
User-Friendly, Versatile, and Efficient

Multi-Link DNS Service Discovery

Daniel Kaiser, Marcel Waldvogel, Holger Strittmatter

University of Konstanz

Konstanz, Germany

ăfirstą.ălastą@uni-konstanz.de

Oliver Haase

University of Applied Sciences Konstanz

Konstanz, Germany

oliver.haase@htwg-konstanz.de

Abstract—When mobile devices at the network edge want to
communicate with each other, they too often depend on the
availability of faraway resources. For direct communication,
feasible user-friendly service discovery is essential. DNS Service
Discovery over Multicast DNS (DNS-SD/mDNS) is widely used
for configurationless service discovery in local networks; due in
no small part to the fact that it is based on the well established
DNS, and efficient in small networks.

In our research, we enhance DNS-SD/mDNS providing ver-
satility, user control, efficiency, and privacy, while maintaining
the deployment simplicity and backward compatibility. These
enhancements are necessary to make it a solid, flexible foundation
for device communication in the edge of the Internet.

In this paper, we focus on providing multi-link capabilities and
scalable scopes for DNS-SD while being mindful of both user-
friendliness and efficiency. We propose DNS-SD over Stateless
DNS (DNS-SD/sDNS), a solution that allows configurationless
service discovery in arbitrary self-named scopes – largely in-
dependent of the physical network layout – by leveraging our
Stateless DNS technique and the Raft consensus algorithm.

Index Terms—DNS, Multicast, Multi-Link, Service Discovery.

I. INTRODUCTION

Zero configuration service discovery is omnipresent as it is

essential for convenient interconnection and communication

of today’s variety of devices in the edge of the Internet. A

widely used zero configuration service discovery solution is

DNS Service Discovery [1] over Multicast DNS [2] (DNS-

SD/mDNS). It allows users to detect printers and streaming

devices, to share data, and to communicate with others in

a very convenient way. A particular benefit is that services

can be requested and offered using DNS resource records,

leveraging the solid and well established DNS; thus all means

of offering and requesting DNS records can also be used for

service discovery. DNS based service discovery cannot only

be used in local networks leveraging mDNS but also – losing

the zero configuration property – in the Internet using standard

DNS servers (DNS-SD/DNS).

While the current means of DNS-SD distribution are ap-

propriate for single-link local networks and the Internet, there

is no efficient, user-friendly means of DNS-SD distribution

for multi-link networks, used e.g. in universities or other

institutions. Since multicast packets are not propagated across

routers, devices in different subnets cannot exchange service

information using mDNS. Even if the routers propagated

the messages, multicast based solutions would not scale. For

bandwidth conservation, many institutions deactivate multicast

in their WiFi network denying mobile users the benefits of

local service discovery. On the other hand, DNS-SD/DNS

would pose an unacceptable configuration overhead and would

not scale if every user was allowed to offer services. Where

suited, an institution could use DNS-SD/DNS to offer a fixed

number of services to its members.

To enable communication among the myriad of smart end

user devices and thereby becoming an enabling technique

for edge-centric computing [3], DNS-SD needs user-friendly,

decentralized means to distribute resource records in multi-

link networks. If not, users are forced to trust central service

directory providers as soon as multicast is not enabled or

services have to be discovered across links.

The zero configuration community has reached consensus

that adding multi-link support to DNS-SD/mDNS is necessary

[4]. Apart from the community consensus, a petition [5]

expressing popular demand for providing a DNS-SD/mDNS

multi-link extension had been published.

This aligns well with our research (Figure 1), in which we

provide enhancements for DNS-SD/mDNS that are necessary

to make it a solid, flexible foundation for device communica-

tion in the edge of the Internet, by

‚ increasing the versatility by adding multi-link support to

DNS-SD/mDNS,

‚ providing user control through scopes instead of network

boundaries within an organization,

‚ increasing efficiency, especially in large networks, and

‚ adding easy-to-use privacy,

while maintaining deployment simplicity and backward com-

patibility.

In this paper we propose DNS-SD over Stateless DNS

(DNS-SD/sDNS) facilitating versatile configurationless re-

spectively low configuration modes of DNS-SD operation for

multi-link networks. Our Stateless DNS technique [6] allows

registrationless provision of DNS resource records via existing

DNS cache servers. This technique allows to discover the

service directory which is distributed among few hosts within

the institution’s network, by providing NS resource records

that delegate a special service discovery domain to these hosts.

146

Konstanzer Online-Publikations-System (KOPS)
URL: http://nbn-resolving.de/urn:nbn:de:bsz:352-0-375333

Erschienen in: Proceedings 2016 IEEE 36th International Conference on Distributed Computing Systems Workshops : ICDCSW
2016. - Piscataway, NJ : IEEE, 2016. - S. 146-155. - ISBN 978-1-5090-3686-8

https://dx.doi.org/10.1109/ICDCSW.2016.34

Ill
c.
0
u
Vl

Service Discovery Framework

DNS..SD/DNS

DNS..SD/sDNS Stateless DNS Stateless DNS

DNS..SD/mDNS
Auto-Pairing Privacy
Meta Service Extension

Privacy

Fig. l. Service discovery framework supporting scalable privacy and scopes.
The solution for the DNS-SLVsDNS area is covered in this paper. The yellow
areas are solved by existing RFCs [1], [2]; we provide solutions for the green
areas. For the dade green areas we have prototypical implementations.

For synchronizing the service directory among these hosts, we
use the Raft consensus algorithm [7].

Using the existing DNS infrastructure, the only additional
entity needed is a lightweight reflector - implementable e.g. in
a few lines of Perl - that can run within or (publicly) outside
the current institution's network.

The contribution of this paper is a new way of DNS-SD
resource record distribution that

• is user-friendly as it offers a zero configuration mode of
operation in multi-link networks,

• is versatile as it crosses broadcast domains and adapts to
arbitrary scopes,

• is efficient as it does not depend on multicast and poses
negligible overhead on clients, and

• seamlessly integrates into the DNS query process using
well established techniques making it backwards compat­
ible.

In section Vll we show the bigger picture integrating DNS­
SD/sDNS with our service discovery framework.

