Toward Fluorinated Spacers for MAPI-Derived Hybrid Perovskites: Synthesis, Characterization, and Phase Transitions of (FC₂H₄ NH₃)₂ PbCl₄

Claudia Lermer,¹⁺⁺⁺⁺ Susanne T. Birkhold,¹⁺⁺⁺⁺ Igor L. Moudrakovski, † Peter Mayer,⁺⁺ Leslie M. Schoop,⁺⁺ Lukas Schmidt-Mende,¹ and Bettina Lotsch⁺⁺⁺⁺

¹Max Planck Institute for Solid State Research, Heisenbergstraße 1, 70569 Stuttgart, Germany
²Department of Chemistry, University of Munich (LMU), Butenandtstraße 5 13, 81377 München, Germany
³Nanosystems Initiative Munich (NIM) & Center for Nanoscience, Schellingstraße 4, 80799 München, Germany
⁴Department of Physics, University of Konstanz, Universitätstraße 10, 78457 Konstanz, Germany

ABSTRACT: The intrinsic moisture sensitivity of the hybrid perovskite methylammonium lead iodide (MAPI) cells for new synthetic strategies to enhance moisture resistance and, thus, long term stability. Here, we combine two strategies: (i) transitioning from 3D to 2D hybrid perovskites by inserting larger A site cations as spacers and (ii) using fluorinated linkers to enhance the hydrophobicity of the material—and identify two new hybrid perovskite type compounds, (FC₂H₄NH₃)₂ PbCl₄ and (FC₂H₄NH₃)₂ PbCl₄ DMF, carrying 2 fluoroethylammonium (FC₂H₄NH₃)⁺ as a promising organic cation for the synthesis of moisture resistant hybrid perovskites. (FC₂H₄NH₃)₂ PbCl₄ features a two dimensional structure and pronounced long term stability as confirmed by single crystal and powder X ray diffraction. The observed reversible phase transitions at 87 and 107 °C investigated with thermal analysis, temperature dependent powder X ray diffraction measurements, and ¹H, ¹³C, and ¹⁹⁷Pb solid state NMR spectroscopy can be assigned to changes in the inorganic lead chloride and organic sublattices, respectively, both having clearly observable fingerprints in the solid state NMR spectra. DFT calculations trace the origin of the observed severe distortion of the inorganic sublattice in (FC₂H₄NH₃)₂ PbCl₄ back to structural features including the formation of hydrogen bonds. The optical properties of (FC₂H₄NH₃)₂ PbCl₄ were characterized by optical absorption spectroscopy and time resolved photoluminescence measurements with a view toward the interaction between the organic and inorganic sublattices. The broad photoluminescence spectrum as well as specific absorption characteristics are assigned to exciton self trapping due to a strong coupling of the excited states to lattice distortions.

INTRODUCTION

Research in the field of hybrid perovskites has experienced a rapid revival since the discovery of the superior optical and electronic properties of methylammonium lead iodide (MAPI) as an absorber material in solar cells. Its large absorption coefficient,¹ medium band gap,² and long hole and electron diffusion lengths,³ combined with its solution processability, accelerated the development into one of the most important semiconducting materials for solid state solar cells.⁴ On the way to commercialization of hybrid perovskite solar cells, some challenges still have to be addressed, including the toxicity of lead and the poor moisture stability of MAPI type hybrid perovskites.⁵ Recently, Smith et al. reported a promising strategy to increase the moisture resistivity of MAPI derived compounds significantly. They separated the 3D lead iodide lattice by inserting bulky phenethylammonium cations (PEA) in the fashion of Mitzl’s tin based hybrid perovskites, namely, (C₆H₄NH₃)₂(CH₃NH₃)ₙSnI₃n+1 (n = number of corner sharing SnI₆ octahedra forming the perovskite block), where butylammonium cations isolated the conducting perovskite layers to form a 2D quantum well type structure.⁶ Upon exposure of the as obtained (PEA)₃(MA)₂[PbI₆] (CH₃NH₃⁺ = MA) to a moist atmosphere, no degradation was observed. This is a testament to the higher stability inherent to many 2D perovskites and at the same time allows for the fabrication of high quality thin films, without sacrificing too much of the inherent optoelectronic properties of MAPI’s 3D structure.⁷ Kanatzidis and co workers explored this concept for the (CH₃(CH₂)₂NH₃)₂ (CH₃NH₃)ₙ SnI₃n+1 series and coined the term perovskitizer and spacer for the cations forming the hybrid perovskite structure and those separating the quasi 3D perovskite blocks, respectively. Increasing the moisture resistivity is

