parallel zur X-Achse durch den Shunt, zusammen mit verschiedenen Modellierungsergebnissen. Die Messapparatur liefert als Ergebnis ein Image A und ein Image B, die um −90° phasenverschoben sind. Da die Messapparatur jedoch eine Gerätephase aufweist, ist das Image A phasenverschoben gegen das simulierter Image-Bild. Diese Phasenverschiebung φ lässt sich ermitteln, indem man für die modellierten S_φ^0 und S_φ^−90° Werte ein S_φ Bild errechnet (Formel 6.45), dessen Nulldurchgang mit den gemessenen Werten übereinstimmt:

\[S_φ = S_φ^0 \cos(φ) + S_φ^−90° \sin(φ). \]

6.1.5 Fehlerquellen bei der quantitativen Auswertung

In diesem Abschnitt werden Faktoren analysiert, welche die Messgenauigkeit beeinflussen. Diese sind neben dem Serienwiderstand der Solarzelle Unterschiede bei Messung in Durchlass- oder Sperrrichtung bzw. bei der Messung ohne Folie die Unterschiede im relevanten Emissionsgrad bei Eichung und Messung. Zusätzlich wird die Zusammensetzung der Systemphase analysiert.
6.1. GRUNDLAGEN DER QUANTITATIVEN SHUNT-THERMOGRAFIE

Serienwiderstand

Der Widerstandswert des Shunts wird bei der quantitativen Auswertung aus der angelegten Spannung und der am Widerstand dissipierten Leistung berechnet. Die P(U)-Kennlinie für die Verlustleistung eines Shunts kann durch

\[P_{\text{Shunt}}(U) = (I_\text{Zelle mit Shunt} - I_\text{Zelle ohne Shunt}) \cdot U \]

beschrieben werden, sofern die Kennlinie der Solarzelle ohne Shunt Diodenverhalten aufweist. Im Idealfall ist also \(P_{\text{Shunt}} \sim U^2 \), da \(I = U/R \). Dies ist im Fall eines hohen globalen Serienwiderstandes für hohe Spannungen nicht mehr gültig. Abbildung 6.10 zeigt den Einfluss eines globalen Serienwiderstandes auf die Verlustleistung eines Shunts. Für hohe Spannungen fällt auch am Serienwiderstand eine nicht vernachlässigbare Leistung ab, so dass die \(P(U) \)-Kurve des Shunts keinen quadratischen Verlauf mehr aufweist. Mit steigender Spannung steigt die am Serienwiderstand abfallende Leistung mit Zunahme des Stromes, d.h. in erster Näherung exponentiell. Somit übersteigt die am Serienwiderstand abfallende Leistung mit steigender Spannung schließlich den Leistungsabfall am Shuntwiderstand, der dann mit steigender Spannung abnimmt. Mit diesem Modell lässt sich eine Grenzspannung berechnen, bei der bei gegebenem Serienwiderstand der Fehler bei der Shuntauswertung eine bestimmte Grenze überschreitet. In Abbildung 6.11 sind die Grenzspannungen für eine Solarzelle mit \(I_{01} = 1.1 \times 10^{-12} \, \text{A cm}^{-2} \) und \(I_{02} = 8 \times 10^{-9} \, \text{A cm}^{-2} \) bei einem Shunt von 500 \(\Omega \, \text{cm}^2 \) in Abhängigkeit des Serienwiderstandes aufgetragen. So kann z.B. bei einem Serienwiderstand von 1 \(\Omega \, \text{cm}^2 \) und einer gewünschten Fehlertoleranz von 5% nur bis zu einer Spannung von 534 mV gemessen werden. Der aufgetragene Serienwiderstand beinhaltet die Summe aller an der Zelle anfallenden Widerstände, d.h. auch den Einfluss der Verkabelung und Kontaktierung. Die apparativen Serienwiderstände können eliminiert werden, indem man die an die Solarzelle angelegte Spannung mittels Vierspitzemethode misst.

Abbildung 6.10: Einfluss eines Serienwiderstands auf die dissipierte Leistung am Shunt.

Unterschiede bei Messungen in Durchlass- und Sperrrichtung

Bei Messungen in Durchlassrichtung wird auch am pn-Übergang Leistung dissipiert. Der durch die Zelle fließende Strom steigt in erster Näherung exponentiell mit der Spannung, d.h. man erwartet mit steigender Spannung ein steigendes, gleichmäßig über die Solarzelle verteiltes Wärmesignal. In 6.12 sind Linescans durch einen Shunt für mehrere an die Solarzelle angelegte Spannun-

Dennoch ist es in einigen Fällen von Vorteil, in Vorwärtsrichtung zu messen. Für den Wirkungsgrad der Solarzelle ist vor allem das Verhalten eines Shunts am Maximum Power Point von Bedeutung. Shunts, die kein öhmisches Verhalten zeigen oder Solarzellen mit stark injektionsabhängiger Charakteristik sollten daher am MPP in Durchlassrichtung vermessen werden.
6.1. GRUNDLAGEN DER QUANTITATIVEN SHUNT-THERMOGRAFIE

Messung ohne Folie

In Abschnitt 6.1.4 wurde erläutert, weshalb eine quantitative Messung ohne Folie nur bei bekanntem Emissionsgrad von Solarzelle und Folie möglich ist. Dies soll nun quantitativ überprüft werden. Dazu wurde die Verlustleistung am Shunt für verschiedene Spannungen für eine Messung mit und ohne Folie ermittelt. Für jede Spannung lag die Verlustleistung ohne Folie um einen Faktor 1.7 niedriger als das Ergebnis mit Folie.

Mit einem Emissionsspektrometer wurden die Emissionsgrade von Folie und Solarzelle vermessen, siehe Abbildung 6.13. Die Emissionen sind im Empfindlichkeitsbereich der Thermografie-

![Abbildung 6.13: Vergleich der Emissionsgrade von Folie und Solarzelle im Empfindlichkeitsbereich der Thermografiekamera.](image)

kamera in guter Näherung konstant mit einem Mittelwert von \(\varepsilon_{\text{Folie}} = 0.9412 \) und \(\varepsilon_{\text{Zelle}} = 0.5066 \). Nach dem Kirchhoffschen Strahlungsgesetz erhält man \(\varepsilon(\lambda) = 1 - r(\lambda) - t(\lambda) \). Unter der Annahme, dass die Transmission von Folie und Zelle im Wellenlängenbereich zwischen 3 und 5 \(\mu \text{m} \) Null ist, folgt \(\varepsilon(\lambda) = 1 - r(\lambda) \). Bei der Solarzelle müssen zusätzlich die 5% der Oberfläche berücksichtigt werden, die durch die Metallfinger bedeckt sind, deren Emissionsgrad \(\varepsilon_{\text{Finger}} \) näherungsweise Null ist. Daraus ergibt sich für Silizium der Emissionsgrad \(\varepsilon_{\text{Silizium}} = \frac{\varepsilon_{\text{Folie}}}{0.95} = 0.5333 \). Für \(\frac{\varepsilon_{\text{Folie}}}{\varepsilon_{\text{Silizium}}} \) erhält man damit den Faktor 1.765, in guter Übereinstimmung mit dem Wert 1.7 aus der Thermografie-Messung.

