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1. Introduction

Epistemology is concerned with the fundamental laws of thought, belief, or
judgment. It may inquire the fundamental relations among the objects or contents
of thought and belief, i.e., among propositions or sentences. Then we enter the
vast realm of formal logic. Or it may inquire the activity of judging or the attitude
of believing itself. Often, we talk as if this would be an affair of yes or no. From
time immemorial, though, we know that judgment is firm or less than firm, that
belief is a matter of degree. This insight opens another vast realm of formal epis-
temology.
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Logic received firm foundations already in ancient philosophy. It took much
longer, though, until the ideas concerning the forms of (degrees of) belief acquired
more definite shape. Despite remarkable predecessors in Indian, Greek, Arabic,
and medieval philosophy, the issue seemed to seriously enter the agenda of intel-
lectual history only in 16th century with the beginning of modern philosophy.
Cohen (1980) introduced the wieldy, though somewhat tendentious opposition
between Baconian and Pascalian probability. This suggests that the opposition
was already perceivable with the work of Francis Bacon (1561-1626) and Blaise
Pascal (1623-1662). In fact, philosophers were struggling to find the right mould.
In that struggle, Pascalian probability, which is probability simpliciter, was the
first to take a clear and definite shape, viz. in the middle of 17th century (cf.
Hacking 1975), and since then it advanced triumphantly. The extent to which it
interweaves with our cognitive enterprise has become nearly total (cf. the marvel-
ous collection of Krüger et al. 1987). There certainly were alternative ideas. How-
ever, probability theory was always far ahead; indeed, the distance ever increased.
The winner takes it all!

I use ‘Baconian probability’ as a collective term for the alternative ideas. This
is legitimate since there are strong family resemblances among the alternatives.
Cohen has chosen an apt term since it gives historical depth to ideas that can be
traced back at least to Bacon (1620) and his powerful description of ‘the method
of lawful induction’. Jacob Bernoulli and Johann Heinrich Lambert struggled with
a non-additive kind of probability. When Joseph Butler and David Hume speak of
probability, they often seem to have something else or more general in mind than
our precise explication. In contrast to the German Fries school British 19th cen-
tury’s philosophers like John Herschel, William Whewell, and John Stuart Mill
elaborated non-probabilistic methods of inductive inference. And so forth.1

Still, one might call this an underground movement. The case of alternative
forms of belief became a distinct hearing only in the second half of the 20th cen-
tury. On the one hand, there were scattered attempts like the ‘functions of poten-
tial surprise’ of Shackle (1949), heavily used and propagated in the epistemology
of Isaac Levi since his (1967), Rescher’s (1964) account of hypothetical reason-
ing, further developed in his (1976) into an account of plausible reasoning, or
Cohen’s (1970) account of induction which he developed in his (1977) under the

                                                  
1 This is not the place for a historical account. See, e.g., Cohen (1980) and Shafer (1978) for some
details.
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label ‘Non-Pascalian probability’, later on called ‘Baconian’. On the other hand,
one should think that modern philosophy of science with its deep interest in the-
ory confirmation and theory change produced alternatives as well. Indeed, Pop-
per’s hypothetical-deductive method proceeded non-probabilistically, and Hempel
(1945) started a vigorous search for a qualitative confirmation theory. However,
the former became popular rather among scientists than among philosophers, and
the latter petered out after 25 years.

I perceive all this rather as prelude, preparing the grounds. The outburst came
only in the mid 70’s, with strong help from philosophers, but heavily driven by
the needs of Artificial Intelligence. Not only deductive, but also inductive rea-
soning had to be implemented in the computer, probabilities appeared intractable2,
and thus a host of alternative models were invented: a plurality of default logics,
non-monotonic logics and defeasible reasonings, fuzzy logic as developed by
Zadeh (1975, 1978), possibility theory as initiated by Zadeh (1978) and developed
by Dubois, Prade (1988), the Dempster-Shafer belief functions originating from
Dempster (1967, 1968), but essentially generalized by Shafer (1976), AGM belief
revision theory (cf. Gärdenfors 1988), a philosophical contribution with great suc-
cess in the AI market, and so forth. The field has become rich and complex. There
are attempts of unification like Halpern (2003) and huge handbooks like Gabbay
et al. (1994). One hardly sees the wood for trees. It seems that what had been for-
gotten for centuries had to be made good for within decades.