Received: May 27, 2016
Revised: August 28, 2016
Published: August 29, 2016
not the only benefit of including bulky organic cations in the structure; it also presents a synthetic tool for precisely tailoring the optical and electronic properties by the choice of the spacer cation and the number of layers in the perovskite blocks. A useful empirical guide for the search of suitable new perovskitizers and spacers is Goldschmidt’s tolerance factor \(t \), which determines the range of existence of the 3D perovskite structure \(ABX_3 \) based on the radius ratio of the constituents A, B, and X. \(t \) is determined by the following equation:

\[
t = \frac{r_A + r_X}{\sqrt{2} (r_B + r_X)}
\]

(1)

A cubic perovskite structure can be expected, if \(t \) is in the range 0.9–1.0. Additionally, distorted perovskite structures are likely to form for values from 0.8 to 0.89. \((CH_2CH_2NH_3)_2PbBr_4\) which seems to be very similar to MAPI at first sight, contains one dimensional (1D) face sharing \(\text{PbI}_6 \) octahedral chains. The different structures become comprehensible, when taking the tolerance factor, which was calculated to be 1.05(4) by Kieslich et al., into account. Thus, cations which have at least the size of an ethylammonium cation are likely to be suitable candidates as spacers.

It is widely known that exchanging hydrogen atoms by fluorine atoms in hydrocarbons increases its hydrophobicity immensely. Thus, applying fluorinated cations as spacers in hybrid perovskites would be a natural choice to further increase the moisture resistivity while potentially increasing the polarity at the same time. Furthermore, the studies by Frost et al. strongly suggest that increasing the dipole moment of the chosen organic cation could improve charge separation and increase carrier lifetimes due to an enhanced polarization of the crystal lattice, resulting in well separated “ferroelectric highways” for both charge carriers. For these reasons, an investigation of fluorinated A site cations is the next step for developing new potentially ferroelectric 2D hybrid perovskites with further enhanced moisture resistance.

In this work a new two dimensional (2D) hybrid perovskite, \((\text{FC}_2\text{H}_4\text{NH}_3)_2\text{PbCl}_4\), was synthesized, and its structural, thermal, and optical properties were investigated. Exposure to ambient structure indicates the ability of and optical properties were investigated. The formation of a 2D structure; it also presents a synthetic tool for precisely tailoring the optical and electronic properties by the choice of the spacer cation. For MAPI based compounds. Exposure to ambient moisture resistance.

In this work a new two dimensional (2D) hybrid perovskite, \((\text{FC}_2\text{H}_4\text{NH}_3)_2\text{PbCl}_4\), was synthesized, and its structural, thermal, and optical properties were investigated. Exposure to ambient structure indicates the ability of and optical properties were investigated. The formation of a 2D structure; it also presents a synthetic tool for precisely tailoring the optical and electronic properties by the choice of the spacer cation.
PerkinElmer Pyris 1. The sample was heated from −46 to 195 °C with a heating rate of 3 K min⁻¹ and subsequently cooled down to room temperature at the same rate.

Optical samples were prepared by clamping (FC₂H₄NH₃)₂PbCl₄ powder between two quartz glass substrates. Absorption spectra were recorded with an Agilent Technologies 8453 UV−vis spectrometer in an integrating sphere. For steady state and time resolved photoluminescence measurements, a PicoQuant FluorTime 300 fluorescence spectrometer was used. Steady state photoluminescence was measured using a 300 W xenon arc lamp. The excitation source for time resolved photoluminescence measurements was a picosecond pulsed laser diode of 405 nm, and the decay was recorded on the basis of time correlated single photon counting.

FTIR spectra were recorded at ambient conditions between 650 and 4000 cm⁻¹ on a Spektrometer BX II FTIR spectrometer (PerkinElmer) equipped with a DuraSampler diamond ATR device.

Elemental analyses for C, H, and N were performed with the elemental analyzer systems Vario EL and Vario Micro (Elementar Analysensysteme GmbH).

