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Abstract. Mathematical expressions can be represented as a tree con-
sisting of terminal symbols, such as identifiers or numbers (leaf nodes),
and functions or operators (non-leaf nodes). Expression trees are an
important mechanism for storing and processing mathematical expres-
sions as well as the most frequently used visualization of the structure of
mathematical expressions. Typically, researchers and practitioners man-
ually visualize expression trees using general-purpose tools. This app-
roach is laborious, redundant, and error-prone. Manual visualizations
represents a user’s notion of what the markup of an expression should
be, but not necessarily what the actual markup is. This paper presents
VMEXT – a free and open source tool to directly visualize expression
trees from parallel MathML. VMEXT simultaneously visualizes the pre-
sentation elements and the semantic structure of mathematical expres-
sions to enable users to quickly spot deficiencies in the Content MathML
markup that does not affect the presentation of the expression. Iden-
tifying such discrepancies previously required reading the verbose and
complex MathML markup. VMEXT also allows one to visualize sim-
ilar and identical elements of two expressions. Visualizing expression
similarity can support developers in designing retrieval approaches and
enable improved interaction concepts for users of mathematical informa-
tion retrieval systems. We demonstrate VMEXT’s visualizations in two
web-based applications. The first application presents the visualizations
alone. The second application shows a possible integration of the visual-
izations in systems for mathematical knowledge management and math-
ematical information retrieval. The application converts LATEX input to
parallel MathML, computes basic similarity measures for mathematical
expressions, and visualizes the results using VMEXT.
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1 Introduction

Mathematical notation strives to have a well-defined vocabulary, syntax, and
semantics. Similar to sentences in natural language or constructs in a program-
ming language, mathematical expressions consist of constituents that have a
coherent meaning, such as terms or functions. We consider a mathematical
expression to be any sequence of mathematical symbols that can be evaluated,
e.g., typically formulae. The syntactic rules of mathematical notation, such as
operator precedence and function scope, determine a hierarchical structure for
mathematical expressions, which can be understood, represented, and processed
as a tree. Mathematical expression trees consist of functions or operators and
their arguments. Experiments by Jansen, Marriott, and Yelland suggest that
mathematicians use some notion of mathematical expression trees as a mental
representation to perform mathematical tasks [JMY00].

Describing and processing mathematical content using expression trees is
established practice in mathematics and computer science as our review of
related work in Sect. 2 shows. However, no standard for the content of nodes, or
the structure and visual representation of such trees has yet emerged. Addition-
ally, we did not find tools that support generating expression tree visualizations
from mathematical markup. All of the visualizations that we were able to glean
from the literature were manually created using general purpose tools.

With this paper, we seek to contribute to the establishment of an openly avail-
able, widely accepted, visualization of mathematical expression trees, encoded
using the MathML standard. For this purpose, we propose a tree visualization
that operates on parallel MathML markup and provides the visualization as a
free and open source tool. We structure the presentation of our contributions as
follows. Section 2.1 presents details of the MathML standard that serves as the
data structure for our visualization approach. Section 2.2 reviews the strength
and weaknesses of existing approaches for visualizing mathematical expression
trees to derive our visualization concept. Section 3 present our visualization tool
VMEXT. Section 3.3 describes a demo application that shows how the visualiza-
tion can be integrated into other applications. Section 3.4 explains how end users
and developers can apply and obtain VMEXT. Section 4 concludes the paper by
discussing our plans for further extending and improving VMEXT.

2 Related Work

As briefly motivated in the previous section, we seek to reduce the effort for
researchers and practitioners to generate expression tree visualizations for math-
ematical content. Additionally, we hope to contribute to establishing a standard-
ized representation of mathematical expression trees. In Sect. 2.1, we present the
MathML standard and explain why we see it as a promising data format to
achieve this goal. In Sect. 2.2, we review existing approaches for visualizing math-
ematical expression trees to explain how we derived the major building blocks
of our visualization approach.



342

2.1 MathML

Mathematical Markup Language (MathML) is a W3C1 and ISO standard
(ISO/IEC DIS 40314) for representing mathematical content using XML syntax.
MathML is part of HTML5 and enables one to serve, receive, and process math-
ematical content on the World Wide Web. MathML allows users to describe
the notation and/or the meaning of mathematical content using two vocabu-
laries: Presentation MathML (PMML) and Content MathML (CMML). The
vocabularies can be used independently of each other or in conjunction.