Ranking theory, first presented in Spohn (1983, 1988)3, belongs to this field as
well. Since its development, by me and others, is scattered in a number of papers,
one goal of the present paper is to present an accessible survey of the present state
of ranking theory. This survey will emphasize the philosophical applications, thus
reflecting my bias towards philosophy. My other goal is justificatory. Of course, I
am not so blinded to claim that ranking theory would be the adequate account of
Baconian probability. As I said, ‘Baconian probability’ stands for a collection of
ideas united by family resemblances; and I shall note some of the central resem-
blances in the course of the paper. However, there is a multitude of epistemologi-
cal purposes to serve, and it is entirely implausible that there is one account to
serve all. Hence, postulating a reign of probability is silly, and postulating a
                                                  
2 Only Pearl (1988) showed how to systematically deal with probabilities without exponential
computational explosion.
3 There I called its objects ordinal conditional functions. Goldszmidt, Pearl (1996) started calling
them ranking functions, a usage I happily adapted.
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duumvirate of probability and something else is so, too. Still, I am not disposed to
see ranking theory as just one offer among many. On many scores, ranking theory
seems to me to be superior to rival accounts, the central score being the notion of
conditional ranks. I shall explain what these scores are, thus trying to establish
ranking theory as one particularly useful account of the laws of thought.

The plan of the paper is simple. In the five sections of part 2, I shall outline the
main aspects of ranking theory. This central part will take some time. I expect the
reader to get impatient meanwhile; you will get the compelling impression that I
am not presenting an alternative to (Pascalian) probability, as the label ‘Baconian’
suggests, but simply probability itself in a different disguise. This is indeed one
way to view ranking theory, and a way, I think, to understand its virtues. How-
ever, the complex relation between probability and ranking theory, though sug-
gested at many earlier points, will be systematically discussed only in the two
sections of part 3. The two sections of part 4 will finally compare ranking theory
to some other accounts of Baconian probability.

2. The Theory

2.1     Basics

We have to start with fixing the objects of the cognitive attitudes we are going
to describe. This is a philosophically highly contested issue, but here we shall stay
conventional without discussion. These objects are pure contents, i.e., proposi-
tions. To be a bit more explicit: We assume a non-empty set W of mutually exclu-
sive and jointly exhaustive possible worlds or possibilities, as I prefer to say, for
avoiding the grand associations of the term ‘world’ and for allowing to deal with
de se attitudes and related phenomena (where doxastic alternatives are considered
to be centered worlds rather than worlds). And we assume an algebra A of subsets
of W, which we call propositions. All the functions we shall consider for repre-
senting doxastic attitudes will be functions defined on that algebra A.

Thereby, we have made the philosophically consequential decision of treating
doxastic attitudes as intensional. That is, when we consider sentences such as “a
believes (with degree r) that p”, then the clause p is substitutable salva veritate by
any clause q expressing the same proposition and in particular by any logically



5

equivalent clause q. This is so because by taking propositions as objects of belief
we have decided that the truth value of such a belief sentence depends only on the
proposition expressed by p and not on the particular way of expressing that propo-
sition. The worries raised by this decision are not our issue.

The basic notion of ranking theory is very simple:

Definition 1: Let A be an algebra over W. Then κ is a negative ranking function4

for A iff κ is a function from A into R*  = R+ ∪ {∞} (i.e., into the set of non-
negative reals plus infinity) such that for all A, B ∈ A:
(1) κ(W) = 0 and κ(∅) = ∞,
(2) κ(A ∪ B) = min {κ(A), κ(B)}[the law of disjunction (for negative ranks)].
κ(A) is called the (negative) rank of A.

It immediately follows for each A ∈ A:

(3) either κ(A) = 0 or κ( A ) = 0 or both [the law of negation].

A negative ranking function κ, this is the standard interpretation, expresses a
grading of disbelief (and thus something negative, hence the qualification). If κ(A)
= 0, A is not disbelieved at all; if κ(A) > 0, A is disbelieved to some positive de-
gree. Belief in A is the same as disbelief in A ; hence, A is believed in κ iff κ( A )
> 0. This entails (via the law of negation), but is not equivalent to κ(A) = 0. The
latter is compatible also with κ( A ) = 0, in which case κ is neutral or unopinion-
ated concerning A. We shall soon see the advantage of explaining belief in this
indirect way via disbelief.