II. RELATED WORK

Much research has been done in the field of service discov­
ery, especially for ad hoc networks [8]. In this paper we focus
on related work in the field of DNS based service discovery,
because these approaches work with existing infrastructure and
are either backwards compatible to standard solutions or can
at least be easily deployed

A. Scalable Multicast DNS-SD in Low-Power Networks

Since multicast causes significant network load in wireless
networks [9], techniques that make DNS-SD/mDNS more
scalable - especially in 6LoWPAN networks [10] - have been
developed.

147

Klauck et al. present and analyze their DNS-SD/mDNS
implementation for low-power devices in [11] and propose
methods to compress DNS messages to make DNS-SD/mDNS
more suitable for 6LoWPANs in [12].

EADP [13] is a protocol for scalable service distribution in
6LoWPANs; it has been leveraged as means of distribution for
DNS-SD in [14] (DNS-SDIEADP).

Since these solutions are designed for 6LoWPAN networks
and also depend on multicast, they are not applicable to larger
multi-link home or institutional networks. But they can be
incorporated in a DNS-SD framework offering appropriate
means of resource record distribution depending on the net­
work and on the capabilities of the client

B. Centralized DNS Related Service Discovery Solutions

There are also DNS related service discovery methods,
SkyDNS 1 and Consu12, using multiple central directory
servers. For our use-case, they are not suitable because like
DNS-SD/DNS they demand setup and maintenance. Never­
theless, they might be the solution of choice for an institution
willing to maintain the service directory, because they offer
a zero configuration experience for the user, if the directory
information is propagated using DHCP.

SkyDNS uses etcd3 as back end, which is a distributed key­
value store also leveraging Raft [7] to maintain consistency.
Services are announced by sending the service information
with JSON over HTTP to the underlying etcd Thereafter, these
service instances are retrievable using standard DNS queries.

Consul uses another synchronization algorithm and is also
suitable for distributed computing centers.

III. REQUIREMENTS

RFC 7558 [4] defines requirements that should be met
by a scalable service discovery solution. It summarizes the
requirements, desiring "[...] a mechanism [...] that populates
the DNS name space with the appropriate DNS-SD records
with less manual administration than is typically needed for
a conventional unicast DNS server." Our solution (DNS­
SD/sDNS) offers precisely that.

In this paper we focus on the requirements for multi-link
home and institutional networks. For low-power and lossy
networks, we propose to use the solutions mentioned .in sub­
section ll-A. For single-link home networks the widely used
DNS-SD/mDNS is well suited, because it poses no significant
impact on the network load [15]. DNS-SD/DNS or solutions
presented in subsection ll-B are suitable for global scope
service discovery. Our service discovery framework described
in section vn covers further requirements stated in RFC 7558
and also protects the user's privacy.

IV. DNS-SD OVER STATELESS DNS

To resolve services in multi-link home or institutional
networks (where multicast does not work across links) we

I https://github.com/skynetservices/skydns
2https://www.consulio
3https://github.com/coreos/etcd

Alice

Q: 8622A5A5.t100.ml.ssdisc.com NS

A:

ml.ssdisc.com 100 IN NS ns1.ml.ssdisc.com

ns1.ml.ssdisc.com 100 IN A 134.34.165.165

Reflector

Bob

DNS Cache

Q: ml.ssdisc.com NS

Q: 8622A5A5.t100.ml.ssdisc.com NS

A:

ml.ssdisc.com 100 IN NS ns1.ml.ssdisc.com

ns1.ml.ssdisc.com 100 IN A 134.34.165.165

Q: 8622A5A5.t100.ml.ssdisc.com NS

A:

8622A5A5.t100.ml.ssdisc.com 100 IN NS �

ns1.8622A5A5.t100.ml.ssdisc.com

ns1.8622A5A5.t100.ml.ssdisc.com 100 IN A �

134.34.165.165

Fig. 2. Using Stateless DNS to provide an NS record for the ml-scope of our example service discovery domain with a TTL of 100 seconds. Alice registers
her device as SNS and Bob retrieves the registered information. Thereafter, Bob can interact with the SNS running on Alice’s device registering and retrieving
service instances.

introduce Scope Name Servers (SNS) that act as service

directories. Any host in the network can become an SNS

following the rules explained later in this section. A group

of SNSes is responsible for one service discovery scope

that in turn is defined by a service discovery domain, e.g.

ml.ssdisc.com4 or floor3.buildingB.ssdisc.com. We integrate

the service querying process seamlessly into DNS such that

the query process is exactly the same as when using DNS-

SD/DNS. This allows client software to be independent of the

resource record transmission mechanism.

A very important design goal is to allow a zero configuration

mode of operation for both clients and SNSes, including the

process of becoming SNS. Further, the administrator of the

respective multi-link network has to neither deploy anything

nor be aware of our service discovery method.

The questions how to discover SNSes, how to become SNS,

how to synchronize a set of SNSes, how to query, and how

to register service instances are addressed in the following

subsections.

A. Service Discovery Domains

We propose three options5 for clients to learn about service

discovery domains: preset discovery domain, DNS-SD/DNS,

4ml Ñ multi-link; ssdisc Ñ scoped service discovery. The service discovery
domain ssdisc.com is operational for experiments.

5The DNS interface for querying an SNS is independent of the method
used to learn about the discovery domain.

and DHCP. The default service discovery domain can be

preset, e.g. to ssdisc.com, so that clients work without any

additional configuration. Further service discovery domains

can be provided via DNS-SD/DNS, e.g. on dom.ssdisc.com.

Institutions could also provide their own reflector, e.g. using

one of our implementations, and distribute the corresponding

service discovery domain via DHCP. This would only pose

a minor configuration overhead for an institution compared

to maintaining a centralized service directory, because only a

lightweight reflector and a one-time DHCP entry are required.

Even if it is possible to provide an institution specific reflector,

in most cases it is not necessary. Reasons for providing a

reflector might be high privacy6 and availability requirements.

The combination of a service discovery domain and a DNS

cache defines a service discovery scope; thus even when using

a public reflector (and service discovery domain), service

directory information is only available to hosts accessing

the same DNS cache server. A user can create named sub-

scopes independent of the underlying network structure by

establishing itself as SNS for an arbitrary subdomain of a

service discovery domain.