Presentation MathML focuses on describing the visual layout of mathemat-
ical content. The PMML vocabulary contains elements for basic mathematical
symbols and structures. Each element specifies the role of the presentation ele-
ment, e.g., the element <mi> represents identifiers and the element <mo> rep-
resents operators. The structure of PMML markup reflects the two-dimensional
layout of the mathematical expression. Elements that form semantic units are
encapsulated in < mrow> elements, which are comparable to < div> elements
in HTML. Listing 1.1 exemplifies PMML markup for the expression f(a + b).

Content MathML focuses on explicitly encoding the semantic structure and
the meaning of mathematical content using expression trees. In other words, the
CMML vocabulary seeks to specify the frequently ambiguous mapping from the
presentation of mathematical content to its meaning. For example, the presen-
tation of the expression f(a + b) represents two possible syntactic structures:
e.g., f could represent either an identifier or a function. CMML uses <apply>
elements to make explicit which elements represent functions. Subordinate ele-
ments represent the arguments of the functions. Listing 1.2 illustrates CMML
markup for the expression f(a + b).

1 <math xmlns=”http ://www.w3 . org /1998/Math/MathML”>
2 <semant ics>
3 <mrow id=” r1 ”>
4 <mi id=” i 1 ”>f</mi>
5 <mo id=”o1”>(</mo>
6 <mrow id=” r2 ”>
7 <mi id=” i 2 ”>a</mi>
8 <mo id=”o2”>+</mo>
9 <mi id=” i 3 ”>b</mi>

10 </mrow>
11 <mo id=”o3”>)</mi>
12 </mrow>

Listing 1.1. Presentation MathML encoding of the expression f(a + b) [Sch17]

Content MathML offers two subsets of elements to specify function types: Prag-
matic Content MathML and Strict Content MathML. Pragmatic Content
MathML uses a large set of predefined functions encoded as empty elements,
e.g., <plus/>, as used in Line 17 in Listing 1.2, or <log/> for the logarithm.
1 www.w3.org/Math/.
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13 <annotation−xml encoding=”MathML−Content”>
14 <apply x r e f=” r1 ”>
15 <c i x r e f=”b”>f</ c i>
16 <apply x r e f=” r2 ”>
17 <plus x r e f=”o2”/><!−− <csymbol cd=”a r i t h1”>plus

</csymbol> in s t r i c t encoding −−>
18 <c i x r e f=” i 2 ”>a</ c i>
19 <c i x r e f=” i 3 ”>b</ c i>
20 </apply>
21 </apply>
22 </ annotation−xml>

Listing 1.2. Content MathML encoding of the expression f(a + b) [Sch17]

Strict Content MathML uses a minimal set of elements, which are further speci-
fied by referencing extensible content dictionaries. For example, the plus operator
(+) is defined in the content dictionary arith1. Using Strict CMML, the oper-
ator is encoded using the element for symbols <csymbol>, and declaring that
the specification of the symbol is available under the term plus in the content
dictionary arith1. Line 17 in Listing 1.2 shows this option of specifying the plus
operator as a comment (green font color).

As described above, the PMML and CMML vocabularies can be used indi-
vidually and independent of each other. For example, PMML is frequently used
without content markup to display mathematical content on websites. CMML
without presentation markup can, for instance, be used to exchange data between
computer algebra systems. However, PMML and CMML markup can also be
used in conjunction to simultaneously describe the presentation, structure, and
semantics of mathematical expressions. The combined use of PMML and CMML
is commonly referred to as parallel MathML.

In parallel MathML markup, presentation and content elements are mutu-
ally interlinked by including xref arguments that point to the corresponding
element in the other vocabulary. The PMML and CMML markup in Listings 1.1
and 1.2 respectively contain xref-links to create parallel MathML.

2.2 Expression Tree Visualizations

Researchers, especially in math information retrieval (MIR), have employed sev-
eral use-case-specific tree visualizations for mathematical expressions. All visu-
alizations appear to have been created manually to illustrate research in publica-
tions. The content and structure of the visualizations vary significantly. Figures 1
and 2 give an overview of the visualizations, which we describe hereafter.

Youssef and Shatnawi use simple ASCII graphics to visualize expression trees.
Their visualization resembles binary expression trees. Leaf nodes represent iden-
tifiers or numbers; inner nodes represent operators, functions, or brackets [YS06].
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In later work, Shatnawi and Youssef replace the ASCII graphics with an equiva-
lent chart. Altamimi and Youssef further improve their visualization by marking
subexpression groups with dashed lines (see Fig. 1b) [AY08].

