
Agile Methods and Visual Specification in Software
Development: A Chance to Ensure Universal Access

Thomas Memmel1, Harald Reiterer1, and Andreas Holzinger2

1 Human-Computer Interaction Lab,
University of Konstanz, D-78457 Konstanz, Germany
{memmel,reiterer}@inf.uni-konstanz.de

2 Institute for Medical Informatics, Statistics & Documentation (IMI),
Medical University of Graz, Auenbruggerplatz 2, A-8036 Graz, Austria

andreas.holzinger@meduni-graz.at

Abstract. Within the eEurope2010 initiative “An Information Society for All”,
development methods which enable the inclusion of the end-user become
essential in order to ensure the paradigm of Universal Access. It is important to
understand the end-users, their behavior, their knowledge of technology and
their abilities and the context in which the applications will be used. In this
paper, we combine our experiences in both Agile Methods and Usability
Engineering and show that the resulting agile usability methods – however
these maybe designated – are ideally suited to design and develop applications
which follow the idea of Universal Access and where the end-user is having
great influence on systems design.

Keywords: Human-Computer Interaction, Usability Engineering, Extreme
Programming, Agile Methods, Universal Access.

1 Introduction

To achieve maximum benefits by making both useful and usable applications, it is
strongly recommended to apply an usability engineering (UE) approach [1]. Some
key principles of UE methods include understanding the users and analyzing their
tasks, setting measurable goals and involving the end-users from the very beginning.

Based on experiences in the recent MoCoMed project and on previous work
[2, 3, 4, 5], we consistently assess the role of UE in the realization of both usable and
useful applications, especially in the difficult environment of an outpatient clinic.

Facing melting budgets and shorter time to markets, engineering processes in
general have to come up with design approaches that can still guarantee quality in
terms of functionality, reliability, user performance and user experience etc. Ensuring
user interface (UI) usability with ordinary methods is then a demanding, if not an
impossible undertaking. This leads to challenges for project managers but moreover
to an eminent change in software engineering (SE).

With this article we want to emphasize that simple, cheap and easy-to-use
development models can be a step closer to the information society for all, where
people are assisted by Information Technology [6].

Konstanzer Online-Publikations-System (KOPS)
URL: http://nbn-resolving.de/urn:nbn:de:bsz:352-2-1ju1svzge6n0p6

Erschienen in: Universal Acess in Human Computer Interaction : Coping with Diversity : Proceedings, Part 1 /
Stephanidis, Constantine (Hrsg.). - Berlin : Springer, 2007. - (Lecture Notes in Computer Science ; 4554). - S. 453.-462 -

ISBN 978-3-540-73278-5
https://dx.doi.org/10.1007/978-3-540-73279-2_51

454

2 Agile Approaches to Software Development

The challenges and conflicts with development times and changing requirements are
partly addressed by agile approaches to SE. Pressure of time is accommodated with
less documentation, pair programming or coding from the very beginning etc., while
uncertain requirements are addressed by incremental and iterative development.

However, agile software lifecycles, e.g. most popular eXtreme Programming (XP)
[7] and Agile Modelling (AM) [8], lack end-user involvement and do not explicitly
take care of User Interface Design (UID) issues [9]. Reasons for this exclusion are the
belief that good UI quality is an effortless by-product of stakeholder feedback and the
bad reputation of UE as a heavy-weight, time-consuming and expensive activity.
Nevertheless, many professionals know by experience that typical agile properties,
such as incremental design or refactoring, contradict UID due to problems with
learnability, UI consistency etc. [9, 10]. When UE becomes part of agile SE, this
helps to reduce the risk of running into wrong design decisions by asking real end-
users about their needs and activities. Ultimately and contrary to its reputation, UE
can decrease project costs and help to increase the acceptance of software products.

Consequently, interdisciplinary scientists came up with ideas about integrating
(agile) SE and UE [3, 9, 10]. They all agree that the design of usable software
demands (agile) UE methods embedded throughout the lifecycle, e.g. in terms of
prototyping and evaluation. Likewise, all approaches share a limiting shortcoming of
usual UE practice: none starts visual design and coding before the Requirements
Engineering (RE) phase is finished. However, agile methods cannot afford waiting
longer to start coding (AM: Software Is Your Primary Goal). Approaches which
employ role and task models [10] during RE, can make typical UID less trial-and-
error driven and more task-oriented. But models still need to be transferred into code
and their abstract representation fails to show UID vision and UI behaviour, which is
essential for good usability. It therefore needs to be defined and assessed, together
with stakeholders, as soon as possible (UE: Participatory Design).