B. Providing the NS Records

Since an SNS might leave the network at any time, very

dynamic means of providing SNS information is required.

6When using a public reflector, the only transmitted data beyond the
institutions network are scope names and the (local) IP addresses of the SNSes.

148

Further, SNSes should only be discovered within the institution

they currently sojourn in. To this end, we store name server

delegations to SNSes in the current network’s DNS cache

using our Stateless DNS technique7. This allows to have loca-

tion dependent SNSes for a single service discovery domain;

depending on the network a host is currently discovering in,

different resource records can be retrieved using the same

global service discovery domain.

To make Stateless DNS work, the only additional infras-

tructure we need is a stateless reflector implemented e.g. in a

few lines of Perl. It acts as authoritative name server for the

parent zone of the service discovery domain.

Figure 2 shows the process of leveraging Stateless DNS to

enter an NS resource record in the current DNS cache. Alice

sends a programming query – which is a valid DNS query –

by asking for an NS resource record with the label
8622A5A5.t100.ml.ssdisc.com IN NS

that will be handled by the local DNS server. Because the

stateless reflector is authoritative for this query, it will receive

the query from the local DNS server. The reflector then gen-

erates the following response using only information encoded

in this query8.
Question: 8622A5A5.t100.ml.ssdisc.com IN NS

Authority: ml.ssdisc.com 100 IN NS ns1.ml.ssdisc.com

Additional: ns1.ml.ssdisc.com 100 IN A 134.34.165.165

Since it is a delegation to an in-Bailiwick [16] name server the

cache will accept the answer if this in-Bailiwick name server

– Alice’s notebook with the IP address 134.34.165.165 –

is able to answer the programming query and NS queries for

the service discovery domain.
Question: <LABELS.>ml.ssdisc.com IN NS

Authority: ml.ssdisc.com ê

100 IN NS ns1.<LABELS.>ml.ssdisc.com

Additional: ns1.<LABELS.>ml.ssdisc.com ê

100 IN A 134.34.165.165

The programming query answer’s sole purpose is to make

the cache name server store the NS entries. The answer for

NS queries of the service discovery domain is needed to be

able to retrieve the SNSes’ IP addresses. The general form of

the programming query is9

(<hexenc_IPaddr>.){1,4}t<TTL>.<scope>.<sd_domain>

allowing to specify up to four name servers in a single

programming query. All specified name servers have to be

able to answer the programming query and the NS queries

for the service discovery domain. Each of them has to return

all NS entries10 to make the cache name server ask the next

available name server in the case the first one asked is offline.

C. Establishing SNSes

When entering a network, a host supporting our multi-link

DNS-SD technique sends a standard DNS query asking for

NS records belonging to the service discovery domain to get

7In our techreport [6] we also propose methods to store other record types
and evaluate the proposed methods. The method used in this paper (to store
NS records) works reliably as it behaves like a normal sub-zone delegation.

8The IP address of the new SNS is transmitted in hexadecimal notation.
9We use () for grouping and {} for repetition count.
10Since the SNSes know each other, this does not pose a problem.

a list of SNSes (see Figure 3). The query corresponding to our

example service discovery domain is
ml.ssdisc.com IN NS

In the bootstrap phase there will be no SNS and the host

will become the first SNS using the Stateless DNS method

explained above (Figure 2). Because these NS entries cannot

be overwritten, the TTL should be chosen adaptively. The first

SNS should choose a low TTL when establishing its first NS

entry, e.g. 10 seconds. To mitigate race conditions arising when

other SNSes exist whose TTL just expired in the moment the

new host asks to become name server, the new host must ask

a second time after a random back off.

When the host gets a list of SNSes, it asks one of them

whether it should also join the set of SNSes and if requested

joins the set. This concludes discovering the current SNSes

and the host can now ask for service information or register

service instances as described in subsection IV-E. Figure 3

illustrates the process of SNS discovery.

It might happen that none of the returned SNSes answers.

This is the case when all of them have gone offline without

the TTL expiring and with no new SNSes joining. Since

Stateless DNS cannot overwrite existing NS records, the

discovery domain is blocked in this situation. For this reason,

we need a defined fallback discovery domain and means to

restore the standard discovery domain as soon as possible. The

fallback discovery domain can be derived from the standard

discovery domain by appending ´0 to the highest scope

defining label; thus the fallback domains for ml.ssdisc.com and

floor3.buildingB.ssdisc.com are ml-0.ssdisc.com and floor3.

buildingB-0.ssdisc.com, respectively. With increasingly low

probability, the fallback domain might be blocked in the same

way. The fallback of the fallback is defined to be the domain

with the corresponding integer incremented by 1. When a

discovery domain is blocked in this way, a host has to check

whether the next fallback domain has an SNS that answers and

if not, become SNS for this fallback domain (see Figure 3).

To recover from this situation as soon as possible, a host that

has to become name server for a fallback domain sets the

TTL of its NS resource records to the remaining TTL of the

NS records belonging to the standard domain. This makes the

standard discovery domain’s TTL and all fallback domains’

TTLs expire at the same time and the host can register for the

standard domain with all fallback domains being unblocked.

Because of the adaptive TTL, the chain of backup domains

is expected to be small. Further this problem will only occur

in the bootstrap phase because the system will stabilize as

described later.

D. Synchronization of SNS data

To make the system robust, we need several SNSes for

each scope. These SNSes have to synchronize so that clients

receive consistent information. Further, we want a querying

client to be able to abstract away from the existence of several

SNSes that need to synchronize, considering each of them as

an equal representative of a black box providing the desired

information.

149

Fig. 3. Process of querying for exi~1ing SNSes and becoming SNS, for the
ml-scope of our example service discovery domain.

For synchronizing the service directory among the SNSes,
we use Raft [7], a simple and efficient consensus protocol,
that uses heartbeat messages and randomized timers to elect a
leader whose state is replicated on the other members of the
consensus group caJJed followers.