Miner and Munavalli use a different tree to illustrate their research on math
search. They render the full expression in the root of the tree and create sub-
nodes for each sub-expression (see Fig. 1c) [MM07]. Sojka and Ĺı̌ska use a similar
visualization to illustrate the tokenization and indexing process of their math
search system.

Hashimoto, Hijikata, and Nishida use a tree layout that represents the DOM
structure of Presentation MathML markup to illustrate the author’s research
on MathML indexing [HHN08]. In this layout, inner nodes represent MathML
elements depicted as circles and leaf nodes represent the content of elements
depicted as squares (see Fig. 1d). We assume the authors manually created the
visualization, since the focus of their paper is on math search and does not
mention an automated visualization approach.

Kamali and Tompa [KT09] and Kamali and Tompa [KT10] use a similar
tree representation of the Presentation MathML structure in their works on
math similarity and retrieval. Their visualization does not distinguish between
inner nodes and leaf nodes, but depicts all nodes as circles (see Fig. 1a). Two
things are notable about this visualization. First, the layout corresponds to the
data structure of the mathematical expressions. Second, Kamali and Tompa
introduce the notion of defining and visualizing the similarity of mathematical
expressions in terms of the structural similarity of sub-trees. The authors visually
indicate similar sub-trees by enclosing the respective sub-tree in a dashed line
(see Fig. 1a). In subsequent work, Kamali and Tompa [KT13] use a horizontal
layout to visualize the same tree. The tree uses boxes instead of circles and
directed instead of undirected edges. Kamali and Tompa exclusively consider
PMML and do not present an automated approach to create their visualization
of the structure and similarity of PMML expressions.

Yokoi and Aizawa consider Content MathML markup for their research on
math similarity search and devise a visualization of the CMML tree [YA09]. Their
work introduces apply-free content markup, i.e., omitting the first <apply>
element in the CMML markup, since it provides little information on the applied
function. Instead, their markup uses the first child of an <apply> element. Their
manually created visualization also omits <apply> elements (see Fig. 2a). We
consider this approach valuable, since it reduces the number of nodes to visualize
and facilitates the recognition of function types.

Hagino and Saito also consider apply-free Content MathML markup for
their research on partial match retrieval in math search [HS13]. To illustrate
their research, they use a tree that depicts the CMML element names in the
case of inner nodes and the CMML element names in combination with the
elements’ content in the case of leaf nodes (see Fig. 2b).

In their review of approaches for math recognition and retrieval, Zanibbi and
Blostein point out that building a symbol layout tree is important for math
recognition tasks [ZB12]. Symbol layout trees represent horizontally adjacent
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Fig. 1. Overview of expression tree visualizations part 1

symbols that share a writing line and indicate subscript, superscript, above,
below, and containment relationships. The authors present a horizontal illustra-
tion of the symbol layout tree and a simplified expression tree using a vertical
layout (see Fig. 2d). Pattaniyil and Zanibbi uses a similar horizontal illustration
of the symbol layout tree (see Fig. 2e) [PZ14].

Zhang and Youssef use Strict Content MathML for their research [ZY14]. In
their visualizations of the CMML tree, they omit the element names for <ci>
and <cn> elements, but include <apply> elements. They replace the names
of CMML elements with shorter symbols. For instance, they replace <apply>
with @ and <power> with ∧.

2.3 Summary of Related Work and Research Gap

From our review of the literature, we draw the following conclusions. First, repre-
senting mathematical expressions as trees is essential for performing many tasks
in mathematical knowledge management (MKM) and mathematical information
retrieval (MIR). Expression trees, in which leaf nodes represent terminal sym-
bols and inner nodes represent operators, functions, or brackets are widely used
as a data representation. The MathML standard is a well-established data for-
mat for representing the presentation, structure, and semantics of mathematical
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Fig. 2. Overview of expression tree visualizations part 2

content using the expression tree concept. Many researcher rely on MathML
encoded content for MIR and MKM tasks.

Second, researchers frequently employ expression tree visualizations to illus-
trate their math-related research. While some visualizations reflect the infor-
mation extracted from mathematical markup, such as MathML, other visu-
alizations illustrate abstract mathematical expressions. The elements included
in the visualizations, their spatial arrangement, and visual appearance varies
greatly. Depending on the use case, visualizations may include presentation ele-
ments, content elements, or combinations thereof. Especially in the MIR domain,
researchers frequently need to visualize similarity of operator (sub-)trees.