Damit ist die prinzipielle Möglichkeit einer Messung ohne Folie gezeigt, allerdings ist die Messung des Emissionsgrades aufwendig. Der Emissionsgrad variiert jedoch mit der Solarzellenleistung und kann auch bei gleichen Solarzellenlentypen aufgrund von Prozessschwankungen unterschiedlich sein.

Phasenverschiebungen des LockIn-Signals

Zwischen der von außen angelegten periodischen Spannung und dem Lock-In-Signal \(S^A \) eines Pixels gibt es eine Gesamt-Phasenverschiebung \(\varphi \), die sich aus mehreren Phasenverschiebungen
zusammensetzt:
\[
\varphi = \varphi_{\text{System}} + \varphi_{\text{Shuntgeometrie}} + \varphi_{\text{Ort}}.
\]
(6.47)

Die einzelnen Komponenten werden in den Unterabschnitten dieses Kapitels erläutert.

Die Gesamtphase \(\varphi \) kann aus den einzelnen Pixelwerten für \(S^A \) und \(S^B \) bestimmt werden: Die einzelnen Pixelwerte \(S^0 \) des \(0^\circ \)-Bildes berechnen sich zu
\[
S^0 = S^A \cos(\varphi) - S^B \sin(\varphi).
\]
(6.48)

Die Summe über alle \(S^0 \), d.h. das Flächenintegral über den gesamten Messbereich, ist gleich Null:
\[
\int \int S^0 \, dx \, dy = 0.
\]
(6.49)

Setzt man Gleichung 6.48 in 6.49 ein, so ergibt sich für \(\varphi \)
\[
\varphi = \arctan \left(\frac{\int \int S^A \, dx \, dy}{\int \int S^B \, dx \, dy} \right).
\]
(6.50)

Ungenauigkeiten in den Messwerten (Rauschen) verfälschen die Berechnung der Phase ebenso wie tote Pixel\(^2\). Eine genauere Phasenbestimmung ist über die Anpassung des Nulldurchgangs an das Simulationsmodell möglich, wie in Abschnitt 6.1.4 beschrieben.

Systemphase Die Verarbeitung der Signale im CCD-Chip, der Ausleseelektronik und den Framergabern führt zu einer Phasenverschiebung zwischen angelegter Spannung und gemessenem Signal im Messrechner. Fast man all diese Verzögerungen in \(t \) zusammen, so berechnet sich die Phasenverschiebung aufgrund der Messapparatur zu
\[
\varphi_{\text{System}} = t \cdot f \cdot 2\pi.
\]
(6.51)

für eine angelegte Rechteckspannung mit Frequenz \(f \). Somit steigt die Systemphase mit \(f \). In Abbildung 6.14 sind Linescans des Image A für Messungen mit verschiedenen Anregungsfrequenzen \(f \) aufgetragen. Mit steigender Anregungsfrequenz steigt auch die Phasenverschiebung des Image A - das Signal wird kleiner. Für ein gutes Signal-Rauschverhältnis sind daher kleine Frequenzen vorteilhaft. Die örtliche Auflösung zweier Shunts steigt jedoch mit der Anregungsfrequenz, da die thermische Diffusionslänge abnimmt (siehe Gleichung 6.39). Bei den durchgeführten Messungen erwiesen sich Frequenzen bis zu 5 Hz als sinnvoll, was Auflösungen bis zu 0.2 cm ermöglichte.

Shuntgeometrie Am Ort einer punktförmigen Wärmequelle, die direkt an der Oberfläche der Zelle sitzt, ist der Temperaturverlauf \(T(x_0, y_0, t) \) mit einer sinusförmigen Heizleistung \(P(t) = P_0 \sin(2\pi ft) \) in Phase, da die Wärme sofort die Wärmequelle verlässt, siehe [CJ59].

Bei einer Quelle, die in einem ausgedehnten Volumen Leistung dissipiert, kann die Phase aufgrund der Shuntgeometrie aus Gleichung 6.10 bestimmt werden: Setzt man die zeitliche Änderung der Wärmemenge im Volumen \(Q \) mit der sinusförmigen Heizleistung gleich, ergibt sich
\[
\frac{\partial Q(t)}{\partial t} = \alpha t \cdot \rho c \cdot \frac{\partial T(t)}{\partial t} = P_0 \sin(2\pi ft).
\]
(6.52)

\(^2\)Pixel des CCD-Chips, die zerstört sind und unrealistische Werte liefern.
Hierbei werden Heizleistung und Spannung in Phase angenommen, d.h. der Stromfluss von den Zellkontakten zum Ort des Shunts geschieht in vernachlässigbar kurzer Zeit. Integriert man über t und löst nach T auf ergibt sich

\[T(t) = -\cos(2\pi ft) \frac{P_0}{2\pi f dk^2 \rho c}. \]

(6.53)

Demnach ist $T(t)$ um -90° gegenüber $P(t)$ bzw. $U(t)$ verschoben.

Ortsanteil der Phase\quad Je weiter ein Punkt auf der Solarzelle vom Shunt entfernt liegt, um so länger benötigt die vom Shunt ausgehende Wärmewelle, um zu ihm vorzudringen. Folglich besitzt jeder Punkt auf der Solarzelle eine zusätzliche Ortsphase φ_{Ort}, die von der Entfernung zum Shunt abhängt. Analog zu Formel 6.50 lässt sich die Ortsphase eines jeden Punktes auf der Solarzelle (sofern ihm ein Pixel der Messung zugeordnet wird) durch

\[\varphi_{Ort} = -\arctan \left(\frac{S^B}{S^A} \right) \]

(6.54)

beschrieben. Abbildung 6.15 zeigt berechnete Werte für die Wärmeausbreitung in Silizium. Bei der Bestimmung der Phasenverschiebung nach Abschnitt 6.1.5 oder 6.1.4 wird die Gesamtphase für den Ort des Shunts bestimmt, d.h. $\varphi_{Ort} = 0$.