The leader accepts the clients' write-requests, appends them
to its log, and during each heartbeat phase, sends a message
containing log changes to each follower. Each follower replies
with a confirmation to the leader. The leader applies a log
entry to its state as soon as it reaches consensus, meaning it
is confinned by the majority of the followers. The followers
apply these log entries to their log in the next heartbeat phase.
If the leader fai Is to send a message within the heartbeat
before a foll ower's timer runs out, the follower becomes a
candidate and sends a heartbeat message to each member,
asking to vote it as the new leader. Members that did not get
any other heartbeat message within the current interval will
send an answer message voting for the candidate to become
the new leader. If the candidate gets consensus it becomes the
new leader.

After each heartbeat there is consensus11 about the leader
and the current state. Raft is very efficient with respect to
network load as it only uses 2k messages per heartbeat, where
k is the size of the consensus group. All information needed
to agree on log changes, leader changes, and membership
changes is communicated in these heartbeat messages.

Mapping Raft terms to DNS-SDisDNS, the consensus group
corresponds to the group of SNSes, the state to the service di­
rectory, clients to non-SNS hosts, and write-queries to service
instance publish requests.

11 'There is a negligible possibility for split votes. lf a split vote occurs,
consensus is very likely to be reached during the next heartbeat interval

150

1) Dynamic Membership Changes: To make Raft appli­
cable for SNS synchronization we adapted Raft allowing
dynamic membership changes. Since one of our main goals is
a Zeroconf mode of operation, we need means to add a new
member to the consensus group without manual configuratioa
A host that wants to become a new consensus group member
has to send a join query to the current leader which transmits
this information to all other members. For this Log entry,
consensus does not suffice; all members have to confirm it
To this end, it is necessary for the leader to be able to remove
not responding followers form the consensus group. When
a removed follower gets active again, it bas to join as a
new member. This also allows us to truncate the log. A new
member gets the state from an arbitrary follower and the Last
log entries necessary for the current state from the leader. We
will thoroughly describe and evaluate dynamic membership
changes in the future.

2) Deciding 0 11 a new SNS: The number of SNSes for a
scope should be chosen dependent on the number of hosts,
the number of offered service instances, and the chum rate.
The decision whether a querying client should become SNS
should be based on a ranking taking the hosts expected time to
stay online into consideration. As of yet, we are still assessing
which kind of ranking to use.

3) Updating the NS Records: When the TTL of the current
NS entry in the DNS cache runs out, the current leader has
to reestablish itself and its followers as name servers. Since
the number of name servers that can be provided via the DNS
cache is limited by the reflector implementation - 4 in our
current implementation - the leader chooses the followers with
the highest rankings; we call an SNS that is established as
name server listed SNS. The TTL grows with the average
ranking scores of the current SNSes, but should not exceed
a sensible limit. Since the current leader will not change as
long as it is onl.ine, the system will stabilize. With increasing
online time, hosts are more Likely to be leader.

In very large scopes there might be a significant load on the
listed SNSes as they are queried by the hosts (see section YO.
To cope with this problem, listed SNSes can relay queries to
a randomly chosen non-listed SNS.

E Querying rh.e SNSes

While queries to publish a new service instance can only be
handled by the SNS leader, DNS queries can be handled by
all SNSes. SNSes offer the standard DNS-SD/DNS interface
to clients which allows asking for

• a listing of all existing service types,
• a listing of service instances of a service type and
• the resolution of a certain service instance.

The process of querying is independent of the structure the
SNSes are organized in. A cl.ient can query any of the SNSes
retrieved from the DNS cache. Clients that need an up-to-date
list of instances of a certain service can request DNS push (17]
from the SNSes; this is important e.g. to provide an up-to-date
Ust of online contacts in a chat appli.cation.

1 use warnings ;
2 use s t r i c t ;
3 use Net : :DNS: : Nameserver ;
4

5 sub rep ly hand le r {
6 my ($qname , $qclass , $qtype , $host , $query , $conn) = @ ;
7 my ($rcode , @ans, @auth , @add, %headermask) ;
8 # parse query
9 $qname = l c ($qname) ; # to lower case

10 my (@ips , $ t t l , $a l ias , $qbase) ;
11 my $rx i = qr / (\w+(? :\ .\w+){0 ,3}) / ;
12 my $rx t = qr / t (\d{1 ,6}) / ;
13 my $rx a = qr / ((? : \w| ´)+) / ;
14 my $rx q = qr / ((? : \w+\ .) *\w+) / ;
15 i f ($qname =˜ / ˆ ${ r x i }\ .${ r x t }\ .${rx a }\ .${rx q}$ /) {
16 @ips = s p l i t (’ \ . ’ , $1) ;
17 ($ t t l , $a l ias , $qbase) = ($2 , $3 , $4) ;
18 $rcode = ”NOERROR” ;
19 }
20 else{
21 $rcode = ”NXDOMAIN” ;
22 r e t u r n ($rcode , \@ans, \@auth , \@add, \%headermask) ;
23 }
24 # assemble answer
25 $headermask{aa} = 1; # set a u t h o r i t a t i v e answer f l a g
26 my $al ias domain = $ a l i a s . ’ . ’ . $qbase ;
27 my $ns num = 1;
28 foreach my $ip (@ips){
29 my $ns domain = ’ ns ’ . $ns num++ . ’ . ’ . $al ias domain ;
30 #conver t from hex to dot ted no ta t i on
31 $ip = j o i n ’ . ’ , unpack ”C* ” , pack ”H* ” , $ ip ;
32 my $rr ns = new Net : :DNS: :RR(name => $alias domain ,
33 t t l => $ t t l ,
34 c lass => ” IN ” ,
35 type => ”NS” ,
36 nsdname => $ns domain) ;
37 push @auth , $rr ns ;
38 my $rr a = new Net : :DNS: :RR(name => $rr ns >́nsdname ,
39 t t l => $ t t l ,
40 c lass => ” IN ” ,
41 type => ”A” ,
42 address => $ip) ;
43 push @add, $rr a ;
44 }
45 r e t u r n ($rcode , \@ans, \@auth , \@add, \%headermask) ;
46 }
47 # create nameserver ob jec t
48 my $ns = new Net : :DNS: : Nameserver (
49 LocalAddr => ” 51.254.124.217 ” ,
50 Loca lPor t => 53 ,
51 ReplyHandler => \&rep ly hand ler ,
52) | | die ” couldn ’ t c reate nameserver ob jec t\n ” ;
53 # s t a r t nameserver main loop
54 $ns >́main loop ;

Fig. 4. Stateless reflector implementation in Perl. This implementation runs
as authoritative name server for our example domain ssdisc.com.

