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Thermodynamics of a Colloidal Particle in a Time-Dependent Nonharmonic Potential
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We study the motion of an overdamped colloidal particle in a time-dependent nonharmonic potential.
We demonstrate the first lawlike balance between applied work, exchanged heat, and internal energy on
the level of a single trajectory. The observed distribution of applied work is distinctly non-Gaussian in
good agreement with numerical calculations. Both the Jarzynski relation and a detailed fluctuation
theorem are verified with good accuracy.
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Since more than a century, the first law relating the work
applied to a system with both the exchanged heat and an
increase in internal energy is one of the cornerstones of
macroscopic physics. Its consistent formulation for a
mesoscopic system like a driven colloidal particle, how-
ever, was suggested only about a decade ago [1]. Since on
these scales thermal fluctuations are relevant, probability
distributions for work, heat, and internal energy replace the
sharp values of their macroscopic counterparts. Various
theoretical relations like the fluctuation theorem [2,3],
the Jarzynski relation [4], and the Hatano-Sasa relation
[5] involving these distributions in different settings extend
the second law to the mesoscopic realm at least as long as
the notion of a constant temperature of the ambient heat
bath remains meaningful [for a review, see [6]]. Such
theorems have been tested experimentally using both bio-
molecules manipulated mechanically [7,8] as well as col-
loidal particles in time dependent laser traps [9–11].
Common to all colloidal experiments, so far, is that these
laser traps generate a harmonic potential albeit with a time-
dependent center or ‘‘spring constant.’’ Consequently,
often the interesting distributions are Gaussian even though
for certain quantities non-Gaussian distributions can occur
[10,12].

In this Letter, we study the thermodynamics of single
colloidal trajectories in a time-dependent nonharmonic
potential which, generically, gives rise to non-Gaussian
distributions. Only for very short or very long trajectories,
one expects Gaussian distributions even in this nonhar-
monic case [13]. In particular, we identify applied work,
exchanged heat, and change in internal energy along a
single trajectory and thus test the consistency of these
notions on this level, or, put differently, illustrate the
validity of the first law. We measure the distribution of
work in the non-Gaussian regime and compare it to theo-
retical prediction. Such a comparison does not involve a
single fit parameter since all quantities are measured inde-
pendently, which is another advantage of colloidal sys-
tems. Finally, we test the Jarzynski relation which
expresses the free energy difference between two equilib-
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rium states in terms of the nonequilibrium work spent in
the transition between the two states. Such an illustration
of the Jarzynski relation in the non-Gaussian regime comes
timely given ongoing theoretical criticism of its validity
[14,15].

In our study, particle trajectories were determined using
total internal reflection microscopy (TIRM), where a single
colloidal particle is illuminated under evanescent field
conditions. This field is created by total internal reflection
of a laser beam at a glass-water interface. The scattered
intensity of a bead near the interface is proportional to
exp���z�, with ��1 the decay length of the evanescent
field and z the particle-wall distance [16]. Measuring the
scattered intensity of a fluctuating Brownian particle as a
function of time thus yields its vertical position with a
spatial resolution of about 5 nm.

We used an aqueous suspension of highly charged poly-
styrene beads with radius R � 2 �m, which were illumi-
nated with light of wavelength � � 658:5 nm. The particle
concentration was sufficiently low to guarantee that there
was only a single particle within the field of view. The
penetration depth was adjusted to ��1 ’ 200 nm and the
scattered intensity was monitored with a photomultiplier at
a data acquisition rate of � � 2 kHz. An additional fo-
cused laser beam (� � 1064 nm, power P ’ 2 mW) was
directed vertically from the top, which confined the particle
motion to an one-dimensional trajectory in z direction.

To drive the colloidal particle between two equilibrium
states, it was subjected to the light pressure of another
optical tweezers (� � 532 nm, beam waist about 17 �m,
P � 60 mW), which was incident from below into the
sample cell (lower tweezers, see inset of Fig. 1). The
intensity of this laser beam was varied with an electro-
optical modulator connected to a computer-controlled
waveform generator. We modulated the laser intensity
according to a time-dependent symmetric protocol I��� �
I�ts � �� in the time interval 0 � � � ts, where ts is the
pulse duration (see Fig. 2) [17]. To ensure that the system is
out of equilibrium, ts must be smaller than the particle
relaxation time tr ’ 480 ms. On the other hand, when
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FIG. 2 (color online). Measured tweezers intensity and particle
trajectory. During the first pulse the particle is pressed towards
the surface. During the second pulse thermal fluctuations support
the particle and it is able to move away from the wall. Hence the
applied work is positive for the first pulse and negative for the
second.