Electronic structure calculations were performed in the framework of density functional theory (DFT) using the Wien2K code with a full potential linearized augmented plane wave and local orbitals [FP LAPW + lo] basis20,22 together with the Perdew−Burke−Ernzerhof (PBE) parametrization23 of the generalized approximation (GGA) as the exchange correlation functional. Spin−orbit coupling was included. The plane wave cutoff parameter RMTKmax was set to 7, and the irreducible Brillouin zone was sampled by 147 k points.

RESULTS AND DISCUSSION

Structural Investigation of (FC₂H₄NH₃)₂PbCl₄. The stoichiometric reaction of PbCl₂ and 2 fluoroethylammonium chloride in DMF led to phase pure (FC₂H₄NH₃)₂PbCl₄. The crystal structure of the 2D organic−inorganic perovskite (FC₂H₄NH₃)₂PbCl₄ was determined by single crystal X-ray diffraction at 173 K. Crystallographic data and details of the structure refinement are shown in Tables SI−SV. The compound crystallizes in a layered 2D perovskite type structure akin to the rock salt type structure. (FC₂H₄NH₃)₂PbCl₄ comprises layers of trans connected, corner sharing PbCl₆ octahedra, which are severely distorted (Figure 1). Possible reasons for this distortion will be discussed in detail later on. The organic cations form a double layer which is stabilized by weak intermolecular hydrogen bonds.24 Intramolecular hydrogen bonds between the fluorene substituents and the protonated amine groups lead to the observed cis configuration of the 2 fluoroethylammonium cations (Table SVI). The distance between the PbCl₂⁻⁻⁻ layers was determined to be 9.51 Å. (FC₂H₄NH₃)₂PbCl₄ exhibits Pnma symmetry. Due to the centrosymmetric nature of the space group, ferroelectric properties cannot be expected for (FC₂H₄NH₃)₂PbCl₄.

In contrast to the chloride version discussed above, the reaction of fluoroethylammonium bromide with lead bromide in DMF leads to the formation of a dimensionally reduced DMF solvate in which the 2D lead bromide layers are broken up into 1D double chains consisting of edge sharing octahedra. A discussion of the crystal structure of the resulting compound, (FC₂H₄NH₃)₂PbBr₄·DMF, and additional experimental details can be found in the Supporting Information S8−S12.

DFT Calculations. The PbCl₂ octahedra in (FC₂H₄NH₃)₂PbCl₄ exhibit Pb−Cl bond lengths between 2.7001(7) and 3.0254(7) Å and bond angles between 86.5° and 93.9° (Tables SIV and SV). Related compounds reported in the literature, namely, (C₃H₇NH₃)₂PbCl₄ and (C₆H₅C₂H₄NH₃)₂PbCl₄, show a qualitatively similar, however much smaller, distortion of the Pb atom coordination sphere with Pb−Cl bond lengths in the ranges 2.830(7)−2.899(7) Å and 2.752(2)−3.033(2) Å, respectively. In order to investigate the origin of this rather severe distortion present in (FC₂H₄NH₃)₂PbCl₄, electronic structure calculations on the DFT level including spin−orbit coupling were performed. If the origin was due to a sterically active Pb 6s lone pair, we would expect to see hybridization between s and p states at the Fermi level. This hybridization would result in a stereochemically active lone pair that is not centrosymmetric and could therefore reside off center within an octahedron, causing distortion. Analysis of the partial density of states (PDOS) reveals that the valence band consists mostly of Cl 3p states, mixed with Pb 6s and Pb 6p states. The Pb 6s states are found in the upper valence band whereas the Pb 6p states are located in the lower valence band. Additional Pb 6s states are localized below −6 eV. The conduction band is dominant by Pb 6p states. Taking a closer look at the upper valence band, a small fraction of 6p states can be observed at the same energy level as 6s states which allows for hybridization of these states (Figure 2a,b). This could suggest the presence of a steric effect of the lone pair that can follow from canceling out the centrosymmetry of the s orbital by adding p character. However, in our case this effect is presumably very small, since the density of Pb p states in the upper valence band is below 0.014 states (formula unit)⁻¹ eV⁻¹. Therefore, the octahedral distortions seem to be of structural rather than electronic origin, which becomes apparent when projecting the crystal structure down the b axis (Figure 1). The size of the organic cations exactly matches the vacancies within the octahedral network; therefore, the octahedral distortion results in an optimal dense packing. Additionally, moderate and weak hydrogen bonds between the organic cations and the Cl atoms of the inorganic lattice might contribute to the observed structural distortions (Table SVI). The calculated bandgap is 2.51 eV which is significantly lower than the measured band gap of 3.27 eV. The PBE functional used for our calculations is, however, well known to underestimate band gaps, and the discrepancy of 0.75 eV is within the usual range of underestimation. The organic cations do not seem to have any influence on the band gap as an analysis of the respective states shows (Figure S2a). The band structure plot (Figure 2c) reveals the band gap to be indirect, with the valence band maximum located at Γ and the conduction band minimum located between Γ and Z. Fat band plots also show the presence of a Pb 6s lone pair (Figure S2b).