Resource records provided by SNSes have a TTL of 10

minutes, which seems to be a good compromise between

avoiding stale information and efficiency. When hosts leave

the network gracefully, they can send a sign-off message to

an SNS allowing the SNS deleting all corresponding resource

records and pushing this information to affected hosts. To

make a single message containing a hostname sufficient, both

hosts and SNSes store a mapping from host to resource records

offered by this host.

F. Hierarchical SNSes

SNSes can delegate sub zones; e.g. to create sub scopes or to

delegate the resolution of certain service types. This could e.g.

be used for load balancing or hiding the existence of certain

sub scopes.

G. Security and Privacy Considerations

Like DNS-SD/mDNS [1], [2], our technique currently relies

on the fairness of the participating hosts. By itself, neither

technique offers privacy, and has the unmitigated risk of

malicious modification of resource records. Privacy – and

integrity for private resource records – can be added to either

technique using our orthogonal privacy extension [18], [19]

that provides means for secure privacy preserving service

discovery among hosts sharing a previously exchanged secret.

Using DNS-SD/mDNS without the privacy extension, even

passive hosts receive all resource records related to service

instances as soon as they are requested or offered by anyone

in the network [20]. Each user can overwrite existing service

instances by violating the protocol. Since every host gets these

malicious resource records, such a violation can be detected;

mitigating techniques currently do not exist.

Using public DNS-SD/sDNS, hosts have to actively ask an

SNS for resource records. An SNS could use filters to only

provide selected hosts with the requested records. Only hosts

that are currently in the SNS-role are allowed to overwrite

existing service instances. Furthermore, SNSes tend to be more

trustworthy than regular nodes because they are expected to

be stable nodes that are part of a network for a long time.

However, malicious SNSes can silently overwrite or drop

service instances. We work on mitigating this problem.

V. IMPLEMENTATION

We have several reliable implementations of the reflector

(Perl, C, Java), which are ready for deployment. Figure 4

shows the small but operational Perl implementation of the re-

flector that is authoritative for our example domain ssdisc.com;

it supports the name server delegation method used for DNS-

SD/sDNS. Our extensible C implementation12 supports all

Stateless DNS methods described in [6] and can be easily aug-

mented to support new methods by providing a corresponding

template file.

Our prototypical implementation of an SNS-capable service

discovery daemon13 currently uses a single SNS per scope; we

are in the process of implementing SNS synchronization. Our

proof-of-concept implementation14 – realized as an extension

to the Avahi Zeroconf daemon – already allows to use DNS-

SD in our campus WLAN where multicast is disabled.

VI. ANALYSIS

In order to get widely accepted, user-friendliness with

respect to configuration effort is not sufficient; the solution

also has to be efficient. For service discovery this means its

working should be imperceptible to users with respect to both

network load and computational overhead. Despite the fact that

as of yet we did not thoroughly evaluate the network impact

12https://gitlab.com/kaiserd/sdns
13https://gitlab.com/kaiserd/sns
14https://gitlab.com/holst/mlsd avahi.git

151

of our solution15 the following analysis suffices to point out

the user-friendliness, suitability and scalability of our solution.

We analyze the influence of our solution on all relevant

entities, namely Hosts, SNSes, the SNS-Leader, the Reflector,

and the DNS cache. An SNS is also a host, meaning it has

to perform host actions and specific SNS actions; the SNS

leader also performs SNS and host actions in addition to SNS

leader specific actions. We group the actions into the following

categories

‚ Raft related,

‚ messages to and from the reflector,

‚ messages to and from the DNS cache, and

‚ host to SNS communication which consists of (1) ser-

vice type listing, (2) service instance listing, (3) service

instance resolution, (4) service registration and (5) dereg-

istration, and (6) queries about joining the SNS cluster.

The unit of our analysis is a single scope because the actions

causing the highest impact on the network load – service in-

stance listing and resolution – do not propagate beyond scope

boundaries. For actions reaching beyond scope boundaries, e.g.

communication with the reflector, we examine an appropriate

wider area.

Before going into more detail, we want to shortly address

the main efficiency concern, namely the number of service

instances a host wants to be listed. With DNS-SD the host

requests a service listing for service types it is interested in

and then selects the service instances it wants to be resolved. In

huge scopes this number can be quite large and the SNS has

to send the full list of PTR resource records corresponding

to these service instances to the host. This only has to be

done once per host joining a network; but a large number

of hosts joining a network might cause a significant load

on the corresponding SNSes. However, since the user has to

choose among the service instances manually, we argue that

this number should not be large. In the future, we will consider

attribute based service instance selection on the SNSes to cope

with this problem. Nevertheless, our solution in its current state

scales very well as we show in this section. We meet the scale

requirement of RFC 7558 [4] – ”It must scale to a range of

hundreds to thousands of DNS-SD/mDNS-enabled devices in

a given environment.” – as shown in the following analysis.

Standard multicast DNS service discovery does not scale to

scopes that large because the mere number of multicasts

would tie the network. We do not take background traffic

into consideration and consider only nodes supporting DNS-

SD/sDNS. For ease of calculation we assume that the devices

register all their services right when they join the network.

Our analysis uses the following variables and their respec-

tive limits.

‚ n, the number of hosts in the scope. To demonstrate

the scalability, we use n “ 10000, even if such big

scopes are unfeasible as long as users have to choose

manually among all service instances of a requested type.

15We are going to evaluate our service discovery framework thoroughly
leveraging the Omnet++ discrete event simulator (https://omnetpp.org).

When using a query mechanism that preselects service

instances, our solution can handle scopes beyond 10000

nodes as the limiting factor is the number of requested

service instances.

‚ no, number of nodes joining (and leaving) the network

per second. We use 10 minutes as minimum for the

average time a host is online [9], leading to maximum

arrival rate of n{600 “ 16.6 « 17 users per second.

‚ so, the average number of service instances offered by a

host. We regard so “ 5 as a sensible default.

‚ sl, the average number of service instances a host wants

to be listed. In huge scopes, we consider 5% of the service

instances offered a reasonable upper bound, leading to

maxpslq “ nso ˚ 0.05 “ 2500.