FIG. 1 (color online). Particle-wall interaction potentials for
three different intensities of the lower optical tweezers [decreas-
ing power from (1) to (3)]. The solid line shows the fit according
to Eq. (1) with ��1 	 25 nm. Inset: light pressure vs tweezers
intensity. The light pressure is a linear function of the laser
intensity.
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repeating the experiment the pause tp between two con-
secutive pulses must be longer than tr to guarantee equili-
bration of the system. To meet both conditions in our
experiments we have chosen ts � 120 ms and tp �
700 ms.

The total time-dependent potential acting on the particle
at distance z is given by [16]

V�z; �� � A0 exp���z� � B0z� C0I���z: (1)

The first term describes the double-layer interaction be-
tween the negatively charged colloidal particle and the
likely charged wall with A0 depending on the correspond-
ing surface charges and ��1 the Debye screening length,
which depends on the salt concentration in the suspension.
The second term accounts for the weight of the particle
and the additionally exerted light pressure from the up-
per tweezers, which both depend linearly on the particle
distance z [18,19]. The last term considers the time-
dependent optical forces induced by the lower tweezers.
Experimentally, particle-wall potentials are easily ob-
tained by measuring the distance probability distribution
p�z� of a colloid in front of a wall. In thermal equilibrium,
i.e., for I��� � const, the potentials are given by V�z� �
�kBT lnp�z� up to a constant. Here, T is the temperature of
the environment and kB is the Boltzmann constant. The
symbols in Fig. 1 show V�z� obtained for three different
intensities of the lower tweezers. The solid line is a fit to
Eq. (1) (exemplarily shown only for one data set) and
clearly demonstrates that the particle is moving in a non-
harmonic potential. It can be seen in Fig. 1 that the light
pressure of the lower tweezers reduces the slope of the
linear part of the potential, as already demonstrated by
other authors [16,18]. The inset of Fig. 1 shows the ex-
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pected linear dependence on the intensity of the light
pressure.

Figure 2 shows exemplarily the trajectory of a particle
driven by the time-dependent potential (1). While during
the first pulse the particle is strongly forced towards the
surface, thermal fluctuations support it to move against the
applied force away from the wall during the second pulse.
This clearly demonstrates that the particle is strongly
coupled to the surrounding heat bath.

In contrast to recent experimental studies [7–11], we
want to test experimentally to which precision energy
conservation of the particle on its trajectory is maintained.
This does not only provide a rigorous check of the experi-
mental technique, data analysis, and the energy resolution
but also demonstrates the interplay of applied work and
exchanged heat when the system is nonadiabatically
driven. Therefore, in addition to the work W exerted on
the particle we need to determine its heat exchange Q with
the environment.

The Brownian motion of the colloidal bead is described
by the Langevin equation

� _z � �
@V
@z
� �; (2)

with � the friction coefficient and � the stochastic force.
According to [1] the incremental change of heat dQ and
work dW is then given by

dW �
@V
@�

d�; dQ � �
@V
@z
dz: (3)

Integration along a single trajectory z��� then leads to the
work functional

W�z���� �
Z ts

0
d�
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@�
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_I��i�z��i�; (4)
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where we have used Eq. (1). The right-hand side of Eq. (4)
accounts for the discrete sampling of the particle trajectory
during our experiments with rate � � 1

	t at times �i � i	t.
Because the velocity autocorrelation of a Brownian parti-
cle decays on a time scale of some 10 ns, the velocity

�_z��i� � �
Z �i�1

�i
d� _z��� (5)

determined from a trajectory measured with � � 2 kHz is
not identical to the instant particle velocity _z. However,
since @V=@z varies on a time scale much larger than 	t, the
heat along a single trajectory z��� can be written as

Q�z���� � �
Z ts

0
d�
@V
@z
�z���; �� _z���

� �
1

�

X
i

@V
@z
�z��i�; �i��_z��i�: (6)

With the above sign convention the heat Q is negative
(positive) when extracted (delivered) from (to) the thermal
environment. Since we have full knowledge of the time
dependence of I, V, and z, both quantities W and Q can be
determined from our experiments.

Introducing �V � V�z�ts�; ts�� V�z�0�; 0� we finally
obtain a stochastic version

W�z���� �Q�z���� � �V � 0 (7)

of the first law of thermodynamics. Figure 3(a) shows work
W, heat Q, and change of inner energy �V for the trajec-
tory of a single particle where the protocol I��� was re-
peated about 100 times. For W and Q maximal energies of
about 15kBT are observed, whereas �V is on the order of a
few kBT. Obviously, Q and W are not independent quan-
tities. Usually trajectories resulting in a large work W are
also accompanied by a large value of Q. But only when
taking all three energies in Eq. (7) into consideration, the
distribution of the deviation shown in Fig. 3(b) is centered
around zero, having a half width of about 0:7kBT.
Assuming that the three terms have the same contribution
FIG. 3 (color online). (a) The quantities �Q, W, and �V for
about 100 periods of the protocol I���. (b) Distribution histogram
of 	 � W �Q��V, the experimentally observed ‘‘deviation’’
from the first law of thermodynamics.
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to the total error, the energy error of these energies is about
one quarter of kBT.