A little example may be instructive. Let us look at Tweetie of which default
logic is very fond. Tweetie has, or fails to have, each of the three properties: being
a bird (B), being a penguin (P), and being able to fly (F). This makes for eight
possibilities. Suppose you have no idea what Tweetie is, for all you know it might
even be a car. Then your ranking function may be the following one, for instance:5

                                                  
4 For systematic reasons I am slightly rearranging my terminology from earlier papers. I would be
happy if the present terminology became the official one.
5 I am choosing the ranks in an arbitrary, though intuitively plausible way (just as I would have to
arbitrarily choose plausible subjective probabilities, if the example were a probabilistic one). The
question how ranks may be measured will be taken up in section 2.3.
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κ B & P B & P B  & P B  & P

F 0 5 0 25

F 2 1 0 21

In this case, the strongest proposition you believe is that Tweetie is either no pen-
guin and no bird (B  & P ) or a flying bird and no penguin (F & B & P ). Hence,
you neither believe that Tweetie is a bird nor that it is not a bird. You are also
neutral concerning its ability to fly. But you believe, for instance: if Tweetie is a
bird, it is not a penguin and can fly (B → P  & F); and if Tweetie is not a bird, it
is not a penguin (B  →  P ) – each if-then taken as material implication. In this
sense you also believe: if Tweetie is a penguin, it can fly (P → F); and if Tweetie
is a penguin, it cannot fly (P → F ) – but only because you believe that it is not a
penguin in the first place; you simply do not reckon with its being a penguin. If
we understand the if-then differently, as we shall do later on, the picture changes.
The large ranks in the last column indicate that you strongly disbelieve that pen-
guins are not birds. And so we may discover even more features of this example.

What I have explained so far makes clear that we have already reached the first
fundamental aim ranking functions are designed for: the representation of belief.
Indeed, we may define Bκ = {A | κ( A ) > 0} to be the belief set associated with the
ranking function κ. This belief set is finitely consistent in the sense that whenever
A1,…,An ∈ Bκ, then A1 ∩ … ∩ An ≠ ∅; this is an immediate consequence of the
law of negation. And it is finitely deductively closed in the sense that whenever
A1,…,An ∈ Bκ and A1 ∩ … ∩ An ⊆ B ∈ A, then B ∈ Bκ; this is an immediate con-
sequence of the law of disjunction. Thus, belief sets just have the properties they
are normally assumed to have. (The finiteness qualification is a little cause for
worry that will be addressed soon.)

There is a big argument about the rationality postulates of consistency and de-
ductive closure; we should not enter it here. Let me only say that I am disappoint-
ed by all the attempts I have seen to weaken these postulates. And let me point out
that the issue was essentially decided at the outset when we assumed belief to op-
erate on propositions or truth-conditions or sets of possibilities. With these as-
sumptions we ignore the relation between propositions and their sentential expres-
sions or modes of presentation; and it is this relation where all the problems hide.
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When saying that ranking functions represent belief I do not want to further
qualify this. One finds various notions in the literature, full beliefs, strong beliefs,
weak beliefs, one finds a distinction of acceptance and belief, etc. In my view,
these notions and distinctions do not respond to any settled intuitions; they are
rather induced by various theoretical accounts. Intuitively, there is only one per-
haps not very clear, but certainly not clearly subdivisible phenomenon which I
exchangeably call believing, accepting, taking to be true, etc.

However, if the representation of belief were our only aim, belief sets or their
logical counterparts as developed in doxastic logic (see already Hintikka 1962)
would have been good enough. What then is the purpose of the ranks or degrees?
Just to give another account of the intuitively felt fact that belief is graded? But
what guides such accounts? Why should the degrees of belief behave like ranks as
defined? Intuitions by themselves are not clear enough to provide this guidance.
Worse still, intuitions are usually tainted by theory; they do not constitute a neu-
tral arbiter. Indeed, problems already start with the intuitive conflict between rep-
resenting belief and representing degrees of belief. By talking of belief simplic-
iter, as I have just insisted, I seem to talk of ungraded belief.