Also, typical set phrases of usability goals, e.g. “easy to learn” or “easy to use”, do
not state anything about UI behaviour. In UE, the assessment of user performance and
user experience goals, as well as the analysis of impacts of UID on the system
architecture, is usually postponed to later stages of the lifecycle. When initial designs
do not match expectations of stakeholders and require iteration and enhancement,
these iterations slow down the progress of the overall development, which contradicts
time-critical agile processes.

3 How to Build Better Software with Agile Usability Methods

Our development method is, on the one hand, based on research about prototyping
[11, 12] as a bridging technique for UE and SE. On the other hand, we tie up with our
previous findings about the extension of XP by principles and practice of AM and UE
[9]. We also integrate our experience within the MoCoMed project (see Chapter 5).

For merging UE with XP (see Figure 1), we encourage an earlier externalization of
design vision in order to make the development of usable software more effective:
Interactive prototypes of specific fidelity, enable a better understanding of end-users

 455

(AM: Active Stakeholder Participation) and their tasks, lead to a better collaboration
(AM: Model With Others) and make it possible to produce better software faster. All
stakeholders should be able to collaboratively discuss the look and feel of the UI from
the very beginning (AM: Model To Communicate, Model To Understand) and cross-
check the outcome with their requirements (AM: Prove It With Code). In order to
make this course of action effective and efficient, all stakeholders need to be able to
visually express and share their ideas and talk the same language [11, 13, 14, 15].

Fig. 1. The XP lifecycle extended by UE methods during up-front and test phase

Interaction and functional issues can be addressed sooner and the usability
requirements realized during early stages of design by using expressive prototypes
[5]. Prototypes act as discussion pieces and all stakeholders are invited to change
them. Although this is very much in alignment with UE’s practice of Participatory
Design (PD), on the contrary we do not build throw away prototypes just in order to
discover the requirements and document them. We employ the prototypes themselves
as living requirements repositories. In usual UE practice, style guides are developed
in order to have a reference document for designers, to share knowledge, to ensure
consistency with UID standards and to save experience for future projects. A running
simulation can also imply and express much of this knowledge and is less ambiguous.
When expressive prototypes transport design reference along the development
process, they can decrease the necessity for using abstract and extensive documents.
Writing a style guide for a complex product can take up to hundreds of hours of
effort. Instead of produce documents that require permanent updating (XP: Software
Is Your Primary Goal), one should rather change the prototype (AM: Model With
Purpose), and enhance it to a visual specification that guides development.

As illustrated in figure 1, XP’s up-front is extended by adding UI prototyping. This
increases time and effort, but also adds important value to the engineering process. As
many UI elements as possible are gathered up-front in order to agree upon a
minimalist UI specification [10] to be forwarded to system developers. It decreases
the probability of later changes of core parts of the UI, which could harm UI
consistency and have a delicate impact on the system architecture [9, 10]. It reduces
leaping between (re-)design and evaluation. Later on, back-end system development
can take place in parallel (AM: Create Several Models In Parallel) to the further
enhancement of the UID prototype towards a visual specification.

456

4 Participatory Prototyping for Visual Specification

Prototypes for visual specification are required to have characteristics of both
experimental and exploratory prototypes (see Table 1), as e.g. incorporated by
functional prototypes (see Table 2). We neither build throw away prototypes, nor do
we need pilot systems as the outcome of the requirements up-front.