‚ sr, the average number of service instances requested by

a host. In huge scopes, we consider 5% of the listed

service instances a reasonable upper bound, leading to

maxpsrq “ sl ˚ 0.05 “ 125.

‚ k, the total number of SNSes in the network. We consider

k “ 20 a sensible maximum as it is very unlikely for 20

SNSes to fail at the same time.

‚ kl, the number of listed SNSes, i.e. the SNSes stored

in the DNS cache. With our current implementation

maxpklq “ 4.

‚ h, Raft heartbeats per seconds. We consider h “ 3 suffi-

cient to provide hosts with current information. Increasing

the heartbeat frequency to e.g. h “ 10 would increase

the number of transmitted packets, but not the network

load because the service related information that has to

be synchronized per time interval does not change.

‚ sizeP, average size of a PTR resource record. We use

100 Bytes as upper bound.

‚ sizeST, average size of SRV and TXT record. We use

a single variable because these records are always trans-

mitted together. The upper bound used in the following

is 500 Bytes.16

‚ sizePST, sizeP ` sizeST, average size of all records

associated with a service instance, summing up to an

upper bound of 600 Bytes.

‚ TTL, the TTL of entries in the DNS cache. As described

above, the minimum is 10 s.

Figure 5(a) shows the estimated network load the different

entities have to cope with.

A. Host

A non-SNS host is agnostic to the Raft related actions.

Further, it does not communicate with the reflector. The

communication with the DNS cache to get the current SNS

list is negligible as it is a tiny fraction of the many DNS

requests when surfing the web. Queries concerning joining the

Raft cluster, and registering and deregistering services can be

neglected because these actions only demand a few messages

per session. Listing service types is also imperceptible because

16These average resource record sizes are very high; in all load critical
situations, many records are transmitted in one packet, which reduces the
header overhead significantly.

152

#hosts in the network

ne
tw

or
k

lo
ad

 in
 k

B
/s

0 2000 4000 6000 8000 10000

0
20

0
60

0
10

00

SNS Leader
SNS
Host

(a) Estimated network load the different DNS-SD/sDNS entities have to cope
with.

#hosts in the network

ne
tw

or
k

lo
ad

 in
 k

B
/s

0 2000 4000 6000 8000 10000

0
50

10
0

20
0

service listing
service resolving
Raft
service deregistration
host sign−off

(b) Estimated network load of an SNS distributed over the different SNS
actions.

Fig. 5. Estimated network load caused by DNS-SD/sDNS, dependent on the number of hosts in the examined scope. We chose 2% of the hosts as SNSes,
with a minimum of 4 and a maximum of 20. In scopes with less than 4 hosts, every host is an SNS.

even in a very large scope the number of offered types is

expected to be manageable and the set of available service

types is expected to change slowly.

After discovering SNSes, a host asks for a listing of service

instances followed by a resolution request for chosen services.

Even with maxpslq “ 2500 and maxpsrq “ 125, the amount

of data received would only be sl ˚ sizeP “ 250kB

and sr ˚ sizePST “ 75kB, respectively, without taking

compression into consideration. The load on the host while

sojourning in a network is very low even when using the afore

mentioned maximum values: noso ˚ 0.05 ˚ sizeP « 425B/s

and noso˚0.0025˚sizePST « 125B/s for service listing and

resolving, respectively; the arrival rate of new users per second

is about 17 with each of them offering 5 service instances on

average, of which in turn 5% have to be listed and 0.25% have

to be resolved. Even in our large example scope the network

load a host is exposed to only sums up to a manageable

burst of 325kB when joining the network and 550B/s while

sojourning in the network.

Further, the computational overhead on the host devices

used for packet processing is imperceptible to the user, both

in terms of responsiveness of the system and battery life. The

host has far less load compared to mDNS-SD as managing

services is the SNSes’ task; this makes our solution feasible

for low power devices.

B. SNS

Raft handling only needs two messages per heartbeat (2h

messages per second), and only messages propagating new

resource records might be of considerable size. Thus, the load

caused on an SNS by Raft corresponds approximately to the

number of resource records the hosts publish in the corre-

sponding scope noso ˚ sizePST “ 16.6 ˚ 5 ˚ 600 “ 50kB/s.

Deregistering services is also handled in the heartbeat mes-

sages; it only needs a hostname per host signing off, adding

just no ˚ sizeP “ 16.6 ˚ 100 « 1.7kB/s.

We do not consider service type listing. Typically there are

only a few different service types (roughly nso{sl “ 20 in

our example scope) and since most hosts already know which

types they are interested in, they do not need to list them.

The load caused by service instance listing and service

instance resolution corresponds to the load on a host when

joining the network multiplied by the arrival rate, divided by

the number of SNSes nosl{k˚sizeP “ 16.6˚2500{20˚100 «
210kB per second and nosr{k ˚ sizePST “ 16.6 ˚ 125{20 ˚
600 “ 62.5kB/s for service instance listing and service

resolution, respectively.

Pushing service deregistration information to clients needs

nosr{k ˚ sizeP “ 16.6 ˚ 125{20 ˚ 100 « 10.5kB/s, in the

unfavorable case that each service a host resolved was offered

by a distinct host.

The memory capacity needed by an SNS to store the service

directory amounts to nso ˚ sizePST “ 30MB. When an SNS

goes offline and a new SNS is chosen, the service directory

has to be synchronized to the new SNS. Since in small scopes

the caused load is insignificant, in large scopes the SNSes are

expected to stay online for a long time, and only one of the

SNSes has to transmit the directory to the new node, we do not

consider these occasional bursts in the average network load

per second an SNS has to cope with. If every ten minutes one

SNS went offline – which is a high frequency of SNS change

for such a large scope – an SNS has to cope with such a burst

approximately once every 3 hours.

In summary, an SNS has to cope with a network load of

340kB/s in our large example scope when estimating the

neglected actions to amount to approximately 10kB/s. Figure

5(b) shows the estimated network load caused by the different

SNS actions.

C. SNS Leader

The communication to the reflector is negligible; even using

the minimal TTL it only happens once every 10 seconds.