Third, although the expression tree concept is at the heart of MathML
and visualizations of MathML markup are widely used for analysis and pre-
sentation purposes, we found no tool that generates such visualizations from
MathML markup. Researchers typically create expression tree visualizations
manually using general-purpose tools. This approach results in much manual
and redundant effort, diverse visual representations of identical markup, and
the danger of creating a visualization that does not reflect the underlying data.
To reduce the effort for creating expression tree visualizations and to contribute
towards establishing a more canonical design of expression trees, we present the
VMEXT system, which we describe in the following section.

3 VMEXT System

VMEXT is an acronym for Visualizing Mathematical Expression Trees. This
tool seeks to visually support researchers and practitioners in two well-defined
use cases:
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1. curating semantically enriched mathematical content, e.g., for use in digital
repositories or systems for mathematical knowledge management;

2. examining similarities of two mathematical expressions, e.g., for developing
mathematical information retrieval approaches or for examining and inter-
acting with the results of MIR systems.

VMEXT addresses the use cases with two visualizations available as widgets
that can easily be integrated into any web application. We present the widgets
in Sects. 3.1 and 3.2. Both widgets are available as a demo system at: http://
vmext.formulasearchengine.com/. Section 3.3 presents a demo application that
exemplifies the possible use of the widgets as part of MKM and MIR systems.
Section 3.4 describes how interested parties may use VMEXT’s visualizations;
integrate the visualizations as widgets or via an API into their own applications;
and how to adapt and extend the code.

3.1 Curating Semantically-Enriched Mathematical Content

Making mathematical knowledge accessible through recognition, retrieval, and
management systems is a task that has attracted many contributions by
researchers and practitioners. (Guidi and Sacerdoti Coen [GS16] and Zanibbi
and Blostein [ZB12] present comprehensive reviews on the topic). The MathML
standard (see Sect. 2.1) has been widely adopted to expose both the presentation
and semantics of mathematical content for such systems.

However, the MathML syntax is verbose, complex and therefore not easy
to grasp for humans. Furthermore, creating parallel MathML markup is com-
plicated and error-prone. This is true, especially for the creation of parallel
MathML by converting other formats, such as LATEX, and often results in
ambiguous or erroneous markup. Typically, Presentation MathML elements
are less frequently affected by errors than their respective Content MathML
elements. This leads to a situation, in which the visual representation of an
expression is correct, yet its semantics are wrong.

VMEXT supports users in quickly checking and improving parallel MathML
by providing an interactive expression tree visualization that simultaneously
illustrates the semantic structure (as well as the presentation elements) encoded
in the markup.

VMEXT visualizes the structure of the tree as encoded in the Content
MathML markup. However, the labels for each node render the Presentation
MathML elements linked to the respective content elements. VMEXT uses the
apply-free CMML notation introduced in [YA09]. In other words, our parser
renders the first child of each <apply> element, not the <apply> itself, as an
operator or function. All following children are considered as arguments of the
function. For a clear layout, VMEXT renders the complete PMML element for
the first child, even if the first child is itself an <apply> element. To reduce the
size of the individual edges, we replace some CMML elements with shorthand
symbols, e.g., we replace <power> with ∧ as can be seen in Fig. 3 (cf. [ZY14],
see also Sect. 2).



348

To facilitate human inspection, VMEXT follows the information seeking
mantra proposed by Shneiderman [Shn96]: overview first, zoom and filter,
then details-on-demand. The nodes in VMEXT can be interactively filtered by
expanding or collapsing nodes either one at a time or all at once using the expand
button. The view-port is adjustable using pan and zoom interactions to enable
focusing on specific parts of the tree. The resize button resets the zoom level.
User navigation is supported through an overview infix expression rendered at
the top of the screen. Hovering over parts of the infix expression or nodes in
the tree, highlights the corresponding parts in the tree and the infix expres-
sion. Subsection 3.2 shows how hovering over the divide operator highlights the
respective sub-tree in light blue. The user can export the chosen (sub-)tree ren-
dering, including all manipulations performed through filtering and zooming, as
a high-resolution png image, e.g., for use in publications.

To demonstrate how VMEXT’s expression tree visualization can aid in curat-
ing semantically enriched MathML markup, we use the integral representation
of the Euler gamma function [Olv+, (5.2.1)] as an example

Γ (z) =
∫ ∞

0

e−ttz−1 dt. (1)

Figure 3a–c show VMEXT’s rendering for three markup variants of the Euler
gamma function. All variants have identical PMML markup, i.e., produce identi-
cal visual output as shown in Eq. 1. However, the CMML differs, because we gen-
erated the MathML using LATExml [Mil15] using different LATEX input (shown
in the captions of the figures). Note, that these different LATEX versions encode
more or less semantics.