Table 1. Approaches of prototyping, based on [2, 4, 13, 16]

Goal Description

Evolutionary

prototyping

Continually adapt a system to a rapidly changing environment; ongoing effort to

improve an application

Experimental

prototyping

Used to test hypotheses; try out solutions to meet requirements; communicate on

technical and usability issues; gather experience

Exploratory

prototyping

Used when problem at hand is unclear; express how something should work and

look; design exploration understand requirements; elicit ideas and promote

cooperation

Table 2. Classification of UI prototypes, based on [4, 13]

Type Description

Presentation

prototype

Supports the initiation of a project; present important aspects of the UI; illustrate

how an application solves given requirements

Functional

prototype

Temporary, executable system; implements specific, strategically important aspects

of the UI and functionality; share experiences, opinions and arguments; discuss

design rationale and trade-offs

Breadboard Investigate technical aspects such as system architecture or functionality; study

alternate designs to foster creativity

Pilot system Very mature prototypes which can be practically applied

The low fidelity versus high fidelity debate (see Table 3) has a long history. For

early stage prototyping during RE, the degree to which the prototype accurately
represents the UID and – even more important – the interaction behavior, is the
determining factor guiding the development process.

Abstract or low fidelity prototypes are generally limited in function but only need
limited prototyping effort. They usually do not require programming skills and
coding. They are constructed to facilitate discussion of UI concepts and design
alternatives, rather than to model the user interaction with a system.

Therefore, low fidelity prototypes mainly demonstrate the look and rarely
demonstrate the feel of an UI. They will show design direction but will not provide
details about how navigation is going to work or what interaction behaviour is like [15].

 457

Table 3. Main (dis-)advantages of low- and high-fidelity prototyping, based on [15]

Type Advantages Disadvantages

Low-

Fidelity

less time & lower cost

evaluate multiple UID concepts

address screen layout issues

proof-of-concept

poor detailed specification to code

navigational and flow limitations

facilitator-driven

limited error checking

High-

Fidelity

complete functionality

fully interactive

defines navigational scheme

look & feel of final product

serves as a “living” specification

time-consuming to create

more expensive to develop

blinds users to major

representational flaws

management may think it is real

Among widely known low-fidelity prototyping methods (see Table 4), paper

prototyping is one of the cheapest and fastest visual techniques one can employ in a
design process. It is also popular as a method for rapid prototyping [16].

Table 4. Overview on popular low-fidelity prototyping methods

Method Description

Content inventories Simple lists inventorying the information of controls to be collected within a

given interaction context

Sticky notes Visual content inventories, incorporate position and spatial relationship

among UI contents

Wire-frames Schematics outline the areas occupied by interface contents

Paper prototypes,

paper mockups

Rough sketches of the UID; for usability studies or quick reviews; rated as

fastest method of rapid prototyping

Storyboarding Sequence of paper prototypes, e.g. arranged with users

Realistic prototypes help resolve detailed design decisions in layout, visual

presentation, and component selection, as well as finding points in interaction design
and interface behaviour [17]. If a developer has to present his design visions to less
experienced users, executives, or a more technical audience, “a more robust and
aesthetically invested prototype might be appropriate” [2].

High fidelity prototypes range from detailed drawings to fully interactive
simulations (see Table 5), which show real system behaviour rather than just
presenting static screens. They address issues such as navigation and work flow, as
well as the matching of design with user models [15].

High fidelity prototypes should not be used for exploring design alternatives. More
simple designs (AM: Use The Simplest Tools, Depict Models Simply) can externalize
initial design problems better and cheaper. They provide the starting point for

458

discussion and requirements engineering. But after they helped to narrow the design
space to the most promising solution(s), they are then too sketchy and vague to give
guidance for developers (AM: Iterate To Another Artifact).

Table 5. Overview on high-fidelity prototyping methods, partly based on [13]

Method Description

Graphical Mockups Images of a the UI, e.g. created with Adobe Photoshop, Microsoft

Powerpoint, HyperCards

HTML prototypes (Partly-)Functional simulations implemented in HTML. Popular tool:

Adobe Dreamweaver

Interface builders Complete development environment for graphical design

Especially when elderly end-users are involved from the very beginning, high-

fidelity prototyping (see Chapter 5) adds important value to the design process.
Because they are fully functional, they can provide a better basis for thorough
evaluation with end-users. Although the application of low fidelity and high fidelity
prototyping is comparatively effective at detecting usability issues [12, 18, 19], users
are likely to prefer working with more detailed prototypes. They get a better feeling
for how the product will behave and can therefore make more valuable
recommendations about functionality and usability (AM: Apply The Right Artifacts).