The Raft message load the SNS leader is exposed to

corresponds to k times the load of the follower SNSes, caused

by messages to all k ´ 1 followers, plus the hosts’ publish

queries which loadwise roughly correspond to an additional

follower nosok ˚ sizePST “ 16.6 ˚ 5 ˚ 20 ˚ 600 “ 1MB/s.

This is a significant load, but our example scope is very large

153

(as well as the average resource records size) and the SNS

leader in such a large scope is expected to be very strong and

connected to Gigabit Ethernet. Since a scope of this size takes

time to grow, there will be many leader elections, eventually

resulting in a strong leader and also strong followers. To

reduce the load on the SNS leader in very large scopes, it

can delegate all DNS queries to other SNSes.

D. Reflector

The load on the reflector is really low. For each scope that

is part of its authority zone it has to communicate once with

a single SNS leader before the corresponding TTL is about to

end. Even if a single service discovery domain had so many

scopes that it would be hard for a single reflector to handle

them, several reflectors using anycast could be used without

synchronizing, because the reflector does not hold any state.

E. DNS-Cache

The load increase for the DNS-Cache when using DNS-

SD/sDNS is imperceptible as usual web surfing causes a

myriad of DNS-Cache requests. There is only one new cache

entry per SNS TTL for a scope and hosts only ask for the

SNS list when entering the network or when the SNSes stop

answering.

F. Unicast vs. Multicast

Compared to DNS-SD/mDNS we reduce network load

in most scenarios as we forgo multicast. The influence of

many multicasts on the network load is especially severe in

huge 802.11 wireless networks [21], because multicasts are

transmitted using a very low transmission rate so that older

devices not supporting higher transmission rates can receive

the multicasts as well [22]. Hong et al. [9] show that 13% of

their campus network bandwidth is used by DNS-SD/mDNS.

We analyzed the expected network bandwidth savings when

using our service discovery privacy extension [18] which also

forgoes multicast.

There are other disadvantages of multicast in 802.11 wire-

less networks described in [22], like handling host sleep mode,

which further increases battery drain, because devices have to

stay awake if multicast traffic is waiting to be sent by the

access point.

VII. INTEGRATION AND ARCHITECTURE

This section gives a short introduction to our service dis-

covery framework. It returns control to the user supporting

scalable scopes and scalable privacy. Scalable scopes, as

described above, allow users choosing the scope in which the

services are offered and requested; our privacy extension [18]

allows to selectively offer services to chosen friends, chosen

groups, or everyone in a scope.

A. Service Discovery Framework

Figure 1 classifies service discovery techniques with respect

to the reachability scope they are used in and the privacy

they offer. To the end of providing such a service discov-

ery framework, we combined existing techniques and found

solutions for the yet missing parts. Solutions for the smallest

scope of single-link local networks and the biggest scope of

the whole Internet are given by DNS-SD/mDNS and DNS-

SD/DNS. To provide a solution for the gap in between, we

developed DNS-SD/sDNS which has been proposed in this

paper. These techniques combined do not cover the whole

desired area as they do not provide privacy. DNS-SD/mDNS

publishes private information about services in an unsolicited

way [20]. To give users control over the offered and requested

services, we do not only provide privacy in a binary way -

either it is on or off - but give the possibility to scale the

privacy, i.e. choose a privacy level. This is important because

the less privacy is demanded the easier is the necessary process

of device pairing. To allow all users in the current network to

discover a certain service, we provide an auto-pairing meta

service that exchanges pairing information with all devices

in the current network. This allows the paired devices not

only exchanging service information in the current network

but also in all other networks. Pairing at this level of privacy

works without any configuration. Our privacy extension [18]

allows to offer services to chosen friends. While the basic

privacy extension, which we implemented as an extension

to the Avahi17 Zeroconf daemon, is limited to single-link

networks like DNS-SD/mDNS, augmenting it using Stateless

DNS allows scalable scopes within the privacy extension. We

also implemented an enhancement of our privacy extension

leveraging Stateless DNS to avoid the need of multicast [19]18.

B. User Control

The user interface to control the scope and privacy is

provided by our enhanced service browser. Sensible defaults

are preset to still allow configurationless service discovery. The

enhanced service browser also manages user groups for the

privacy extension. It does not matter if group members were

paired using the auto-pairing meta service or a user pairing

[18]. Users can manage groups, but configurationless group

management is also offered: e.g. all friends paired using the

auto-pairing meta service in a certain network allowing e.g.

to automatically get a group of all devices used in the home

network.

C. Architecture

To ease the integration of alternative ways of service

discovery, and to integrate into existing service discovery

daemons, we propose a service discovery daemon (SDD)

that is responsible to demultiplex client requests to different

resolvers. Leveraging the proposed service discovery daemon,

client software can use a unified interface for service discovery.

Figure 6 illustrates our proposed architecture.

The SDD can be controlled by users via our enhanced

service browser that allows to set the scope of discovery and

privacy for single service instances, certain service types or

all services. The SDD is also connected to a pairing module

17http://www.avahi.org
18 To also support service listing for unpaired devices and arbitrary scopes

the techniques proposed in this paper have to be used.

154

DN5-SD/mDNS

Enhanced
Service Browser

Pairing Module

Fig. 6. Service discovery daemon (SOD) architecture. The SOD offe.rs
a unified interface to client software and demultiplexes client requests to
different means of resource record distribution. Backwards compatibility is
granted by the legacy interfaces.

that handles pairing for privacy preserving service discovery
[18]. Based on sensible defaults or decisions made by the
user overriding the defaults, the SDD decides - given a client
request - which means of resource record distribution has to
be used

Backwards compatibility is provided, because software not
supporting the interface to the SDD still works as the interface
to existing service discovery daemons has not been changed.
Since we provide extensions to Avahi, existing clients can also
use the privacy preserving service discovery and offer services
in a muJti-link scope.

VIII. CONCLUSION AND FUTURE WORK

Multicast DNS Service Discovery over Stateless DNS
(DNS-SD/sDNS) provides a versatiJe, convenient and easily
deployable means of resource record distribution for scalable
DNS Service Discovery. It offers a zero configuration mode
of operation and seamJessly integrates in the DNS discovery
process, allowing core-independent, user-controllable device
interaction in the edge of the Internet. Our proof-of-concept
implementation - realized as an extension to the Avahi Zero­
conf daemon - already allows to use DNS-SD in our campus
WLAN where multicast is disabled. We showed how to
integrate DNS-SD/sDNS in our service discovery framework
making it part of a user-friendly, efficient service discovery
solution supporting both scalable scopes - with the help of the
technique proposed in this paper - and scalable privacy.

