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Coupling MPC and HJB for the Computation
of POD-based Feedback Laws

Giulia Fabrini1, Maurizio Falcone2 and Stefan Volkwein1

1 University of Konstanz, Department of Mathematics and Statistics,
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Abstract. In this paper we use a reference trajectory computed by a model predic-
tive method to shrink the computational domain where we set the Hamilton-Jacobi
Bellman (HJB) equation. Via a reduced-order approach based on proper orthogonal
decomposition(POD), this procedure allows for an efficient computation of feedback
laws for systems driven by parabolic equations. Some numerical examples illustrate
the successful realization of the proposed strategy.

1 Introduction

The numerical solution of nonlinear optimal control problems for system
driven by partial differential equations is a challenging topic that has a great
impact in many areas. By means of the Dynamic Programming Principle
(DPP) one can obtain a Hamilton-Jacobi-Bellman equation which gives a
characterization of the value function of a fully–nonlinear control problem.
The value function is in fact the unique viscosity solution of a nonlinear
Hamilton–Jacobi equation and solving this equation one can derive the ap-
proximation of an optimal feedback control. It is well known that the DP
approach suffers from the so called curse of dimensionality and one of the
main tasks is the choice of the domain where we want compute the value
function. To solve this problem we apply the algorithm presented in [1] to a
parabolic partial differential equation. We follow a reduced order modeling
approach based on POD and we derive an a-posteriori error estimator for the
optimal trajectory. The paper is organized as follows. Section 2 is devoted to
the presentation of the optimal control problem. In Section 3 we introduce
the reduced order modeling whereas in Section 4 we briefly explain the main
features of HJB and MPC method, how we couple them and we provide an
a posteriori error estimator which give us a criterium to choose the reduced
domain. Finally, Section 5 presents a couple of numerical tests.

? ? ? G. Fabrini gratefully acknowledges support by the German Science Fund DFG
grant Reduced-Order Methods for Nonlinear Model Predictive Control.
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2 The optimal control problem

Assume thatΩ = (0, 1)2 ⊂ R2 with boundary Γ = ∂Ω. We setQ = (0,∞)×Ω
and Σ = (0,∞) × Γ . Moreover, let H = L2(Ω) and V = H1(Ω) with dual
V ′. Recall that the space

W (0,∞) =
{
ϕ ∈ L2(0, T ;V )

∣∣ϕt ∈ L2(0,∞;V ′)
}

is a Hilbert space endowed with the common inner product; cf. [3]. Let

Uad =
{
u ∈ R

∣∣ua ≤ u ≤ ub} ⊂ R,

where ua, ub ∈ Rm are lower and upper bounds, respectively. For U =
L2(0,∞;R) the set of admissible control is given by

Uad =
{
u = u ∈ U

∣∣u(t) ∈ Uad a.e. in [0,∞)
}
.

where ‘a.e’ stands for ‘almost everywhere’. For a given y0 ∈ H, b ∈ L2(Γ ),
u ∈ Uad and ν > 0 the state equation is

yt = ν∆y in Q a.e., ν ∂y∂n = ub on Σ a.e., y(0) = y0 in Ω a.e. (1)

Introducing the continuous bilinear form

a(ϕ,ψ) = ν

∫
Ω

∇ϕ · ∇ψ dx, for ϕ,ψ ∈ V

we can express (1) in the form

d
dt 〈y(t), ϕ〉H + a(y(t), ϕ) = u(t) 〈b, ϕ〉L2(Γ ) ∀ϕ ∈ V, f.a.a. t > 0,

〈y(0), ϕ〉H = 〈y0, ϕ〉H ∀ϕ ∈ H,
(2)

where ‘f.a.a.’ stands for ‘for almost all’. It is well-known that (2) admits a
unique solution y ∈ Y; (see, e.g., [3]).

We introduce the Hilbert space X = Y×U endowed with common product
topology. The set of admissible points is given as

Xad = {x = (y, u) ∈ X
∣∣ y solves (2) for u ∈ Uad}.

For a given discount factor λ > 0, positive weight σ and desired state yd ∈ H
the quadratic cost is defined as

J(y, u) =
1

2

∫ ∞
0

(
‖y(t)− yd‖2H + σ

∣∣u(t)|2
)

e−λtdt, for (y, u) ∈ X.