Phase Transitions in (FC₂H₄NH₃)₂PbCl₄. DSC measurements indicate two reversible phase transitions at 87 °C and at 107 °C, which were determined from the heating cycle (Figure...
\[(\text{FC}_2\text{H}_4\text{NH}_3)_2\text{PbCl}_4 \] was heated up to 112.5 °C. NMR spectra were recorded (Figure 3b). 207Pb is a spin 1/2 nucleus with an extremely wide chemical shift range, with Pb(II) covering a range between 3000 and −6000 ppm. The observed chemical shifts are in agreement with the oxidation state Pb(II), while the highly anisotropic shape of the signal observed below the first phase transition points to an asymmetrical coordination sphere of the Pb atoms. This observation is in accordance with the above described severely distorted PbCl6 octahedra. The first phase transition is therefore most likely connected to a change in the inorganic sublattice producing a more symmetrical lead environment, and accompanied by a substantially reduced anisotropy and a shift of the signal from −237 ± 2 ppm to −971 ± 2 ppm. These changes are found to be reversible upon cooling the sample down to room temperature. Apart from a small downfield shift, the second phase transition is not observed in the 207Pb spectrum, which essentially excludes an involvement of the Pb−Cl lattice in the phase transition. Presumably, the second phase transition is related to small changes in the mobility or orientation of the A site cation. 1H solid state NMR spectra show three overlapping signals that can be assigned to the protons of the NH3 group and the two methylene groups, respectively (Figure 3a). The assignment is based on the relative integrated intensities, and expected relative shifts in 1H resonances of −CH2– and −CH2F signals. The first phase transition leads to a downfield shift and a narrowing of the observed signals, which supports the assumption that the 2 fluorethylammonium cations become more mobile due to the change in the heavy lattice. As a consequence, they can rotate more freely. The second phase transition does not have a visible fingerprint in the 1H NMR spectra. Finally, a temperature dependent structural investigation using 13C solid state NMR spectroscopy was performed (Figure 3c,d). The recorded 13C solid state NMR spectra show two distinct signals which are assigned to the carbon atoms of the methylene groups. Upon heating the sample above the first transition temperature, a narrowing of the signals can be observed besides a significant upfield shift of the signal detected at 86.4 ppm. This signal splits up into two when the temperature is increased above 127.5 °C. It is conceivable that this signature at 127.5 °C is associated with a delayed second phase transition which is seen at 107 °C in the DSC measurements. A possible reason for the splitting is the direct spin−spin J coupling between adjacent F and C atoms. However, the doublet should be more distinct in this case. Therefore, it is most likely that what we see is not entirely due to 19F−13C J coupling, but also due to melting of the organic sublattice above the transition temperature, giving rise to dynamical disorder of the organic cations. The signal at 42.4 ppm starts splitting up only at 180 °C. These later changes are partly reversible upon cooling down and are not distinctly related to either of the structural phase transitions. The changes associated with the first phase transition, however, are persistent. To summarize, heating (FC2H4NH3)2PbCl4 above 130 °C leads to a permanent structural change, but the compound is not decomposed upon heating it up to 180 °C.