As we want to utilize prototypes collaboratively, together with various kinds of
stakeholders, the necessity of coding should be avoided, for which GUI-based UI
builders are required (see Table 5). With mockups, simulation of UI behaviour
(reaching from simple mouse over effects to animations or zoom operations), is
impossible, for this more sophisticated tools need to be used (see Table 6).

Table 6. High-fidelity prototyping tools for visual specification

Tool Description

Adobe Flash Flash can be used for abstract sequences of static screens or fore full functional
applications with complex interaction behavior. By adding Action Script code, any
prototype can be enhanced to a full system.

iRise Studio iRise Studio allows the creation of screens and their stringing together to storyboards.
Besides standard UI components, the designer can use templates and master
components to build the UI.

With appropriate tools, changes can be done quickly and stakeholders can see the

impact of their suggestions immediately (AM: Rapid Feedback). If there is no lag
between decision and testing, stakeholders become fully integrated and contributing
members of the design task force (AM: Model With Others).

 459

5 Sample Application

We were able to gain experience with our development model during research for the
automotive industry and in several projects at Graz University Hospital. One of these
projects was the MoCoMed-Graz project, first described in [20]. As a part project of
the Melanoma Pre-care/Prevention Documentation, which is an important step toward
fighting skin cancer, the project MoCoMed-Graz dealt with the design, development
and implementation of a fully functional mobile solution to assist patient data surveys.
The problem was that the paper based questionnaires had several disadvantages;
including the necessity of retyping them manually into the database, most of all, they
were awkward to fill out by elderly and partially sighted patients, or for example by
patients with tremors. The idea of using mobile computers was to ensure that the data
acquisition within the clinical department runs smoothly and also that the cancer
researcher is allowed to collect data away from the clinic, for example during a survey
study in an outdoor swimming pool.

The workflow: The patient reports to the central administration desk of the
outpatient clinic of the dermatology department. There, they are registered via the
MEdical DOCumentation System (MEDOCS) administration program into the
pigmented lesion outpatient clinic. At the clinical workplace, an overview of the
waiting patients, who have been already registered in the system, but not yet released
by a medical doctor, can be seen. In the corresponding column on the clinical
workplace, there is an indication of whether or not they have already filled out a
questionnaire. Now the medical doctor or the nursing staff of the clinic can decide
whether this patient is to fill out a questionnaire and/or which questionnaire to provide
to the patient. After the decision to ask the patient to fill out a questionnaire, an empty
questionnaire is created in MEDOCS, by pushing a button. The questionnaire in
MEDOCS is registered with a definite user and a unique identification code, so that it
is clearly evident that it corresponds to a version from the patient and not the medical
doctor. At the terminal, the patient is equipped with a touch based Tablet PC and a
code, with which he/she can login to MoCoMed and complete the questionnaire
following the instructions from the touch based application. After the questions have
been answered and the questionnaire is completed, MoCoMed transfers the data into
MEDOCS. Further technical background of MoCoMed can be found in [20]. Further
issues on touch based interface desing can be found in [21].

6 Requirements Engineering: Flexibility Is Essential

The first step was to determine both requirements and clinical context. It is necessary
to differentiate between the primary end-users, the secondary end-users and the
stakeholders. However, the stakeholders influence, or are influenced by, the system
but are not the actual users. A precise specification of end-users is necessary (unlike
to XP), which includes the typical end-user characteristics, e.g. age range, computer
literacy or physical limitations (disabilities). Within clinical development it is
necessary to adapt the usability of the system to the abilities of the anticipated
patients, in order to enable universal access. One objective included to capture as
much as possible information about the workplace and physical conditions. Actually,

460

the work atmosphere within an outpatient clinic is difficult, hectic and chaotic. For
example, the noise level made several ideas of providing audio feedback
inappropriate. Also, both low and high levels of lighting have an impact on end-users
(office versus outdoor swimming pool, where sunlight is always a problem and causes
glare on the screen). However, we also considered room and furniture because the
characteristics of the place of installation must be studied in order to operate the
system safely and comfortably. It is also important to consider user posture; in our
case it is possible to use the mobile device within a total mobile setting or on an
adjustable wheel table (e.g. sitting versus standing and looking down at a display).
The social and organizational context is most often neglected, however this is
essential for the success and is also a crucial factor to enable universal access.