6.2 Quantitative Überprüfung der Shuntanalyse

Im letzten Abschnitt wurden Modelle und Eichmethoden vorgestellt, die eine quantitative Messung von punktförmigen ohmschen Shunts in Solarzellen ermöglichen. Diese sollen nun anhand von gezielt hergestellten Shunts überprüft werden.

Als Testobjekte dienen Solarzellen, die auf $4.6 \times 4.6 \text{ cm}^2 FZ$-Silizium hergestellt wurden. Die Zellen weisen eine gute Homogenität auf und besitzen nur vernachlässigbar kleine Shunts. In diese Solarzellen wurden Shunts eingebracht, durch Einbringen eines Defekts mittels Laser oder
durch Auftragen von Silberleitlack. Vor und nach dem Eingriff wurde jeweils die Dunkelkennlinie gemessen, so dass man über eine Differenz der beiden Dunkelkennlinien die spannungsabhängige Verlustleistung des erzeugten Shunts berechnen kann.

Aus den Fits der beiden Dunkelkennlinien an das zwei Diodenmodell konnte die Größe des eingebrachten Shunts $R_{P,\text{Shunt _ Fit}}$ bestimmt werden

$$R_{P,\text{Shunt _ Fit}} = \frac{1}{\frac{F}{R_{P,\text{vor}}} - \frac{F}{R_{P,\text{nach}}}}, \quad (6.55)$$

wobei $R_{P,\text{vor}}$ und $R_{P,\text{nach}}$ die Parallelwiderstände aus dem Fit an die Dunkelkennlinie vor und nach dem Eingriff sind. F ist die Fläche der Solarzelle.

Formel 6.55 ergibt den Widerstandswert des eingebrachten Shunts für die komplette Solarzelle in Ω. Unter der Annahme, dass der Shunt ein ohmsches Verhalten hat, berechnet sich die am Shunt abfallende Leistung zu

$$P_{\text{Shunt}}(U) = \frac{U^2}{R_{P,\text{Shunt}}}, \quad (6.56)$$

Somit erhält man $P_{\text{Shunt}}(U)$-Kurven und $R_{P,\text{Shunt}}$-Werte aus drei Bestimmungsmethoden:

1. Aus der Differenz der Dunkelkennlinien $R_{P,\text{Shunt _ Diff}}$
2. Aus dem ohmschen Widerstandswert gewonnen aus den Dunkelkennlinienfits $R_{P,\text{Shunt _ Fit}}$
3. Aus der Thermografiemessung $R_{P,\text{Shunt _ Thermo}}$

Methode 1 und 3 ergibt für jede Spannung einen Shuntwiderstand. Bei kleinen Spannungen sind die Signale sowohl in der Thermografie als auch bei der Dunkelkennlinienmessung zu klein und daher mit einem hohen Fehler behaftet. Bei großen Spannungen werden die Werte durch den Serienwiderstand der Solarzelle und der Kontaktierung beeinflusst (siehe Abschnitt 6.1.5). Daher wurden bei Methode 1 und 3 die $R_{P,\text{Shunt}}$-Werte für die Messungen zwischen 0.2 V und 0.5 V bestimmt und daraus das arithmetische Mittel gebildet.
6.2 QUANTITATIVE ÜBERPRÜFUNG DER SHUNTANALYSE

Die drei \(P_{Shunt}(U) \)-Kurven und die jeweiligen Ergebnisse für \(P_{Shunt} \) werden im Folgenden für drei Positionen von Shunts verglichen (siehe auch Abbildung 6.16):

A) Shunt zwischen zwei Fingern
B) Shunt unter einem Finger
C) Shunt am Rand der Solarzelle

6.2.1 Shunt zwischen den Metallisierungsfingern

Der Shunt zwischen den Metallisierungsfingern wurde erzeugt, indem mit einem Laser von der Rückseite durch die Aluminium-Beschichtung (Rückseitenkontakt) gelasert wurde. Der Laser erzeugte ein Loch in der Solarzelle, das aufgeschmolzen Aluminium floss zur Vorderseite und kontaktierte den Emitter, so dass ein Shunt entstand.

Eine wichtige Überprüfung der erstellten Shunts ist die Auswirkung auf die Rekombinations-
egenschaften im Bulk der Solarzelle und in der Raumladungszone. Eine starke Schädigung würde im DunkelKennlinienfit neben \(R_p \) auch eine Änderung in \(I_{01} \) und \(I_{02} \) hervorrufen. In Abbildung 6.17 sind die DunkelKennlinien vor und nach Einbringen des Shunts sowie die Ergebnisse des Kennlinienfits zu sehen. Deutlich ist die Verringerung in \(R_p \) und die restlichen Größen ändern sich nur geringfügig, d.h. auch die Rekombinations-
egenschaften wurden durch Einbringen des Shunts nicht wesentlich geändert.

Die Zelle hat eine Größe von \(F = 21.16 \, \text{cm}^2 \). Aus den DunkelKennlinienfits ergeben sich die Werte \(R_{p, vor} = 8981 \, \Omega \, \text{cm}^2 \) und \(R_{p, nach} = 801 \, \Omega \, \text{cm}^2 \). \(R_{p, Shunt, Fit} \) ergibt sich damit nach Gleichung 6.55 zu 41.56 \(\Omega \).

Das Thermografie-Bild einer Zelle bei einer angelegten Spannung von \(+0.7 \, \text{Vol} \) (Durchlassrichtung) und einer Frequenz von 5.128 Hz zeigt 6.18. Die Wärmewelle breitet sich kreisförmig über die Oberfläche aus, wie es bei einer punktförmigen Wärmequelle zu erwarten ist. Der Vergleich der \(P_{Shunt}(U) \)-Kurven in 6.19 zeigt eine gute Übereinstimmung der drei Auswertemethoden für Spannungen kleiner 0.5 V. Bei größeren Spannungen ist der Einfluss des Serienwiderstands signifikant, wie in Abschnitt 6.1,5 beschrieben.

6.2.2 Shunt unter einem Metallisierungsfinger

Liegt der Shunt unter einem Finger, so müsste man zusätzlich die thermischen Eigenschaften der Metalle, aus denen der Finger besteht, berücksichtigen. Die beiden häufigsten Gridtypen sind zum einen das Siebdruck-Grid, für das Silberpaste auf die Zelle gedrückt wird, und zum anderen das aufgedämpfte Grid aus Titan, Palladium und Silber, bei dem die obere Schicht
Abbildung 6.17: Dunkelkennlinien einer $4.6 \times 4.6 \text{ cm}^2$ FZ-Solarzelle vor und nach Einbringung eines Shunts. In der Tabelle sind die Ergebnisse der Dunkelkennlinienfits angegeben. Die Rekombinationseigenschaften der Solarzelle (I_{01} und I_{02}) haben sich nur geringfügig verändert.