Powder X-ray Diffraction (PXRD). PXRD was used to complement the above described insights into the reversibility and local structural changes during the temperature dependent...
structural phase transitions of (FC2H4NH3)2PbCl4 (Figure 4a,b). The structural change connected to the first phase transition becomes obvious on comparing the dissimilar diffractograms recorded at 30 and 87 °C. Only small additional changes can be observed when the sample is heated to 120 °C, which consolidates the assumption that the second phase transition is not connected to any significant structural changes in the inorganic sublattice. When cooling the sample back down to 30 °C, the initial diffractogram recorded at 30 °C is regained almost completely. Only the reflection at 7.75° which is very prominent in the diffractograms of the high temperature phase has not vanished completely despite a significant loss in intensity.

Recording another diffractogram of the sample 1 year after conducting the heating cycle shows that the phase transition is indeed fully reversible: the reflection at 7.75° cannot be observed anymore (Figure S4). These results indicate that the conversion from the high temperature to the low temperature phase might be kinetically delayed.

Optical Properties. Absorption and photoluminescence measurements were performed to investigate the optical properties of (FC2H4NH3)2PbCl4. The absorbance spectrum of (FC2H4NH3)2PbCl4 is presented in Figure 5a. With the assumption of an indirect band gap (also confirmed by DFT calculations, see above), a band gap of 3.27 eV is determined with a Tauc plot, which is comparable to other organic−inorganic layered perovskite compounds (Figure 5b). As can be seen in Figure 5a, a clear separation between the absorption band edge and the excitonic peak cannot be observed, but there is an overlap of a peak at 328 nm and the band edge. Such a close occurrence of an excitonic absorption peak and the band edge has already been reported for other organic−inorganic layered perovskite compounds and can be explained by the fact that the optical properties strongly depend on the organic moiety. Possible effects of the organic layer on excited states within the inorganic layer include a change of the exciton binding energy depending on the organic layer’s dielectric constant, a potential energy transfer into the organic layer, and structural distortions of the inorganic layer imposed by the organic layer. Consequently, differences in optical properties for different organic−inorganic layered perovskite compounds can be expected. While for excitation above the bandgap, no significant photoluminescence can be detected (Figure S5a); excitation into the sub bandgap absorption feature between 350 and 400 nm leads to a strong and broad photoluminescence (PL) spectrum (Figure 5a). As the PL excitation spectrum for the PL emission peak at 443 nm coincides well with the sub bandgap absorption feature for wavelengths above 350 nm, it can be assumed that
excitation of these sub bandgap states leads to enhanced radiative recombination. The origin of such a broad emission has already been discussed by Dohner et al., who assigned the broad PL to strong coupling of excited states to lattice distortions and the inhomogeneous broadening of the PL spectrum to additional contributions of trap states. Similarly, Papavassiliou et al. investigated the impact of the organic moiety on PL properties and found that organic layers consisting of short alkyl chains lead to a broad PL spectrum due to self trapped excitons, whereas longer alkyl chains lead to sharp excitonic PL peaks. These observations are consistent with the data presented here, as the crystal structure of (FC₂H₄NH₃)₂PbCl₄ features severe structural distortions of the inorganic sublattice at room temperature, which is assumed to induce self trapping of excitons due to a coupling to lattice distortions. Moreover, an impact of the fluorene in the organic moiety on the PL properties cannot be excluded either. The fact that the PL spectrum can be excited by excitation energies that are as small as the emission energy indicates a continuum of initial states that can contribute to the broad PL spectrum. Such a broad distribution of emitting states cannot be explained by a specific crystal defect, but rather by a continuous energy distribution of lattice distortions. The inhomogeneous broadening of the PL spectrum of (FC₂H₄NH₃)₂PbCl₄ can be fitted with two Gaussian functions with peak positions at 2.79 and 2.32 eV, respectively (Figure S6b). Both the lower energy shoulder and the broad PL emission can be excited by the same absorption features (Figure S5b) and have similar lifetimes (Figure 5c), suggesting the same physical nature of these states and thermal equilibrium between them. However, as Figure S6b displays an increase of the lower energy shoulder for a decrease in temperature, an enhanced trapping rate of excited states can be assumed for lower temperatures. The photoluminescence decay displayed in Figure 5c can be fitted with a three exponential decay function with lifetimes of $t_1 = 0.6$ ns, $t_2 = 4$ ns, and $t_3 = 18$ ns. PL lifetimes of several nanoseconds are characteristic for organic–inorganic layered perovskites. In contrast to 3D organic–inorganic perovskites, where charge recombination of free electrons and holes determines the PL characteristics at room temperature, leading to lifetimes on the order of hundreds of nanoseconds, the PL of layered perovskites predominantly originates from confined excitons within the inorganic layer. On the basis of the multieponential decay, it is suggested that several dynamical processes take place after photoexcitation, including the intrinsic lifetime of free excitons and the formation of self trapped excitons, as well as their interaction with interface states and potential permanent lattice defects, or intersystem crossing with triplet states.