The only principled guidance we can get is a theoretical one. The degrees must
serve a clear theoretical purpose and this purpose must be shown to entail their
behavior. For me, the theoretical purpose of ranks is unambiguous; this is why I
invented them. It is the representation of the dynamics of belief; that is the second
fundamental aim we pursue. How this aim is reached and why it can be reached in
no other way will unfold in the course of this part of the paper. This point is es-
sential; as we shall see, it distinguishes ranking theory from all similarly looking
accounts, and it grounds its superiority.

For the moment, though, let us look at a number of variants of definition 1.
Above I mentioned the finiteness restriction of consistency and deductive closure.
I have always rejected this restriction. An inconsistency is irrational and to be
avoided, be it finitely or infinitely generated. Or, equivalently, if I take to be true a
number of propositions, I take their conjunction to be true as well, even if the
number is infinite. If we accept this, we arrive at a somewhat stronger notion:

Definition 2: Let A be a complete algebra over W (closed also under infinite Boo-
lean operations). Then κ is a complete negative ranking function for A iff κ is a
function from W into N+ = N  ∪  {∞} (i.e., into the set of non-negative integers
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plus infinity) such that κ-1(0) ≠ ∅ and and κ-1(n) ∈ A for each n ∈ N+. κ is ex-
tended to propositions by defining κ(∅) = ∞ and κ(A) = min{κ(w) | w ∈ A} for
each non-empty A ∈ A.

Obviously, the propositional function satisfies the laws of negation and dis-
junction. Moreover, we have for any B ⊆ A:

(4) κ(  B) = min {κ(B) | B ∈ B} [the law of infinite disjunction].

Due to completeness, we could start in definition 2 with the point function and
then define the set function as specified. Equivalently, we could have defined the
set functions by the conditions (1) and (4) and then reduce the set function to a
point function. Henceforth I shall not distinguish between the point and the set
function. Note, though, that without completeness the existence of an underlying
point function is not guaranteed.

Why are complete ranking functions confined to integers? The reason is condi-
tion (4). It entails that any set of ranks has a minimum and hence that the range of
a complete ranking function is well-ordered. Hence, the natural numbers are a
natural choice. In my first publications (1983) and (1988) I allowed for more gen-
erality and assumed an arbitrary set of ordinal numbers as the range of a ranking
function. However, since we want to calculate with ranks, this meant to engage
into ordinal arithmetic, which is awkward. Therefore I later confined myself to
complete ranking functions as defined above.

The issue about (4) was first raised by Lewis (1973, sect. 1.4) where he intro-
duced the so-called Limit Assumption in relation to his semantics of counterfactu-
als. Endorsing (4), as I do, is tantamount to endorsing the Limit Assumption.
Lewis finds reason against it, though it does not affect the logic of counterfactu-
als. From a semantic point of view, I do not understand his reason. He requests us
to counterfactually suppose that a certain line is longer than an inch and asks how
long it would or might be. He argues in effect that for each ε > 0 we should accept
as true: “If the line would be longer than 1 inch, it would not be longer than 1 + ε
inches.” This strikes me as blatantly inconsistent, even if we cannot derive a con-
tradiction in counterfactual logic. Therefore, I am accepting the Limit Assumption
and, correspondingly, the law of infinite disjunction. This means in particular that
in that law the minimum must not be weakened to the infimum.



9

Though I prefer complete ranking functions for the reasons given, the issue
will have no further relevance here. In particular, if we assume the algebra of
propositions to be finite, each ranking function is complete, and the issue does not
arise. In the sequel, you can add or delete completeness as you wish.

Let me add another observation apparently of a technical nature. It is that we
can mix ranking functions in order to form a new ranking function. This is the
content of

Definition 3: Let Λ be a non-empty set of negative ranking functions for an alge-
bra A of propositions, and let ρ be a complete negative ranking function over Λ.
Then κ defined by

(5) κ(A) = min {λ(A) + ρ(λ) | λ ∈ Λ} for all A ∈ A

is obviously a negative ranking function for A as well and is called the mixture of
Λ by ρ.