Abbildung 6.19: Verlustleistung des eingebrachten Shunts zwischen den Fingern. Für $R_{P, \text{Shunt _ Fit}}$ und $R_{P, \text{Shunt _ Thermo}}$ wurden die Ergebnisse für die Messungen zwischen 0.2 V und 0.5 V arithmetisch gemittelt.
aus Silber zusätzlich noch durch Galvanisieren aufwächst. Die Finger dieser Grids haben eine Höhe von ca. 10 bis 15 \(\mu m \) und eine Breite von ca. 30 bis 100 \(\mu m \). Die Wärmeaustretung eines

Abbildung 6.20: Simulierter Temperaturverlauf auf der Zelloberfläche a) nur Siliziumwafer, b) mit (horizontal verlaufenden) Metallisierungsfinger über dem Shunt. Die Temperatur an den Rändern (blau) entspricht 25 °C, am Ort des Shunts ist die Temperatur ca. 30 mK höher. Gezeigt ist jeweils ein Ausschnitt von 1100 \(\times \) 800 \(\mu m^2 \). Der Finger in Bild b) ist 100 \(\mu m \) breit.

Punktshunts an der Oberfläche eines Siliziumwafers mit und ohne Metallisierungsfinger wurde durch dreidimensionale Simulationen in der Simulationsumgebung FemLab [Fem00] untersucht. In Abbildung 6.20 ist in Bild a) das Ergebnis für einen homogenen Siliziumwafer zu sehen, Wie erwartet breitet sich die Wärme kreisförmig aus. Bild b) zeigt das Ergebnis, wenn über dem Punktshunt ein Metallisierungsfinger mit 100 \(\mu m \) Breite und 20 \(\mu m \) Höhe angenommen wird. Der Finger besteht aus Silber, das eine wesentlich höhere Wärmeleitfähigkeit als Silizium besitzt (\(\kappa_{Si} = 148 \frac{W}{m \cdot K} \), \(\kappa_{Ag} = 428 \frac{W}{m \cdot K} \)). Der Wärmeübergang von Silizium in den Metallisierungsfinger wurde als ideal angenommen. Deutlich ist die elliptische Form der Wärmeaustretung aufgrund der besseren Wärmeleitung im Finger zu sehen. Solch eine Veränderung der Austretung würde zu einer fehlerhaften Auswertung der Thermografieaufnahmen eines Shunts unter dem Metallisierungsfinger führen. Bei allen Messungen konnte jedoch keine elliptische Form der Wärmeaustretung aufgrund eines Metallisierungsfingers beobachtet werden. Eine Erklärung hierfür wäre ein hoher Wärmeleitwiderstand zwischen Siliziumwafer und Metallisierung. Bei siebgedruckten Kontakten wird der Wärmeleitwiderstand zusätzlich durch Glasfritte zwischen Metall und Silizium erhöht (siehe Abbildung 5.10).

Die Auswertung wurde daher ohne Berücksichtigung der unterschiedlichen Wärmeleitfähigkeiten durchgeführt, es wurden nur die Bereiche außerhalb des Metallisierungsfingers ausgewertet. Auch dieser Shunt wurde –wie im vorherigen Abschnitt– beschrieben mit dem Laser durch die Rückseite der Solarzelle eingebracht. Die Dunkelkennlinienfits ergaben \(R_{P,vor} = 3992 \ \Omega \cdot cm^2 \) und \(R_{P,nach} = 833 \ \Omega \cdot cm^2 \) bei einer Zellfläche von \(F = 25 \ \text{cm}^2 \). \(R_{P,Shunt} \) ist damit 42.11 \(\Omega \).

Aufgrund des Serienwiderstands der Zelle (1.1 \(\Omega \cdot cm^2 \)) können nur Ergebnisse bis 0.5 V ausgewertet werden. Die Thermografiemessung zeigt wie auch in Abbildung 6.19 zu kleine Verlustleistungen bei hohen Spannungen, da auch Leistung am Serienwiderstand abfällt. Die Differenz der Dunkelkennlinien zeigt hingegen zu hohe Verlustleistungen für hohe Spannungen. Dies liegt an unterschiedlichen Serienwiderständen bei der Messung der beiden Dunkelkennlinien. Bei der ersten Messung (ohne eingebrachten Shunt) wurde die Solarzelle schlecht kontaktiert, so dass bei hohen Spannungen Leistung am Kontaktierungszerienwiderstand abfiel. Dies war bei der zweiten Messung (mit Shunt) nicht mehr der Fall, so dass die Differenz bei hohen Spannungen zu große
Werte ergibt.

Im Auswertebereich 0.2 V bis 0.5 V zeigen die drei Methoden eine gute Übereinstimmung.

6.2.3 **Shunt am Rand der Solarzelle**

Liegt der Shunt am Rand der Solarzelle, so kann sich die Wärme nur in eine Halbebene ausbreiten. Das bedeutet, dass bei ideal isolierendem Rand die Temperaturerhöhung in der Zelle an jedem Punkt doppelt so hoch ist. Dieser Fall lässt sich modellieren, indem man wie in Abschnitt 6.1.3 beschrieben, eine Spiegelquelle einführt. Dies bedeutet, dass die aus dem Thermografie-Fit ermittelte Leistung später noch durch 2 zu dividieren ist. Analog zum Randshunt ist bei einem Shunt in der Ecke der Solarzelle ein Faktor $\frac{1}{2}$ zu berücksichtigen.

Das Lasern am Rand der Solarzelle führte zu großen zusätzlichen Schädigungen der Solarzelle, da sich die Laserleistung nur schwer auf die Kante des Siliziumwafers fokussieren ließ. Daher wurde der Randshunt mit Hilfe von Zweikomponenten-Silberlack erzeugt, der am Rand aufgebracht und dann im Ofen bei ca. 70° Celsius gehärtet wurde. Die Solarzelle besaß bereits vor dem Einbringen des Randshunts einen $R_{p,\text{vor}}$ von 2203 $\Omega \cdot cm^2$. Dennoch ist der eingebrachte...
Randshunt mit \(R_{p,\text{Shunt}} = 42.11 \, \Omega \) (\(R_{p,\text{nach}} = 833 \, \Omega \, \text{cm}^2, \, F = 25 \, \text{cm}^2 \)) groß gegenüber den anderen Shunts, sein Signal deutlich im Thermografiebild (Abbildung 6.22) identifizierbar.