6.1 Level 1: Lo-Fi Prototyping

Following our previous experience [22], we employed paper prototypes for exploring
the design space. With standard office supplies, each interface element (see figure 3)
has been sketched. This led to an easy creation of design alternatives, since it
encouraged more suggestions due to the ease of alteration.

The intensive study of end-users by the application of paper mockups resulted in a
great advantage and clear benefit. Some advantages were that the first sketches
allowed immediate usability feedback (AM: Rapid Feedback). At the beginning of
our project, we were able to concentrate on abstract interface concepts rather than on
technological details (AM: Create Simple Content).

During the interaction, we were confronted by many problems, particularly with

the navigational model and the sequence of the screens. However, as expected, it was
relatively difficult to simulate real interface behavior, for example, how the interface
components react upon touch or how the system converts screen states.

6.2 Level 2: Hi-Fi Prototyping

The hi-fi prototyping had the advantage that end-users both participated and were
studied in a realistic setting (users could work with it directly). We found out why
end-users preferred certain styles of interaction and could specify our design rationale
accordingly. With more sophisticated UI representations, we were able to assess
problems with screen content, i.e. form structure or their understanding of the

Fig. 1. Various input possibilities have been
tested on paper

Fig. 2. One of our elderly patients is operating
the paper mock-up

 461

questions. This procedure helped to trace the source of and anticipate many problems
in the early stage of RE and before the programming started. Consequently, we
avoided later misconceptions as well as more iterations in systems design.

Concerning the design and the content of the questionnaire, we found that there
were iterative improvements possible until the final experiments, including words,
phrases and familiar - in the sense of intuition - concepts. However, we followed an
aesthetic and minimalist design: none of the dialogues contained irrelevant
information (AM: Create Simple Content).

7 Lessons Learned: Designing for Universal Access

By using prototypes for the visual specification of interactive systems, we entered a
very interesting field of research. High-fidelity prototyping can be a partial substitute
for any textual UI specification. When the described UI properties are available both
visually and by code, such a prototype becomes a living design guideline and
programming basis. “Whenever the programmer needs UID guidance, the prototype is
fired up and the function in question is executed to determine its design” [15]. This
allows an efficient and agile reuse of such prototypes [23] for further development
(AM: Model With Purpose, Software Is Your Primary Goal).

Our future work will concentrate on the question to which extent functional and
non-functional requirements and design knowledge can be transported in executable
simulations. We will try to find out whether additional properties are required to
completely replace textual documents with prototypes.

During MoCoMed, we also realized that testing methods such as Thinking Aloud
were experienced as strenuous and, apart from its application with more typical end-
users, took more time and preparation. Consequently, our further research will also
focus on “eXtreme evaluation” [24] methods (see Figure 1) for agile development.

Altogether, we encourage developers to use a cost-efficient design of usable
software systems for Universal Access based on XP, AM plus UE, in order to enable
access for people who are non expert end-users.

References

1. Norman, D.A., Draper, S.: User Centered System Design. Hillsdale (NY): Erlbaum (1986)
2. Berkun, S.: The art of UI prototyping. (2000), Online: http://www.scottberkun.com
3. Campos, J.C.: The modelling gap between software engineering and human-computer

interaction. In: Kazman, R., Bass, L., John, B. (eds.) (ICSE 2004), Workshop: Bridging the
Gaps vol. II pp. 54–61 (2004)

4. Schneider, K.: Prototypes as Assets, not Toys -Why and How to Extract Knowledge from
Prototypes. In: Proceedings International Conference on Software Engineering, ICSE-18,
pp. 522–531 (1996)

5. Folmer, Eelke, Bosch, J.: Cost Effective Development of Usable Systems; Gaps between
HCI and Software Architecture Design. In: Preceedings of ISD’2005, Karslstad, Sweden
(2005)

6. Stephanidis, C., Savidis, A.: Universal Access in the Information Society: Methods, Tools and
Interaction Technologies. Universal Access in the Information Society 1(1), 40–55 (2001)