Now, we consider the infinite horizon, linear-quadratic optimal control prob-
lem

min J(x) subject to x ∈ Xad. (P)
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3 Reduced-order modeling (ROM)

We discretize (P) by using proper orthogonal decomposition (POD) (see [7,8]
for details). For large T > 0 and K ∈ N let {yk(t)}Kk=1 ⊂ L2(0, T ;V ) be some
given trajectories which will be specified later. Then, we consider the linear
space of snapshots

V = span {yk(t)
∣∣ t ∈ [0, T ] and 1 ≤ k ≤ K} ⊂ V with d = dimV ≤ ∞.

For any finite ` ≤ d we are interested in determining a POD basis of rank `
which minimizes the mean square error between the trajectories {yk(t)}Kk=1

and their corresponding `-th partial Fourier sums on average in [0, T ]:
min

K∑
k=1

∫ T

0

∥∥∥yk(t)−
∑̀
i=1

〈yk(t), ψi〉V ψi
∥∥∥2

V
dt

s.t. {ψi}`i=1 ⊂ V and 〈ψi, ψj〉V = δij for 1 ≤ i, j ≤ `.

(3)

Assuming that we have computed a POD basis {ψi}`i=1, we define V ` =

span {ψ1, . . . , ψ`} ⊂ V . Then, the POD state y`(t) =
∑`
i=1 yi(t)ψi ∈ V ` is

determined by the POD Galerkin scheme for (2):

d
dt 〈y

`(t), ψj〉H + a(y`(t), ψ) = u(t) 〈b, ψ〉L2(Γ ) ∀ψ ∈ V `, f.a.a. t > 0,

〈y`(0), ψ〉V = 〈y0, ψ〉H ∀ψ ∈ V `.
(4)

We define the vectors

y(t) =
(
y`i(t)

)
∈ R`, y0 =

(
〈y0, ψi〉H

)
∈ R`, b =

(
〈b, ψi〉L2(Γ )

)
∈ R`

and the matrices M, A ∈ R`×` by

Mij = 〈ψj , ψi〉, Aij = −a(ψj , ψi).

Setting F(y, u) = M−1
(
Ay + ubu

)
∈ R`, (y, u) ∈ R` ×R, we can write (4) as

ẏ(t) = F
(
y(t), u(t)

)
f.a.a. t > 0, y(0) = y0 (5)

which is a `-dimensional system of differential equations. Let us also define

yd = 〈yd, ψi〉H ∈ R`, L(y, u) = (y>My + y>yd + σu2)/2

for (y, u) ∈ R` × R. Then, the POD Galerkin approximation for (P) reads

min J`(y, u) =

∫ ∞
0

L
(
y(t), u(t)

)
e−λt dt s.t. (y, u) ∈ X`ad (P`)

where the admissible set is

X`ad = {(y, u) ∈ X`
∣∣ y solves (5) for u ∈ Uad}

and X` = H1(0,∞;R`)× U.

Remark 1. In our numerical realization of the POD Galerkin scheme we first
have to introduce a high-fidelity discretization for (2). We use a discretization
based on piecewise finite elements (FE) with n� ` degrees of freedom. ♦
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4 Coupling MPC and HJB

For the solution of (P`) we use the algorithm proposed in [1] and we provide
a new a posteriori error-estimate.

HJB equation. Let us briefly recall the HJB equation (see e.g. [2,5]). For
y◦ ∈ R` let us introduce the value function

v`(y◦) = inf
u∈Uad

{
min J`(y, u)

∣∣ ẏ(t) = F
(
y(t), u(t)

)
f.a.a. t > 0, y(0) = y◦

}
.

The value function can be characterized in terms of the Bellman equation

λv`(y◦) + max
u∈Uad

{
− F

(
y◦, u

)>∇v`(y◦)− L(y◦, u)
}

= 0, for all y◦ ∈ R`.

In the numerical realization we have to replace R` by a sufficiently large, but
bounded subset D ⊂ R`. The main advantage of this approach is that once
the value function v` has been computed, the optimal feedback control is

ū(y◦) = arg min
u∈Uad

{
− F

(
y◦, u

)>∇v`(y◦)− L(y◦, u)
}

for all y◦ ∈ D

which can be used as a closed-loop control. The optimal state solves (5) for
the feedback control u = ū(y(·)). For the numerical solution of the HJB
equation we consider a fully-discrete semi-Lagrangian scheme which is based
on the discretization of the system dynamics with time step h and a mesh
parameter k, leading to a fully discrete approximation v`hk(y◦):

v`hk(y◦i) = min
u∈Uad

{(1− λh)I[v`hk](y◦i + hF(y◦i, u)) + L(y◦i, u)}

for every node y◦i ∈ D, i = 1, . . . , Np, of the discretized state space. Note
that in general, the arrival point y◦i + hF(y◦i, u) is not a node of the space
grid. Therefore, this value is computed by means of a linear interpolation
operator, denoted by I[v`hk]. The bottleneck of this approach is related to
the so-called curse of the dimensionality, namely, the computational cost
increases dramatically as soon as the dimension ` does.