The trees in Fig. 3 a and b show that VMEXT allows an arbitrary num-
ber of child nodes, as opposed to the binary expression tree concept we briefly
described in Sect. 1. The conversion of generic LATEX input (a), misinterpreted
some invisible operators, such as the invisible operator between Γ and (z)
that was interpreted as times rather than a function application. Additionally,
LATExml marked some CMML elements as ambiguous, i.e., could not establish a
one-to-one relation to a PMML element. For ambiguous nodes, VMEXT renders
all PMML elements enclosed by the ambiguous CMML element in a node with
dashed borders to emphasize the defective markup for the user. For example,
the node for e−t in Fig. 3 was marked as ambiguous.

The LATEX representation using DLMF macros (b) resolves the problem of
invisible operators by using the @ symbol to make such operators explicit. How-
ever, this representation still results in ambiguous nodes. Representing the Euler
gamma function using DLMF and DRMF macros [Coh+14,Coh+15] results in
correct CMML markup. In (c), we specify the integral using the semantic macro
\Int rather than the generic \int command. We have required that all occur-
rences of the ∧-operator must denote the power operator. Note that, in order to
make this workable, one must create beneficial custom semantic macros for all
other uses of the ∧-operator. These include matrix operations (A†), labeling (x∗),
function spaces (Ck), norms (Lp), sums (

∑∞
n=0), products (

∏∞
n=0), derivatives

(f (2)(x)), etc.
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Fig. 3. Expression trees rendered for MathML input obtained from converting differ-
ent LATEX input. The Presentation MathML is identical for all three cases, yet the
Content MathML differs.

By rendering the expression tree as encoded by the CMML markup, VMEXT
enables users to quickly spot markup deficiencies and illuminates the effects of
using different conversions or manually changing markup.

3.2 Examining Similarities of Mathematical Expressions

Our review of MIR literature (see Sect. 2.2) shows that researchers often seek
to visualize the similarity of two mathematical expressions, e.g., the similarity
between a query expression and a retrieval candidate. To facilitate this task,
VMEXT includes a specialized visualization shown in Subsect. 3.2. The presented
example compares two notations of the measure Mean Reciprocal Rank.

The widget accepts CMML input for the expressions to compare. Similar
elements can be specified by stating the IDs of the similar CMML elements in
both trees using JSON. Currently, VMEXT allows one to specify that elements
are either similar or identical. The two types of similarity are rendered differently.
Since VMEXT is designed to be a visualization tool, it includes no functionality
to compute similarities. We demonstrate the integration of the widgets with a
basic application that computes similarities in Sect. 3.3.

The center view renders the trees (including the infix overview) for both
expressions and visually distinguishes the trees using different background col-
ors. The visualizations offer the same interaction features as the expression tree
widget (see Sect. 3.1). In the lower part of the center view, VMEXT renders
a combined expression tree. The combined tree includes all nodes from both
trees color-coded with the background color of the tree from which they origi-
nate. Unique, i.e., dissimilar, sub-trees of both trees are collapsed to direct the
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user’s attention to the similar parts of the trees. For elements marked as similar,
VMEXT renders the nodes from both trees and highlights them as exemplified
by the nodes MRR and MMR. Nodes that are marked as identical are rendered
only once and are highlighted as exemplified by the node

∑|Q|
i=1

1
r .

The integrated visualization of the two expression trees and the combined
tree, allows users to quickly inspect the full structure of both expressions and
similar sub-trees. The highlight on hover feature helps users to look up the
corresponding subtrees for nodes marked as similar in the combined tree.

A specific application that benefits from visualizing the similarity of math-
ematical expressions is our prototype of a hybrid plagiarism detection system
CitePlag2 [MGB12,Gip+13]. Forms of academic plagiarism vary greatly in their
degree of obfuscation ranging from blatant copying to strongly disguised idea
plagiarism [MG13]. Our research indicates that not a single, but combined PD
approaches are most promising to reliably detect the wide range of plagiarism
forms [GMB14,Gip+14,Gip14]. Combined approaches accumulate evidence on
potentially suspicious similarity using heterogeneous features, such as literally
matching text, similarities in the citations used, and similarity of mathematical
content [MG14]. CitePlag is the first system to implement such an integrated
analysis and uses the VMEXT framework to visualize the similarity of mathe-
matical content.