6.3 Shuntanalyse einer industriellen Solarzelle

Die Solarzelle wurde am Fraunhofer ISE mit industriellen Herstellungsprozessen gefertigt ([HBP+00]): Emitterdiffusion aus der Gasphase im Durchlaufofen, Siliziumnitrid als Antireflexschicht auf der Vorderseite und ganzflächiger Al-Rückseitenkontakt. Die Kantenisolation wurde dadurch gewährleistet, dass der Rückseitenkontakt nur bis auf 3 mm an den Rand der Solarzelle heranreicht. Außerhalb der Metallschicht wurde mit einer Chipsäge ein Graben gesägt, um eine evtl. Emitterdiffusion an der Rückseite zu durchtrennen und damit einen direkten Shunt zwischen Emitter und Rückseitenkontakt zu verhindern. Mit dem Unterschied, dass der Gra-
ben in industriellen Prozessen mit dem Laser erzeugt wird, ist auch dies Industrie-Standard für mc-Solarzellen.

6.3.1 Thermografie-Messung

Die Analyse soll den Einfluss der Shunts auf die Solarzellenparameter unter Standardbedingungen, d.h. Beleuchtung mit Spektrum AM1.5g, 1000 W m⁻² Gesamtintensität zeigen. Der Einfluss der Shunts ist am Maximum Power Point am größten, daher wurden die Thermografie-Messungen bei 0.5 V, d.h. im Bereich von V_{mpp} in Durchlassrichtung durchgeführt. In Abbildung 6.24 ist die Thermografieaufnahme dieser Solarzelle zu sehen. Die stärksten Shunts in der unteren linken und rechten Ecke stammen von den Justiersymbolen. Trotz der Kantensisolierung durch den Sägegraben sind Randshunts vor allem am linken Rand zu sehen. Man erkennt am linken Rand eine Linie mit hoher Wärmestrahlung, die jedoch in einzelne Punktschunts aufgelöst werden kann. Innerhalb der Zelle sind einige schwächere Shunts zu sehen. Es wurden insgesamt 39 Punktschunts in die Analyse einbezogen.

6.3.2 Auswertung und Fehlerabschätzung

Die Anpassung der modellierten Wärmestrahlung an die gemessenen Kurven ist für eine Standarddicke der Solarzelle von 250 μm implementiert worden. Da die Dicke linear in die resultierende Leistung eingeht, können abweichende Dicken durch einen Faktor $D = \frac{\text{aktueller Xecke}}{250 \, \mu m}$ korrigiert werden:

$$R_{p,i} = \frac{U^2}{P_i \, D}, \quad (6.57)$$

wobei P_i die ermittelte Leistung des i-ten Shunts ist. Die analysierte Solarzelle ist 300 μm dick.

Die Auswertung der Thermografie-Messung ergab für die durch die Justiersymbole erzeugten Shunts einen Wert von 80 Ω, für die Shunts am oberen Rand Werte zwischen 345 Ω und 151 Ω, am
linken Rand zwischen 344 \(\Omega \) und 185 \(\Omega \). Die kleineren Randshunts wurden mit einem mittleren Wert von 350 \(\Omega \) abgeschätzt, die Shunts innerhalb der Solarzelle mit 700 \(\Omega \).

Schaltet man alle diese 39 Shuntwiderstände \(R_{P,i} \) parallel, so ergibt sich der Parallelwiderstand der Zelle zu

\[
R_{P,\text{Zelle}} = \frac{1}{\sum_{i=1}^{39} \frac{1}{R_{P,i}}} = 7.15 \ \Omega.
\]

(6.58)

Aus dem Dunkelkennlinienvon erhält man für die gesamte Zelle einen Parallelwiderstand von \(R_{P,\text{Zelle}} = 7.27 \ \Omega \), der sehr gut mit der obigen Summe aus der Thermografieauswertung übereinstimmt.

Der Fehler in der Shuntbestimmung wurde durch Fehlerfortpflanzung abgeschätzt:

\[
\Delta R_{P,i} = \left| \frac{\partial R_{P,i}}{\partial U} \Delta U \right| + \left| \frac{\partial R_{P,i}}{\partial P_i} \Delta P_i \right| + \left| \frac{\partial R_{P,i}}{\partial D} \Delta D \right|.
\]

(6.59)

Mit einem Fehler bei der Dickenbestimmung von 10 \(\mu m \), von 5 \(mV \) bei der an die Zelle angelegten Spannung und von 10\% bei der Bestimmung von \(P_i \) ergibt sich ein maximaler relativer Fehler von 15\% für \(R_{P,i} \).

Eine Reduzierung des Fehlers wäre durch eine höhere Ortsauflösung möglich (Reduzierung von \(\Delta P_i \)), dann müssten allerdings mehrere Thermografiebilder zur Abdeckung der gesamten Zellfläche aufgenommen werden. Das Signal-Rauschverhältnis bei der Thermografieauswertung war bereits sehr klein. Es wurden über 10000 Perioden gemittelt, was einer Messdauer von ca. 30 Minuten entspricht. Hier kann auch eine kürzere Messzeit gewählt werden, ohne den relativen Fehler wesentlich zu erhöhen. Der Fehler bei der Dickenbestimmung beinhaltet die Dickenvariation des Wafers, die typischerweise > 5 \(\mu m \) ist.

6.3.3 Einfluss der Shunts auf die Kennlinienparameter

Die 39 untersuchten Shunts lassen sich in drei Klassen aufteilen: Shunts aufgrund der Justiersymbole, Shunts am Rand der Solarzelle und Shunts innerhalb der Solarzellenfläche. Im Folgenden werden die Einflüsse der einzelnen Gruppen auf den Füllfaktor und den Wirkungsgrad der gesamten Solarzelle berechnet. Dabei werden hypothetische Modelle untersucht, wobei sukzessive Shunts entfernt werden:

- alle Shunts: \(R_{P,\text{Zelle}} = 715 \ \Omega \ \text{cm}^2 \)
- Verzicht auf ein Justiersymbol: \(R_{P,\text{Zelle}} = 785 \ \Omega \ \text{cm}^2 \)
- Verzicht auf zwei Justiersymbole: \(R_{P,\text{Zelle}} = 871 \ \Omega \ \text{cm}^2 \)
- Verzicht auf alle Justiersymbole: \(R_{P,\text{Zelle}} = 977 \ \Omega \ \text{cm}^2 \)
- keine Justiersymbole und keine Randshunts: \(R_{P,\text{Zelle}} = 6363 \ \Omega \ \text{cm}^2 \)
- keine Shunts: \(R_{P,\text{Zelle}} = \infty \)

Für die Berechnungen wurde das Zweißodenmodell verwendet, mit aus dem Dunkelkennlinienvon gewonnen Eingabeparametern bzw. \(J_{sc} \) aus der Hellkennlinienmessung. Zusätzlich zu der analysierten Solarzelle wurden die Berechnungen auch für eine am Fraunhofer ISE hergestellte
hocheffiziente Solarzelle auf FZ-Silizium3 durchgeführt, zum Vergleich der Einflüsse auch auf einem höheren Wirkungsgradniveau.