It is nice that such mixtures make formal sense. However, we shall see in the
course of this paper that the point is more than a technical one; such mixtures will
acquire deep philosophical importance later on.

So far, (degree of) disbelief was our basic notion. Was this necessary? Cer-
tainly not. We might just as well express things in positive terms:

Definition 4: Let A be an algebra over W. Then π is a positive ranking function for
A iff π is a function from A into R* such that for all A, B ∈ A:
(6) π(∅) = 0 and π(W) = ∞,
(7) π(A ∩ B) = min {π(A), π(B)} [the law of conjunction for positive ranks].

Positive ranks express degrees of belief. π(A) > 0 says that A is believed (to some
positive degree), and π(A) = 0 says that A is not believed. Obviously, positive
ranks are the dual to negative ranks; if π(A) = κ( A ) for all A ∈  A, then π is a
positive function iff κ is a negative ranking function.

Positive ranking functions seem distinctly more natural. Why do I still prefer
the negative version? A superficial reason is that we have seen complete negative
ranking functions to be reducible to point functions, whereas it would obviously
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be ill-conceived to try the same for the positive version. This, however, is only
indicative of the main reason. Despite appearances, we shall soon see that nega-
tive ranks behave very much like probabilities. In fact, this parallel will serve as
our compass for a host of exciting observations. (For instance, in the finite case
probability measures can also be reduced to point functions.) If we were thinking
in positive terms, this parallel would remain concealed.

There is a further notion that may appear even more natural:

Definition 5: Let A be an algebra over W. Then τ is a two-sided ranking function6

for A iff τ is a function from A into R  ∪ {-∞, ∞} such that there is a negative
ranking function κ and its positive counterpart π for which for all A ∈ A:

τ(A) = κ( A ) – κ(A) = π(A) – κ(A).

Obviously, we have τ(A) > 0, < 0, or = 0 according to whether A is believed, dis-
believed, or neither. In this way, the belief values of all propositions are expressed
in a single function. Moreover, we have the appealing law that τ( A ) = –τ(A). For
some purposes this is a useful notion which I shall readily employ. However, its
formal behavior is awkward. Its direct axiomatic characterization would have
been cumbersome, and its simplest definition consisted in its reduction to the
other notions.

Still, this notion suggests an interpretational degree of freedom so far unno-
ticed.7 We might ask: Why does the range of belief extend over all the positive
reals in a two-sided ranking function and the range of disbelief over all the nega-
tive reals, whereas neutrality shrinks to rank 0? This looks unfair. Why may un-
opinionatedness not occupy a much broader range? Indeed, why not? We might
just as well distinguish some positive rank or real z and define the closed interval
[-z, z] as the range of neutrality. Then τ(A) > z expresses belief in A and τ(A) < -z
disbelief in A. This is a viable interpretation; in particular, consistency and deduc-
tive closure of belief sets would be preserved.

The interpretational freedom appears quite natural. After all, the notion of be-
lief is certainly vague and can be taken more or less strict. We can do justice to

                                                  
6 In earlier papers I called this a belief function, obviously an unhappy term which has too many
different uses. This is one reason fort the mild terminological reform proposed in this paper.
7 I am grateful to Matthias Hild for making this point clear to me.
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this vagueness with the help of the parameter z. The crucial point, though, is that
we always get the formal structure of belief we want to get, however we fix that
parameter. The principal lesson of this observation is, hence, that it is not the no-
tion of belief which is of basic importance; it is rather the formal structure of
ranks. The study of belief is the study of that structure. Still, it would be fatal to
simply give up talking of belief in favor of ranks. Ranks express beliefs, even if
there is interpretational freedom. Hence, it is crucial to maintain the intuitive con-
nection, and therefore I shall stick to my standard interpretation and equate belief
in A with τ(A) > 0, even though this is a matter of decision.

Let us pause for a moment and take a brief look back. What I have told so far
probably sounds familiar. One has quite often seen all this, in this or a similar
form – where the similar form may also be a relational one: as long as only the
ordering and not the numerical properties of the degrees of belief are relevant, a
ranking function may also be interpreted as a weak ordering of propositions ac-
cording to their plausibility, entrenchment, credibility etc. Often things are cast in
negative terms, as I primarily do, and often in positive terms. In particular, the law
of negation securing consistency and the law of disjunction somehow generalizing
deductive closure (we still have to look at the point more thoroughly) or their
positive counterparts are pervasive. If one wants to distinguish a common core in
that ill-defined family of Baconian probability, it is perhaps just these two laws.