The measured work distribution in Fig. 4 is distinctly
non-Gaussian and exhibits an asymmetry towards larger
work values. Whereas the first law is valid along a single
trajectory as demonstrated, fluctuation theorems consider-
ing probability distributions can be regarded as an exten-
sion of the second law. This becomes evident when looking
at the Jarzynski relation [4]

he�W=kBTi � e��F=kBT; (8)

where �F is the change of free energy between two
equilibrium states and the brackets h
 
 
i represent the
average over the work distribution spent in a transition
between these states. Equation (8) immediately leads to
hWi � �F, a formulation of the second law for driven
systems on the mesoscopic scale. A test of the Jarzynski
relation using the data shown in Fig. 4 yields
hexp��W=kBT�i ’ 1:03 in agreement with �F � 0 for
the symmetric protocol I���. In addition to the integral
theorem (8) we also test the somewhat stronger detailed
fluctuation theorem

P��W�=P��W� � e�W=kBT; (9)

which holds for time-symmetric protocols I��� � I�ts � ��
(see inset of Fig. 4) [20,21]. Here the probability P��W�
that a negative work value occurs is compared to the
probability P��W� of a positive value of same magnitude.

In order to compare the measured histogram in Fig. 4 to
the theoretical prediction we calculate the probability dis-
tribution solving the Fokker-Planck equation [13,22]
FIG. 4 (color online). Non-Gaussian work distribution. The
data were taken from about 16 000 trajectories, where the
average work done on the particle was about 2:4kBT. The solid
line shows the Pearson type III distribution [26] corresponding to
the theoretically obtained moments. Inset: logarithm of the ratio
of the probability to find trajectories with work�W to those with
work �W. The solid line shows the expected curve (9). The
deviation is due to the poor statistics of large negative work
values W & �4kBT.
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TABLE I. Comparison between theoretically predicted and
measured moments of the work probability based on the data
shown in Fig. 4.

m1 �kBT� m2 ��kBT�
2� m3 ��kBT�

3�

Experiment 2.4 11.7 67.8
Theory 2.4 11.6 63.7
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Here, 
�z; w; t� is the joint probability of the particle to be
at time t a distance z away from the wall and to have
accumulated an amount of work w up to this time. The
Fokker-Planck operator [23]

L �
@
@z

�
D?
kBT

@V
@z
�

3

2

@D?
@z
�D?

@
@z

�
(11)

governs the dynamics of the particle, where

D?�z� 	 D0�1� R=�z� R��
�1 (12)

is the diffusion coefficient for perpendicular motion near a
surface [24]. The free diffusion constant for a particle with
radius R � 2 �m is D0 ’ 0:1 �m2=s at room temperature
T � 293 K. Since we start in equilibrium with no work
spent on the particle yet, the initial distribution needed to
solve Eq. (10) is


�z; w; 0� � 	�w�
exp��V�z; 0�=kBT�R
dz exp��V�z; 0�=kBT�

: (13)

Equation (10) is a Fokker-Planck equation in two space
dimensions z and w including a singular initial condition,
which numerically is not easy to handle. We therefore
multiply Eq. (10) with wn and integrate over w. After
one integration by parts we obtain the inhomogeneous
evolution equation

@Mn

@t
� LMn � n

@V
@�

Mn�1 (14)

for the conditional nth moment of the work

Mn�z; t� �
Z �1
�1

dwwn
�z; w; t�: (15)

The actual nth moment mn then follows simply by inte-
grating over z and thus adding the contributions of all
possible final positions of the particle. The function
M0�z; t� is the probability distribution of the position z of
the particle and hence m0 � 1. Table I compares the nu-
merically and experimentally obtained first three moments
of the data shown in Fig. 4. We stress that this good
agreement does not involve a single fit parameter.

In summary, we have confirmed experimentally both a
stochastic formulation of the first law and various recent
07060
theoretical ramifications of the second law in a time-
dependent nonharmonic potential, where the underlying
distributions are typically non-Gaussian. In the next step,
nonharmonic systems with broken detailed balance should
be investigated to test theorems [5,25] which, so far, have
been under experimental scrutiny in the harmonic case
only [11].
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