7. Beck, Kent.: Extreme Programming Explained. Addison-Wesley, London (1999)

462

8. Ambler, W.S.: Agile Modeling. John Wiley & Sons, New York (2002)
9. Gundelsweiler, F., Memmel, T., Reiterer, H.: Agile Usability Engineering. In: Keil-Slawik,

R., Selke, H., Szwillus, G. (Hrsg.): (Mensch & Computer 2004),: Allgegenwärtige
Interaktion, München, pp. 33–42 Oldenbourg Verlag, (Mensch & Computer 2004) (2004)

10. Constantine, L.L.: Process Agility and Software Usability: Toward Lightweight Usage-
Centered Design. Information Age 8(2), (2002)

11. Gunaratne, J., Hwong, B., Nelson, C., Rudorfer, A.: Using Evolutionary Prototypes to
Formalize Product Requirements. In: Proceedings of ICSE 2004 Bridging the Gaps
Between Software Engineering and HCI, Edinburgh, Scotland (2004)

12. Walker, M., Takayama, L., Landay, J.A.: High-fidelity or low-fidelity, paper or computer?
Choosing attributes when testing web prototypes. In: Proceedings of the Human Factors
and Ergonomics Society 46th Annual Meeting, pp. 661–665 (2002)

13. Bäumer, D., Bischofberger, W.R., Lichter, H., Zllighoven, H.: User Interface Prototyping -
Concepts, Tools, and Experience. In: Proceedings of the 18th International Conference on
Software Engineering (ICSE), Berlin, Germany, pp. 532–541 (1996)

14. Hoyos, C.G, Gstalter, H., Strube, V., Zang, B.: Software-design with the rapid prototyping
approach: A survey and some empirical results. In: Salvendy, G. (ed.) Cognitive
Engineering in the Design of Human-Computer Interaction and Expert Systems, pp. 329–
340. Elsevier, Amsterdam (1987)

15. Rudd, J., Stern, K., Isensee, S.: Low Vs. High-Fidelity Prototyping Debate. Interactions,
pp. 76–85 (1996)

16. Gutierrez, O.: Prototyping techniques for different problem contexts. In: Proceedings of
the SIGCHI conference on Human factors in computing systems: Wings for the mind, pp.
259–264. ACM Press, New York (1989)

17. Constantine, L.L.: Canonical Abstract Prototypes for Abstract Visual and Interaction
Design. In: Jorge, J.A., Jardim Nunes, N., Falcão e Cunha, J. (eds.) DSV-IS 2003. LNCS,
vol. 2844, Springer, Heidelberg (2003)

18. Sefelin, R., Tscheligi, M., Giller, V.: Paper prototyping – what is it good for? A
comparison of paper-and computer-based prototyping. In: Proceedings of CHI (2003), pp.
778–779 (2003)

19. Virzi, R.A., Sokolov, J.L., Karis, D.: Usability problem identification using both low- and
high-fidelity prototypes. In: CHI Conference on Human Factors in Computing Systems,
pp. 236–243 (1996)

20. Holzinger, A., Sammer, P., Hofmann-Wellenhof, R.: Mobile Computing in Medicine:
Designing Mobile Questionnaires for Elderly and Partially Sighted People. In:
Miesenberger, K., Klaus, J., Zagler, W., Karshmer, A.I. (eds.) ICCHP 2006. LNCS,
vol. 4061, pp. 732–739. Springer, Heidelberg (2006)

21. Holzinger, A.: User-Centered Interface Design for disabled and elderly people: First
experiences with designing a patient communication system (PACOSY). In: Miesenberger,
K., Klaus, J., Zagler, W. (eds.) ICCHP 2002. LNCS, vol. 2398, pp. 34–41. Springer,
Heidelberg (2002)

22. Holzinger, A.: Application of Rapid Prototyping to the User Interface Development for a
Virtual Medical Campus. IEEE Software 21(1), 92–99 (2004)

23. Heinecke, H., Noack, C., Schweizer, D.: Software Reuse in Agilen Projekten. In:
Net.ObjectDays (2003)

24. Gellner, Michael, Forbrig, Peter.: Extreme Evaluations – Lightweight Evaluations for Soft-
ware Developers. In: IFIP Working Group 2.7/13.4, editor, INTERACT 2003 Workshop
on Bridging the Gap Between Software Engineering and Human-Computer Interaction
(2003)