Die Parameter für das Zweijodenmodell sind für die mc-Solarzelle
\[I_{01} = 1.52 \times 10^{-12} \text{ A/cm}^2, \quad I_{02} = 1.14 \times 10^{-7} \text{ A/cm}^2, \quad J_{SC} = 28.06 \text{ mA/cm}^2, \quad R_S = 0.73 \Omega \text{ cm}^2 \]
und für die FZ-Solarzelle \((\eta = 23.27\%)
\[I_{01} = 1.08 \times 10^{-13} \text{ A/cm}^2, \quad I_{02} = 6.77 \times 10^{-9} \text{ A/cm}^2, \quad J_{SC} = 41.98 \text{ mA/cm}^2 \quad \text{und} \quad R_S = 0.27 \Omega \text{ cm}^2. \]
Die Idealitätsfaktoren \(n_1\) und \(n_2\) wurden 1 und 2 gesetzt.

\[\text{Abbildung 6.25: Einfluss gleicher Shuntgruppen auf den Füllfaktor einer multikristallinen Industriezelle und einer hocheffizienten monokristallinen Zelle. Mit abnehmendem } R_p, \text{zeile (siehe obenstehende Werte) nimmt der Füllfaktor bei der multikristallinen Zelle stärker ab als bei der hocheffizienten Zelle. Angegeben ist die Abnahme des Füllfaktors in Absolutprozent gegenüber } FF_{\text{max}}.\]

Auch ist zu erkennen, dass das Weglassen gleicher Shuntgruppen je nach Zelltyp unterschiedlich starke Einflüsse auf die Zellparameter hat. So wirken sich die Shunts auf den Füllfaktor einer multikristallinen Zelle stärker aus als auf den Wirkungsgrad einer hocheffizienten Zelle. Dies ist dadurch zu erklären, dass ein Shunt bei einer vorgegebenen Spannung einen konstanten Strom abführt, unabhängig vom Wirkungsgrad der Solarzelle. Die hocheffiziente Solarzelle besitzt aber am Maximum Power Point einen höheren Strom \((I_{mpp})\), so dass die relative Verringerung des \(I_{mpp}\) durch den Shunt bei der hocheffizienten Solarzelle kleiner ist und damit auch die Abnahme des Füllfaktors. Beim Wirkungsgrad ist die Änderung in Absolutprozent angegeben, die auf dem höheren Niveau der hocheffizienten Zelle daher höher ausfällt als bei der multikristallinen Zelle.

6.4 Zusammenfassung

Der überwiegende Teil der in Solarzellen auftretenden Shunts kann als punktförmige Region beschrieben werden, in der ein Verluststrom zwischen Basis und Emitter der Solarzelle fließt.

3Es wurde die Solarzelle FB994d gemessen, die an der Rückseite nur lokal geöffnete Punktkontakte mit lokaler Hochdotierung (local back surface field) besitzt.
Diese lokализierten Ströme stellen punktförmige Wärmequellen dar, deren dissipierte Leistung durch Thermografieaufnahmen ermittelt werden kann.

In diesem Kapitel wurden die Grundlagen der quantitativen Shunt-Thermografie vorgestellt, die Methode an künstlich eingebrachten Shunts evaluiert und eine Shuntanalyse an einer industriellen Solarzelle exemplarisch durchgeführt.

Als Anwendungsbeispiel wurden die Shunts einer mit industriellen Prozessen hergestellten Solarzelle auf multikristallinem Silizium analysiert. Insgesamt 39 Shunts wurden quantifiziert und der Einfluss der unterschiedlichen Shuntgruppen auf Füllfaktor und Wirkungsgrad der Solarzelle berechnet. Der größte Wirkungsgradverlust ist durch die Shunts am Rand der Solarzelle bedingt.
KAPITEL 6. ORTSAUFGELÖSTE MESSUNG VON SHUNT-WIDERSTÄNDEN
Kapitel 7

Gesamztzusammenfassung

Modellierung von Silizium Solarzellen

Für die optische Modellierung wurden in dieser Arbeit sowohl analytische Beschreibungen als auch numerische Modelle mittels Strahlverfolgung benutzt. Als Anwendungsbeispiel für die Modellierung der optischen Eigenschaften wurde die Generation unterhalb eines Metallisierungsfingers berechnet und ein Näherungsmodell zur Beschreibung dieser Generation vorgeschlagen.

Für die Simulation der elektrischen Eigenschaften wurde der kommerziell erhältliche Halbleitersimulator DESSIS benutzt. Ein wichtiger numerischer Parameter bei der Halbleitersimulation ist die Dichte der Diskretisierungspunkte im simulierten Symmetrieelement. Die Diskretisierungsichten in unterschiedlichen Regionen des Symmetrieelementes wurden variiert und ihr Einfluss auf die resultierenden Hellkennlinienparameter der simulierten Solarzelle bestimmt.

In dieser Arbeit wurde ein Netzwerksimulator erstellt, der die Verschaltung einzelner Zellbereiche in einem Widerstandsnetzwerk und damit die Simulation der gesamten Kennlinie ermöglicht. Wesentliche Einschränkung des Netzwerksmodells ist, dass keine lateralen Ströme in der Basis zwischen zwei Simulationselementen möglich sind. Mit Hilfe von zweidimensionalen Halbleitersimulationen wurde gezeigt, dass die korrekte Modellierung von lokalen Parallelwiderständen auch mit dieser Einschränkung möglich ist.