Model predictive control (MPC). MPC is an optimization based method
for the computation of closed-loop controls for (non-)linear dynamical sys-
tems (see [6,9] for details). It consists in solving iteratively finite time horizon
open-loop problems. Let N ∈ N, t◦ ≥ 0 and tN◦ = t◦+N∆t for a chosen time
step ∆t > 0. We introduce the finite time horizon cost as

J`,N (y[t◦,u], u) =

∫ tN◦

t◦

L(y[t◦,u](t), u(t))e−λtdt,

where the state y = y[t◦,u] solves ẏ(t) = F(y(t), u(t)) f.a.a. t ∈ (t◦, t
N
◦ ] and

y(t◦) = y◦.
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The method works as follows: For t◦ = 0 and y◦ = y0 we minimize J`,N

over [t◦, t
N
◦ ) and store the optimal control ū1 on the subinterval (t◦, t◦ +∆t]

together with the associated optimal state y[t0,ū1]. Then, we initialize the
next finite time horizon control problem by setting y◦ = y[t◦,ū1](t◦ + ∆t),
t◦ = t◦ +∆t and tN◦ = t◦ +N∆t. This process is iterated.

Coupling MPC and HJB. The idea is to combine the advantages from
both methods: HJB is global and gives the feedback law for every initial
condition once the value function has been computed. On the other hand,
MPC is faster, but gives an approximate feedback control just for a single
initial condition. Let us assume that we are interested in the approximation
of feedback controls for an optimal control problem given the initial condition
y0. We compute via MPC a reasonable suboptimal trajectory ȳN that we can
use as reference trajectory for building a small domain, where we are going to
compute the approximate value function. In our approach, we choose a rather
short prediction horizon N∆t to obtain ȳN quickly. Then, the trajectory ȳN

is used to build the smaller domain Dρ ⊂ D, in which we solve the HJB
equation (instead of solving the HJB on the whole domain D).
We construct Dρ as a tube around ȳN defining

Dρ = {y◦ ∈ R` |dist(y◦, ȳ
N ) ≤ ρ} (6)

where dist(· , ·) will be specified later. A larger ρ will allow for a better ap-
proximation of the value function, but at the same time enlarging ρ we will
loose the localization around our trajectory, increase the number of nodes
and the CPU time.

Error Estimator. Let x̄ = (ȳ, ū) be the solution to (P) and T > 0 suf-
ficiently large. Due to the Bellman principle, ū is also optimal on [0, T ].
Suppose that we have computed an approximate MPC control ūN ∈ L2(0, T )
satisfying ūN (t) ∈ Uad in [0, T ] a.e. Then, we usually have ū 6= ūN . Let ȳN be
the associated approximate MPC state solving (5) on [0, T ] for u = ūN . To
evaluate the a-posteriori error estimator we have to compute the Lagrange
multiplier pN solving the dual equation

−MṗN (t) = A>pN (t)− e−λt
(
MȳN (t) + yd

)
for t ∈ [0, T ), pN (T ) = 0.

Then, it follows from [10] that

‖ū− ūN‖L2(0,T ) ≤
eλT

σ ‖ζ‖L2(0,T ),

where the perturbation ζ ∈ U(T ) is defined as:

ζ(t) =


[
(σe−λtūN (t)− b>pN (t))

]
− in Aa =

{
s ∈ [0, T ]

∣∣ ūN (s) = ua
}
,[

(σe−λtūN (t)− b>pN (t))
]
+

in Ab =
{
s ∈ [0, T ]

∣∣ ūN (s) = ub
}
,

−
(
σe−λtūN (t)− b>pN (t)

)
in I = [0, T ] \ (Aa ∪Ab).