So, why invent a new name, ‘ranks’, for familiar stuff? The reason lies in the
second fundamental aim associated with ranking functions: to account for the dy-
namics of belief. This aim has been little pursued under the label of Baconian
probability, but it is our central topic for the rest of this part. Indeed, everything
stands and falls with our notion of conditional ranks; it is the distinctive mark of
ranking theory. Here it is:

Definition 6: Let κ be a negative ranking function for A and κ(A) < ∞. Then the
conditional rank of B ∈ A given A is defined as κ(B | A) = κ(A ∩ B) – κ(A). The
function κA: B    κ(B | A) is obviously a negative ranking function in turn and
called the conditionalization of κ by A.

We might rewrite this definition as a law:

(8) κ(A ∩ B) = κ(A) + κ(B | A) [the law of conjunction (for negative ranks)].
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This amounts to the highly intuitive assertion that one has to add the degree of
disbelief in B given A to the degree of disbelief in A in order to get the degree of
disbelief in A-and-B.

Moreover, it immediately follows for all A, B ∈ A with κ(A) < ∞:

(9) κ(B | A) = 0 or κ( B  | A) = 0 [conditional law of negation].

This law says that even conditional belief must be consistent. If both, κ(B | A) and
κ( B  | A), were > 0, both, B and B , would be believed given A, and this ought to
be excluded, as long as the condition A itself is considered possible.

Indeed, my favorite axiomatization of ranking theory runs reversely, it consists
of the definition of conditional ranks and the conditional law of negation. The
latter says that min {κ(A | A ∪ B), κ(B | A ∪ B)} = 0, and this is just the law of
disjunction in view of the former. Hence, the only substantial assumption written
into ranking functions is conditional consistency, and it is interesting to see that
this entails deductive closure as well.

It is instructive to look at the positive counterpart of negative conditional ranks.
If π is the positive ranking function corresponding to the negative ranking func-
tion κ, definition 6 simply translates into: π(B | A) = π( A  ∪ B) – π( A ). Defining
A → B = A  ∪ B as set-theoretical ‘material implication’, we may as well write:

(10) π(A → B) = π(B | A) + π( A ) [the law of material implication].

Again, this is highly intuitive. It says that the degree of belief in the material im-
plication A → B is added up from the degree of belief in its vacuous truth (i.e., in
A ) and the conditional degree of belief of B given A.8 However, again comparing
the negative and the positive version, one can already sense the analogy between
probability and ranking theory from (8),but hardly from (10). This analogy will
play a great role in the following sections.

Two-sided ranks have a conditional version as well; it is straightforward. If τ is
the two-sided ranking function corresponding to the negative κ and the positive π,
then we may simply define:

                                                  
8 Thanks again to Matthias Hild for pointing this out to me.
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(11) τ(B | A) = π(B | A) – κ(B | A) = κ( B  | A) – κ(B | A).

It will sometimes be useful to refer to these two-sided conditional ranks.
For illustration of negative conditional ranks, let us briefly return to our exam-

ple Tweetie. Above, I already mentioned various examples of if-then sentences,
some held vacuously true and some non-vacuously. Now we can see that precisely
the if-then sentences non-vacuously held true correspond to conditional beliefs.
According to the κ specified, you believe, e.g., that Tweetie can fly given it is a
bird (since κ(F  | B) = 1) and also given it is a bird, but not a penguin (since κ(F  |
B & P ) = 2), that Tweetie cannot fly given it is a penguin (since κ(F | P) = 4) and
even given it is a penguin, but not a bird (since κ(F | B  & P) = 4). You also be-
lieve that it is not a penguin given it is a bird (since κ(P | B) = 1) and that it is a
bird given it is a penguin (since κ( B  | P) = 20). And so forth.

Let us now unfold the power of conditional ranks and their relevance to the dy-
namics of belief in several steps.