Hocheffiziente beidseitig kontaktierte Silizium Solarzellen

Die Verringerung des Bandabstands aufgrund der Basisdotierung (band gap narrowing, BGN) wurde mittels zweidimensionaler Halbleitersimulation untersucht. Die Simulationen ergaben, dass bereits für Basisdotierungen $N_A > 5 \times 10^{16} \text{cm}^{-3}$ die Offenklemmsspannung der Solarzelle signifikant durch das BGN beeinflusst wird. Durch den Vergleich von gemessenen und simulierten Offenklemmsspannungen konnten experimentelle Werte für das BGN im Bereich

183
$5 \times 10^{16} \text{ cm}^{-3} < N_A < 1 \times 10^{18} \text{ cm}^{-3}$ gewonnen werden. Diese Werte bestätigen ein von A. Schenk aus quantenmechanischen Berechnungen hergeleitetes BGN-Modell und zeigen außerdem, dass mit dem bisher verwendeten empirischen Fit nach A. Cuevas die simulierten Offenklemmspannungen in diesem Dotierbereich überschätzt wurden.

Die Rekombination an unpassivierten Rändern der Solarzelle wird für den Fall, dass der Emitter- und damit der pn-Übergang auf den Rand auftrifft, experimentell und in Simulationen analysiert. Als Hauptverlustkanal bei niedrigen Beleuchtungsintensitäten konnte die Rekombination in der Raumladungszone am Rand der Solarzelle identifiziert werden. Durch den Vergleich von Simulation und Messung wurde gezeigt, dass bereits geringfügige Verbesserungen der Rekombinationsgeschwindigkeit am Rand im Bereich der Raumladungszone (von $S = 10^5 \text{ cm s}^{-1}$ auf $S = 5 \times 10^6 \text{ cm s}^{-1}$) eine Verbesserung von 30 mV in der Offenklemmspannung bei 1/1000 Sonne Beleuchtungsintensität bewirken.

Für Solarzellen, deren Rückseite mit der am Fraunhofer ISE entwickelten Methode LFC (laser fired contacts) kontaktiert sind, wurde ein Simulationsmodell entwickelt. Die Solarzellen mit LFC-Kontakten konnten sehr gut durch eine lokale Hochdotierung und eine lokal erniedrigte Lebensdauer über den Rückseitenkontakten modelliert werden. Beides ist durch den LFC-Prozess, bei dem Silizium und die Metallisierung aufgeschmolzen werden, erklärbar. Durch Vergleich von Simulation und Experiment konnte die effektive Rekombinationsgeschwindigkeit für LFC-Rückseiten für Basisdotierungen im Bereich $10^{15} \text{ cm}^{-3} < N_A < 2 \times 10^{16} \text{ cm}^{-3}$ bestimmt werden.

Rückseitenkontaktzellen

Der Wirkungsgrad der RCC ist wesentlich von der Basisdiffusionslänge abhängig, da nur an der Rückseite Ladungsträger gesammelt werden. Daher stellt dieses Zellkonzept mit einem simulierten Wirkungsgrad von $\eta = 13.4\%$ für eine mittels Siebdruck auf Silizium mit 200 μm Diffusionslänge hergestellte RCC auch auf 150 μm dicken Wafer keine sinnvolle Alternative zu EWT ($\eta = 17.8\%$) und konventionellen Solarzellen ($\eta = 17\%$) bei sonst identischen Parametern dar.

Für 50 μm dicke Wafer ist für RCC- und EWT-Strukturen der Querleitungs widerstand der
Basis limitierend für den Füllfaktor. Daher wurde für diese Dicke eine Optimierung der Basisdotierung und der Kontaktabstände (und damit des Querleitungswiderstandes) für die oben genannten Materialparameter durchgeführt. Für die RCC ergab sich ein maximaler Wirkungsgrad von 18.7% bei einer Basisdotierung von \(N_A = 5.1 \times 10^{15} \text{ cm}^{-2} \); der maximale Wirkungsgrad der EWT Solarzelle beträgt 18.9% bei \(N_A = 1.2 \times 10^{16} \text{ cm}^{-3} \).

Analyse von Inhomogenitäten

Kapitel 8

Veröffentlichungen

- J. Dicker, J. O. Schumacher, W. Warta and S.W. Glunz
 Analysis of one-sun mono-crystalline rear-contacted silicon solar cells with efficiencies of 22.1%

- J. Dicker, J. Isenberg and W. Warta
 Effect of shunt distribution on the overall solar cell performance investigated by circuit simulation
 17th EU PVSEC, Munich, 2001

- J. Dicker, J. Sölter, J.O. Schumacher, W. Warta and S.W. Glunz
 Analysis of rear contacted solar cell structures for cost-effective processes and materials
 28th IEEE PVSC, Anchorage, USA, September 2000

 Numerical analysis of crystalline silicon thin film solar cells on perforated SiO2 barrier layers
 16th EU PVSEC, Glasgow, UK, 1-5 May 2000

- J. Dicker
 Charakterisierung von hocheffizienten Rückseitenkontaktzellen
 Diplomarbeit, Fakultät für Physik der Universität Freiburg und Fraunhofer ISE, Juni 1998

- J. Dicker, J.O. Schumacher, S.W. Glunz and W. Warta
 Characterization of high-efficiency silicon solar cells with rear side contacts
 2nd WC PVEC, Vienna, Austria, 1998

- J. Dicker and J.O. Schumacher
 Halbleitersimulation von Solarzellen
 Design & Elektronik, Heft 3/98

- J. Dicker, J.O. Schumacher, S.W. Glunz and W. Warta
 Charakterisierung von hocheffizienten rückseitenkontaktierten Si-Solarzellen
 Vortrag DPG Frühjahrstagung, Regensburg, 23. - 27.3.1998
• S. W. Glunz, A. Grohe, M. Hermle, E. Schneiderlöchner, J. Dicker, R. Preu, H. Mäckel, D. Macdonald and A. Cuevas
 Analysis of laser-fired local back surface fields using n^+np^+ cell structures
 3rd WC PVEC, May 11-18, Osaka, Japan, 2003

• M. Hermle, J. Dicker, W. Warta, S. W. Glunz and G. Willeke
 Analysis of edge recombination for high-efficiency solar cells at low illumination densities
 3rd WC PVEC, May 11-18, Osaka, Japan, 2003

• D. Kray, J. Dicker, D. Osswald, A. Leimenstoll, S. W. Glunz, W. Zimmermann, K.-H. Tentscher and G. Strobl
 Progress in high-efficiency emitter-wrap-through cells on medium quality substrates
 3rd WC PVEC, May 11-18, Osaka, Japan, 2003

• J. Y. Lee, J. Dicker, S. Rein and S. W. Glunz
 Investigation of various surface passivation layers using oxide/nitride stacks of silicon solar cells
 3rd WC PVEC, May 11-18, Osaka, Japan, 2003