3.3 Demo Application

To showcase a possible integration of VMEXT’s widgets into MIR and MKM
applications, we developed a Java application for input conversion and similar-
ity computation. The demo provides a basic web frontend available at: http://
vmext-demo.formulasearchengine.com and offers two main features.

First, it converts LATEX input to parallel MathML. The backend of the
demo application offers two alternative converters. The first converter employs
LATExml, whose configuration can be customized via input fields included in the
web frontend. The second converter passes the LATEX input to the Mathoid sys-
tem3 [SW14], which employs the speech rule engine4 [CKS15] to generate Pre-
sentation MathML with CDATA annotations. These annotations give hints on
the possible semantic meaning of expressions. Using a simple XSLT stylesheet,
the demo application converts this non-standard-conforming markup to standard
parallel MathML markup. The application enables users to quickly run different
LATEX to MathML conversions and immediately examines the effects on the con-
version quality using the VMEXT visualizations described in Sects. 3.1 and 3.2.

Second, the demo application computes basic similarity measures for two
expressions (Fig. 4). The most basic measure identifies identical nodes. A second
measure uses the idea of taxonomic distance of expressions proposed in [ZY14].
Our implementation uses content dictionaries to model the taxonomic distance

2 http://www.citeplag.org.
3 https://www.mediawiki.org/wiki/Mathoid.
4 https://github.com/zorkow/speech-rule-engine.
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Fig. 4. VMEXT expression tree similarity widget

and builds upon the content dictionary abstraction as introduced in [Sch+14].
The system converts the CMML markup of the expression to Strict CMML to
guarantee that the XML encodings of all symbols explicitly state from which
content dictionary the symbols originate. All symbols originating from the same
content dictionary, like plus and minus, or sine and cosine, are considered similar.
Symbols from different content dictionaries, e.g., plus and cosine, are considered
dissimilar. The objective of the similarity computation is to provide users with
test data to explore the visualization approaches, and not to be meaningful from
an analytical perspective.
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3.4 Obtaining VMEXT

VMEXT is a free and open source JavaScript application. We host a ready-
to-use instance of the tool at: http://vmext.formulasearchengine.com. We also
provide a REST API that exposes the image export functionality and the internal
representation of our visualization.

The demo application for converting and rendering LATEX markup (see
Sect. 3.3) is available at: http://vmext-demo.formulasearchengine.com.

For development purposes, VMEXT is available as a Node.js package from:
https://www.npmjs.com/package/vmext. We actively maintain and enhance the
tool; the latest code is available from https://github.com/ag-gipp/vmext. Pull
requests and bug reports are highly welcome.

4 Conclusion and Future Work

In this paper, we present two tree-based visualization approaches for mathemat-
ical expressions. The first approach simultaneously illustrates the presentation,
structure, and semantics of individual expressions. The second approach visual-
izes the structural and semantic similarity of two expressions. Both approaches
operate on parallel MathML markup and incorporate key elements of expres-
sion tree visualizations proposed in the MIR literature.

We implemented the two approaches as part of VMEXT, a system we provide
free and open source for end users and developers (see Sect. 3.4). Additionally,
we provide two web-based demo applications. The first application5 presents the
visualization widgets alone. The second application6 demonstrates a possible
integration of the widgets in systems for mathematical knowledge management
and mathematical information retrieval.

In our future work, we plan to extend VMEXT’s functionality beyond exclu-
sively visualizing MathML markup towards visually assisting markup creation
and editing by humans. MathML shows great promise for enabling unprece-
dented access to mathematical knowledge. However, converting existing mathe-
matical knowledge to semantic markup formats will require some human inter-
action. The complexity and verbosity of MathML makes direct interaction
with MathML markup laborious and time-consuming. We see visual editors
as a possible solution to this problem. Enabling users to create and manipulate
mathematical notation and MathML markup via visual support tools would
be valuable for increasing the digital accessibility of mathematical knowledge
[CS17,Sch+16]. Another possible extension is the consideration of proof struc-
tures and the visualization of the directed acyclic graphs, which might occur, if
the MathML <share /> element is used.

Acknowledgements. We thank Ludwig Goohsen and Stefan Kaufhold for their sup-
port in developing VMEXT. Furthermore, we thank the Wikimedia Foundation for
providing a server to run the VMEXT demo.

5 http://vmext.formulasearchengine.com.
6 http://vmext-demo.formulasearchengine.com.
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