2.2     Reasons and Their Balance

The first application of conditional ranks is in the theory of confirmation. Basi-
cally, Carnap (1950) told us, confirmation is positive relevance. This idea can be
explored probabilistically, as Carnap did. But here the idea works just as well. A
proposition A confirms or supports or speaks for a proposition B, or, as I prefer to
say, A is a reason for B, if A strengthens the belief in B, i.e., if B is more strongly
believed given A than given A , i.e., iff A is positively relevant for B. This is eas-
ily translated into ranking terms:

Definition 7: Let κ be a negative ranking function for A and τ the associated two-
sided ranking function. Then A ∈ A is a reason for B ∈ A w.r.t. κ iff τ(B | A) >
τ(B | A ), i.e., iff κ( B  | A) > κ( B  | A ) or κ(B | A) < κ(B | A ).

If P is a standard probability measure on A, then probabilistic positive rele-
vance can be expressed by P(B | A) > P(B) or by P(B | A) > P(B | A ). As long as
all three terms involved are defined, the two inequalities are equivalent. Usually,
then, the first inequality is preferred because its terms may be defined while not
all of the second inequality are defined. If P is a Popper measure, this argument
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does not hold, and then it is easily seen that the second inequality is more ade-
quate, just as in the case of ranking functions.9

Confirmation or support may take four different forms relative to ranking
functions, which are unfolded in

Definition 8: Let κ be a negative ranking function for A, τ the associated two-
sided ranking function, and A, B ∈ A. Then

A is a 

additional
sufficient
necessary
weak

⎧

⎨
⎪⎪

⎩
⎪
⎪

⎫

⎬
⎪⎪

⎭
⎪
⎪

 reason for B w.r.t. κ iff 

τ(B | A) > τ(B | A) > 0
τ(B | A) > 0 ≥ τ(B | A)
τ(B | A) ≥ 0 > τ(B | A)
0 > τ(B | A) > τ(B | A)

⎧

⎨

⎪
⎪

⎩

⎪
⎪

⎫

⎬

⎪
⎪

⎭

⎪
⎪

.

If A is a reason for B, it must obviously take one of these four forms; and the only
way to have two forms at once is by being a necessary and sufficient reason.

Talking of reasons here is, I find, natural, but it stirs a nest of vipers. There is a
host of philosophical literature pondering about reasons, justifications, etc. Of
course, this is a field where multifarious philosophical conceptions clash, and it is
not easy to gain an overview over the fighting parties. Here is not the place for
starting a philosophical argument10, but by using the term ‘reason’ I want at least
to submit the claim that the topic may gain enormously by giving a central place
to the above explication of reasons.

To elaborate only a little bit: When philosophers feel forced to make precise
their notion of a (theoretical, not practical) reason, they usually refer to the notion
of a deductive reason, as fully investigated in deductive logic. The deductive rea-
son relation is reflexive, transitive, and not symmetric. By contrast, definition 7
captures the notion of a deductive or inductive reason. The relation embraces the
deductive relation, but it is reflexive, symmetric, and not transitive. Moreover, the
fact that reasons may be additional or weak reasons according to definition 8 has
been neglected by the relevant discussion, which was rather occupied with neces-
sary and/or sufficient reasons. Pursue, though, the use of the latter terms through-
out the history of philosophy. Their deductive explication is standard and almost
always fits. Often, it is clear that the novel inductive explication given by defini-
                                                  
9 A case in point is the so-called problem of old evidence, which has a simple solution in terms of
Popper measures and the second inequality; cf. Joyce (1999, pp. 203ff.).
10 I attempted to give a partial overview and argument in Spohn (2001a).
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tion 8 would be inappropriate. Very often, however, the texts are open to that in-
ductive explication as well, and systematically trying to reinterpret these old texts
would yield a highly interesting research program in my view.

The topic is obviously inexhaustible. Let me take up only one further aspect.
Intuitively, we weigh reasons. This is a most important activity of our mind. We
do not only weigh practical reasons in order to find out what to do, we also weigh
theoretical reasons. We are wondering whether or not we should believe B, we are
searching for reasons speaking in favor or against B, we are weighing these rea-
sons, and we hopefully reach a conclusion. I am certainly not denying the pheno-
menon of inference which is also important, but what is represented as an infer-
ence often rather takes the form of such a weighing procedure. ‘Reflective equi-
librium’ is a familiar and somewhat more pompous metaphor for the same thing.