Here, [w]− and [w]+ denote respectively the negative and positive part of w.
Since ȳ solves (5) on [0, T ] for u = ū, we have

1
2

d
dt‖(ȳ − ȳN )(t)‖2M + ‖(ȳ − ȳN )(t)‖A ≤ ‖b‖2‖(ȳ − ȳN )(t)‖2|(ū− ūN )(t)|
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f.a.a. t ∈ [0, T ], where, e.g., ‖ · ‖M is the weighted norm in R` induced respec-
tively by the positive definite matrix M and ‖ · ‖2 stands for the Euclidean
norm. By applying Young’s inequality we derive the existence of a constant
c` > 0, which depends on b, M and A, so that

1
2

d
dt‖(ȳ − ȳN )(t)‖2M ≤ c` |(ū− ūN )(t)|2 f.a.a. t ∈ [0, T ]

which implies

max
t∈[0,T ]

‖(ȳ − ȳN )(t)‖M ≤
eλT
√
c`

σ ‖ζ‖L2(0,T ). (7)

Now, to define Dρ we set dist(y◦, ȳ
N ) = ‖y◦−ȳN‖M and ρ = eλT

√
c` ‖ζ‖L2(0,T )/σ.

5 Numerical Test

We consider equation (2) with ν = 1, b = χΓ and y0 = 0.5χ[0.5,1]. For the
cost functional we take σ = 0.01, λ = 1 and yd = 1. To realize the reduced-
approach numerically, we have to choose a high-fidelity spatial approxima-
tion. We apply a piecewise linear finite element (FE) model with n = 2673
degrees of freedom. The snapshots for the POD method are chosen as the
solution to the state and dual equation for the reference control u = 1 and
for T = 1. The POD basis rank chosen for the simulations is ` = 2.

Test 1. The chosen discretization parameters are ∆t = h = 0.02, ∆τ = 0.01
(the time step to integrate the trajectories). We discretize the set Uad =
[−4, 4] in 21 equidistant discrete values for the approximation of the value
function and 81 for the computation of the state trajectories. In Figure 1

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

-1

-0.5

0

0.5

1

Fig. 1. Test 1: domain Dρ with optimal trajectories (left panel). The latter, optimal
trajectory via MPC (dotted line) and via HJB (dashed line), are detailed in the
right panel.

we can see on the left the first approximation of the MPC solver (dotted
line) and the optimal solution corresponding to the feedback control (dashed
line) in Dρ, while on the right we show the same trajectories in a smaller
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portion of Dρ, centered around them. In Table 1, we present the CPU times
and distance of the controlled trajectory from the reference trajectory in
L2−norm at the final time. We can observe that the trajectory obtained via

MPC (N = 3) HJB in Dρ HJB in D

CPU time in [s] 11 25 50
‖ȳ(T )− yd‖M 0.07 0.03 0.03

Table 1. Test 1: CPU times and distance of the controlled trajectory from the
reference trajectory at the final time T = 1.

MPC is a rough approximation; we improve the result with a localized version
of the DP and the trajectory obtained is closer to the target. Moreover if we
compare the trajectories computed using the information given by the value
function in Dρ and D we have the same values for ‖ȳ(T )−yd‖M. Concerning
the CPU time, in the fourth column we show the global time needed to get
the approximation of the value function in the whole domain and the time
to obtain the optimal trajectory, whereas the third column shows the global
time needed to compute all the steps of our algorithm. We can observe a
speed up of factor 2.
Test 2. In this test we consider the smoother initial state y◦(x) = sin(πx),
the parameters chosen are the same of Test 1. Now we have a speed up of
factor 3, as shown in Table 2. On the other hand we are able to steer the
solution to the target yd in Dρ and D. One of the advantages of computing

Fig. 2. Test 1: optimal trajectory via MPC (dotted line) and via HJB (dashed line)
in Dρ, optimal trajectories for different initial points (right)

the value function in Dρ is that we are able reconstruct the feedback in all
the points of the domain with a small computational effort. So we can change
the initial state (with the constraint that the state projected in the reduced
space has to be a point in Dρ) and compute the optimal trajectory in a fast
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MPC (N = 3) HJB in Dρ HJB in D

CPU time in [s] 10s 18s 58 s
‖ȳ(T )− yd‖L2(D) 0.04 0.01 0.01

Table 2. Test 2: CPU times and distance of the controlled trajectory from the
reference trajectory at the final time T = 1.

way (' 4s). To this purpose we consider some perturbations of the initial
state y◦, we project the system in the reduced space and we compute the
optimal trajectories, in Figure 2 (right) we show the results for four different
initial conditions. On the other hand if we want to apply MPC we have to
start the whole procedure again, and the CPU time required is two times
bigger. In the left plot of Figure 2 we show the trajectories in the reduced
domain.
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