We plan to address further security and privacy problems
arising when offering service information across links and
in scalable scopes. We also plan to thoroughly describe and
evaluate dynamic membership changes in Raft Further, we
will evaluate our scope extension with respect to network
efficiency using the Omoet++ discrete event simulator19• We
plan to integrate DNS-SD hybrid proxy [23] capabilities in the
SNSes as soon as the Internet draft becomes an RFC, which is
likely to happen soon. This will allow hosts that are not aware
of SNSes to use DNS-SD in muJti-link networks providing a
very elegant way of being backwards compatible.

19https://omnetpp.org/

155

REFERENCES

[I) S. Cheshire and M. Krochmal, ' 'DNS-Based Service Discovery :• RFC
6763 (Proposed Standard), Internet Engineering Task Force, Feb. 2013.

[2) --, "Multicast DNS;' RFC 6762 (Proposed Standard), Internet Engi­
neering Task Force, Feb. 2013.

[3) P. Garcia Lopez, A. Montresor, D. Epema, A. Datta. T. Higashino,
A. Iamnitchi, M. Barcellos, P. Felber, and E. Riviere, " Edge-centric
computing: Vision and challenges;• ACM SIGCOMM Computer Com·
rmmication Review, vol. 45, no. 5, pp. 37-42, 2015.

[4) K. Lynn, S. Cheshire , M. Blanchet, and D. Migault, "Requirements
for Scalable DNS-Based Service Discovery (DNS.SD) I Multicast DNS
(mONS) Extensions:' RFC 7558 (Informational), Internet Engineering
Task Force, Jul. 2015.

[5) (20 13) Petition from educause higher ed wireless networking
admin group. [Online). Available: https://www.change.org/p/
from-educause-higher-ed- wireless-networking-admin-group

[6] D. Kaiser, M. Fratz, M. Waldvogel, and V. Dietrich, "Stateless DNs: ·
University of Konstanz, Tech. Rep. KN-2014-DiSy-004, Dec 2014.

[7) D. Ongaro and J. Ousterhout, "In search of an understandable consensus
algorithm: • in Proc. USENIX Annual Technical Conference, 2014, pp.
305-320.

[8) C. N. Ververidis and G. C. Polyzos, "Service discovery for mobile ad hoc
networks: a survey of issues and techniques," Communicmions Surveys
& Tutorials, TEEE, vol. 10, no. 3, pp. 30-45, 2008.

[9) S. Hong, S. Srinivasan, and H. Schulzrinne, "Measurements of multicast
service discovery in a campus wireless network:' in Global Telecommu·
nicmions Conference, 2009. GLOBECOM 2009. IEEE. IEEE, 2009,
pp. J-6.

[10) G. Montenegro, N. Kushalnagar, J. Hui, and D. Culler, "Transmission
of IPv6 Packets over IEEE 802. 15.4 Networks:' RFC 4944 (Proposed
Standard), Internet Engineering Task Force, Sep. 2007, updated by RFCs
6282, 6775.

[II) R. Klauck and M. Kirsche, "Bonjour con tiki: A case study of a dns­
based discovery service for the internet of things:• in Ad-hoc, Mobile,
and Wireless Nenvorks. Springer, 2012, pp. 31Cr329.

[12) --, "Enhanced DNS message compression-optimizing mDNS/DNS­
SD for the use in 6LoWPANs:• in Pervasive Computing and Commu­
nicmions Workshops (PERCOM Workshops), 2013 IEEE lmernmional
Conference on. IEEE, 2013, pp. 596-601.

[13) B. Djamaa, M. Richardson, N. Aouf, and B. Walters, "Towards efficient
distributed service discovery in low-power and lossy networks;' Wireless
Nerworks, vol. 20, no. 8, pp. 2437-2453, 2014.

[14) B. Djamaa and M. Richardson, "Towards scalable DNS-based service
discovery for the internet of things:' in Ubiquitous Compwing and Ambi·
em Intelligence. Personalisation and User Adapred Services. Springer,
2014, pp. 432-435.

[15) A. Rain, "An analysis of multicast traffic in wireless networks:• Master's
thesis, University of Konstanz, 2015.

[16) S. Son and V. Sbmatikov, ''The hitchhiker's guide to DNS cache poison­
ing:' in Security and Privacy in Communication Networks. Springer,
2010, pp. 466-483.

[17] T. Pusateri and S. Cheshire, "DNS push notifications:' Working Draft,
IETF Secretariat, Internet-Draft draft-ietf-dnssd-push-03, November
2015.

[18) D. Kaiser and M. Waldvogel, ' 'Efficient privacy preserving multicast
DNS service discovery:• in Workshop on Privacy-Preserving Cyberspace
Safery and Security (IEEE CSS 2014), 2014.

[19) D. Kaiser, A. Rain, M. Waldvogel, and H. Strittmatter, "A multicast­
avoiding privacy extension for the avahi zeroconf daemon:' Netsys 2015,
2015.

[20) D. Kaiser and M Waldvogel, "Adding privacy to multicast DNS service
discovery:• in Proceedings of IEEE TrustCom 2014 (TEEE EFINS 2014
Workshop), 2014.

[21) Wireless LAN Medium Access Comrol (MAC) and Physical Layer
(PHY) Specijicmions, IEEE Computer Society LAN MAN Standards
Committee IEEEStd 802. 11 TM- 2012, 03 2012.

[22) E. Vyncke, P. Thubert, E. Levy-Abegnoli , and A. Yourtchenko, "Why
network-layer multicast is not always efficient at datalink layer:• Work­
ing Draft, IETF Secretariat, Internet-Draft draft-vyncke-6man-mcast­
not-efficient.OI , February 2014.

[23) S. Cheshire, " Hybrid unicastlmulticast DNS-based service discovery:'
Working Draft, IETF Secretariat, Internet-Draft draft-ietf-dnssd-hybrid-
02, November 2015.