Stability. An important finding is that, in contrast to other 2D and 3D hybrid perovskites, (FC₂H₄NH₃)₂PbCl₄ shows pronounced long term stability. When exposed to ambient conditions over several months, no visible changes can be observed. Rietveld analyses of PXRD data of (FC₂H₄NH₃)₂PbCl₄ right after synthesis and after 4 months exposure confirm this observation (Figure 4c and Figure S2).

CONCLUSION

The crystal structures of the new hybrid compounds, (FC₂H₄NH₃)₂PbCl₄ and (FC₂H₄NH₃)₂PbBr₃·DMF, were discussed with a special focus on the influence of hydrogen bonds and the origin of structural distortions in the inorganic sublattice on the arrangement of the organic cations. Moreover, the phase transitions of (FC₂H₄NH₃)₂PbCl₄ were investigated closely by combining solid state NMR spectroscopy, DSC measurements, and PXRD. It could be shown that the first phase transition at 87 °C is due to structural changes in the heavy lattice whereas the second phase transition is likely related to orientational changes in the organic sublattice. DFT calculations suggested that the observed distortion of the PbCl₆ octahedra predominantly is of structural origin connected to a dense packing of the organic cations and the inorganic lattice and the formation of hydrogen bonds between the inorganic and organic sublattice, rather than of electronic origin based on hybridization of the Pb 6s lone pair. Optical measurements were applied to study the nature of the photogenerated states and their interaction with the crystal lattice. A strong and broad PL spectrum for excitations below the bandgap is assigned to a coupling of excited states to lattice distortions. The resulting self trapped excitons lead to a temperature dependent inhomogeneous broadening of the PL spectrum and a multieponential PL decay with lifetimes in the nanosecond range. Additionally, it was shown that (FC₂H₄NH₃)₂PbCl₄ features long term stability under ambient conditions. These findings suggest that the fluorenylamo nium cation is a promising candidate as a spacer for moisture resistant MAPI derived compounds due to its ability to create 2 dimensional structures and the demonstrated stability of (FC₂H₄NH₃)₂PbCl₄. Synthesizing a compound that contains several layers of MAPI separated by layers of (FC₂H₄NH₃)⁺ might have the potential for combining the favorable optical properties of MAPI with the better stability of a 2D hybrid perovskite. Additionally, (FC₂H₄NH₃)⁺ features a large dipole moment which might lead to an enhanced polarity of the lattice and with it an increase in charge separation and improved carrier lifetimes as theoretical studies by Frost et al. indicate. These factors point to a number of design criteria which when synergistically combined may give rise to powerful absorber materials for solar cells and related optoelectronic devices.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.chemmate.6b02151.

Crystallographic data, DSC data, additional band structure and PDOS plots, additional PXRD data, PL and PL excitation spectra, and a discussion of the crystal structure of (FC₂H₄NH₃)₂PbBr₃·DMF (PDF)

Crystallographic information file of (FC₂H₄NH₃)₂PbCl₄ and (FC₂H₄NH₃)₂PbBr₃·DMF (CIF)

AUTHOR INFORMATION

Corresponding Author

E mail: B.Lotsch@fkf.mpg.de.

Author Contributions

All authors have given approval to the final version of the manuscript.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

Financial support by the Max Planck Society, “Deutsche Telekom Stiftung” (scholarship for C.L.), the cluster of excellence “Nanosystems Initiative Munich” (NIM), and the Center for NanoScience (CeNS) is gratefully acknowledged. The authors thank the group of Prof. Thomas Klapper for the possibility to use their DSC calorimeter and Marc Bolte, M.Sc.,
for assistance. We also thank Christine Stefani (Dinnebier group, MPI FKF) for carrying out the temperature dependent PXRD measurements and Ewald Schmitt (Maier department, MPI FKF) for performing further DSC measurements. L.M.S. gratefully acknowledges financial support by the Minerva fast track program.

REFERENCES