• J. Isenberg, J. Dicker and W. Warta
 Averaging of laterally inhomogeneous lifetimes for 1D modeling of solar cells
 submitted to Journal of Applied Physics, May 2003

• C. Ballif, J. Dicker, D. Borchert and T. Hofmann
 Photovoltaic glass with industrial porous SiO2 antireflection coating: Measurements of module properties improvement and modelling of yearly energy yield gain

• S.W. Glunz, J. Dicker, M. Esterle, M. Hermle, J. Isenberg, F.J. Kammerewerd, J. Knobloch, D. Kray et al.
 High-efficiency silicon solar cells for low illumination applications

• J. Isenberg, S. Riepe, J. Dicker, S. Peters and W. Warta
 Correlation of spatially resolved lifetime measurements with overall solar cell parameters

• S.W. Glunz, J. Dicker and P. P. Altermatt
 Band gap narrowing in p-type base regions of solar cells
 17th EU PVSEC, Munich, 2001

• S. Reber, J. Dicker, D. M. Huljic and S. Bau
 Epitaxy of emitters for crystalline silicon solar cells
 17th EU PVSEC, Munich, 2001

• J. Isenberg, J. Dicker and W. Warta
 Analysis of the effect of diffusion length distributions on global solar cell parameters by simplified 2d modelling
 17th EU PVSEC, Munich, 2001
High-efficiency cell structures for medium-quality silicon
17th EU PVSEC, Munich, 2001

• D. Kray, J. Dicker, S. Rein, F.-J. Kamerewerd, D. Oßwald, E. Schäffer, S. W. Glunz and G. Willeke
High-efficiency emitter-wrap-through cells
17th EU PVSEC, Munich, 2001

• D. Kray, J. Dicker, A. Leimenstoll, S. W. Glunz and G. Willeke
20% efficient flexible silicon solar cells
17th EU PVSEC, Munich, 2001

• J. Y. Lee, S. Peters, J. Dicker, S. Rein and S. W. Glunz
Advanced rtp-process for boron-doped and oxygen contaminated cz silicon
17th EU PVSEC, Munich, 2001

• T. M. Bruton, S. Roberts, K. C. Heasman, W. Warta, S. W. Glunz, J. Dicker and J. Knobloch
Prospects for high efficiency silicon solar cells in thin Czochalsky wafers using industrial processes
28th IEEE PVSC, Anchorage, USA, September 2000

• W. Warta, S.W. Glunz, J. Dicker and J. Knobloch
Highly efficient 115 μm thick solar cells on industrial Czochralski silicon
Progress in Photovoltaics, Special Issue, 2000

• E. van Kerschaver, C. Zechner and J. Dicker
Double sided minority carrier collection in silicon solar Cells
IEEE Transactions of Electron Devices, Vol 47, No. 4, April 2000

• S. Bau, W.Zimmermann, J. Dicker and J.O. Schumacher
Großflächig rekristallisierte Si-Schichten für kristalline Dünnschichtsolarzellen
Frühjahrstagung der DPG, 20.-24.3.2000, Dresden, 2000

• J. Sölter, J. Dicker, J.O. Schumacher, S.W. Glunz and W. Warta
Charakterisierung von industrirelevanten rückseitenkontaktierten Silizium-Solarzellen
Frühjahrstagung der DPG, 20.-24.3.2000, Dresden, 2000

• J.O. Schumacher, J. Dicker, S.Glunz, C. Hebling, J.Knobloch, W. Warta and W. Wettling
Characterization of silicon solar cells with interdigitated contacts
26th IEEE PVSC, Anaheim, USA, 1997
Literaturverzeichnis

LITERATURVERZEICHNIS

Abschließend möchte ich mich bei allen bedanken, die zum Gelingen dieser Arbeit beigetragen haben, insbesondere bei

- Herrn Prof. Dr. W. Wettling für Vergabe und Motivation zu dieser Arbeit sowie die Betreuung in Stipendienfragen
- Herrn PD Dr. Gerhard Willeke für die Aufnahme in seine Abteilung und die Betreuung der Arbeit
- Herrn Dr. W. Warta für die Aufnahme in seine Arbeitsgruppe, die Betreuung und die sehr gute Übersicht und Beratung bei der Themenwahl
- Herrn Dr. S.W. Glunz für die sehr gute Zusammenarbeit, die vielen fruchtbaren Diskussionen und Anregungen sowie sein lexikalisches Gedächtnis aller Kinofilme
- Frau E. Schäffer für Ihr unersetzliches Wissen über Messapparaturen und Organisationsabläufe am Fraunhofer ISE sowie die vielen von Ihr durchgeführten Messungen
- Herrn J. Isenberg für die sehr gute Zusammenarbeit u.A. bei der Erstellung eines Netzwerksimulators, die vielen fruchtbaren physikalischen Diskussionen, das sorgfältige Korrekturlesen dieser Arbeit aber auch für die nette Büroatmosphäre
- Herrn S. Riepe für die Bereicherung der Bürodiskussionen in physikalischer und umwelt-politischer Hinsicht und die Bereicherung unseres Büros mit seinem freundlichen Wesen
- Herrn M. Esterle für die sehr gute Zusammenarbeit bei der ortsauflösten Vermessung von ohmschen Shunts
- Herrn P. Schossig für die vielen Hilfen in Computerfragen, zum Linux-Betriebssystem und seine ständige Erreichbarkeit „auf dem kleinen Dienstweg“
- D. Biro, A. Grohe, D. Huljic, D. Kray, S. Rein, J. Rentsch und E. Schneiderlöchner für die sehr gute Zusammenarbeit
- den Solarzellen-Simulanten am Fraunhofer ISE, insbesondere
 - Herrn Dr. J. O. Schumacher für die Initiierung der PObjects-Simulationsumgebung und bereitwillige Auskunft zu alten und sehr alten Programmroutinen
 - Herrn Dr. G. Letay für die sehr gute Zusammenarbeit bei der Pflege und Erweiterung von PObjects, die vielen Programmiertips und die motivierenden Diskussionen
 - Herrn J. Sölter für die sehr gute Zusammenarbeit bei der Charakterisierung von Rückseitenkontaktdioden
 - Herrn M. Herme für die sehr gute Zusammenarbeit bei der Charakterisierung von PERC Solarzellen, das sorgfältige Korrekturlesen und die freundschaftliche Atmosphäre im Simulationsalltag

... sowie allen Mitarbeitern der Gruppe SWT für die kooperative Zusammenarbeit.

Freiburg, den 11.6.2003

Jochen Dicker