If the balance of reasons is such a central phenomenon the question arises: how
can epistemological theories account for it? The question is less well addressed
than one should think. However, the fact that there is a perfectly natural Bayesian
answer is a very strong and more or less explicit argument in favor of Bayesian-
ism. Let us take a brief look at how that answer goes:

Let P be a (subjective) probability measure over A  and let B  be the focal
proposition. Let us look at the simplest case, consisting of one reason A for B and
the automatic counter-reason A  against B. Thus, in analogy to definition 7, P(B |
A) > P(B | A ). How does P balance these reasons and thus fit in B? The answer is
simple, we have:

(12) P(B) = P(B | A) ⋅ P(A) + P(B | A ) ⋅ P( A ).

This means that the probabilistic balance of reason is a beam balance in the literal
sense. The length of the lever is P(B |A) – P(B | A ); the two ends of the lever are
loaded with the weights P(A) and P( A ) of the reasons; P(B) divides the lever into
two parts of length P(B | A) – P(B) and P(B) – P(B | A ) representing the strength
of the reasons; and then P(B) must be chosen so that the beam is in balance. Thus
interpreted (12) is nothing but the law of levers.

Ranking theory has an answer, too, and I am wondering who else has. Ac-
cording to ranking theory, the balance of reasons works like a spring balance. Let
κ be a negative ranking function for A, τ the corresponding two-sided ranking
function, B the focal proposition, and A a reason for B. So, τ(B | A) > τ(B | A ).
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Again, it easily proved that always τ(B | A) ≥ τ(B) ≥ τ(B | A ). But where in be-
tween is τ(B) located? A little calculation shows the following specification to be
correct:

(13) Let x = κ(B | A ) – κ(B | A) and y = κ( B  | A)  – κ( B  | A ). Then
(a) x, y ≥ 0 and τ(B | A) – τ(B | A ) = x + y,
(b) τ(B) = τ(B | A ), if τ(A) ≤ -x,
(c) τ(B) = τ(B | A), if τ(A) ≥ y,
(d) τ(B) = τ(A) + τ(B | A ) + x, if -x < τ(A) < y.

This does not look as straightforward as the probabilistic beam balance. Still, it
is not so complicated to interpret (13) as a spring balance. The idea is that you
hook in the spring at a certain point, that you extend it by the force of reasons, and
that τ(B) is where the spring extends. Consider first the case where x, y > 0. Then
you hook in the spring at point 0 and exert the force τ(A) on the spring. Either,
this force transcends the lower stopping point -x or the upper stopping point y.
Then the spring extends exactly till the stopping point, as (13b+c) say. Or, the
force τ(A) is less. Then the spring extends exactly by τ(A), according to (13d). The
second case is that x = 0 and y > 0. Then you fix the spring at τ(B | A ), the lower
point of the interval in which τ(B) can move. The spring cannot extend below that
point, says (13b). But according to (13c+d) it can extend above, by the force τ(A),
but not beyond the upper stopping point. For the third case x > 0 and y = 0 just
reverse the second picture. In this way, the force of the reason, represented by its
two-sided rank, pulls the two-sided rank of the focal proposition B to its proper
place within the interval fixed by the relevant conditional ranks.

I do not want to assess these findings in detail. You might prefer the probabil-
istic balance of reasons, a preference I would understand. You might be happy to
have at least one alternative model, an attitude I recommend. Or you may search
for further models of the weighing of reasons; in this case, I wish you good luck.
What you may not do is ignoring the issue; your epistemology is incomplete if it
does not take a stand. And one must be clear about what is required for taking a
stand. As long as one considers positive relevance to be the basic characteristic of
reasons, one must provide some notion of conditional degrees of belief, condi-
tional probabilities, conditional ranks, or whatever. Without some well behaved
conditionalization one cannot succeed.
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2.3    The Dynamics of Belief and the Measurement of Belief

Our next point will be to define a reasonable dynamics for ranking functions
that entails a dynamic for belief. There are many causes which affect our beliefs,
forgetfulness as a necessary evil, drugs as an unnecessary evil, and so on. From a
rational point of view, it is scarcely possible to say anything about such changes.11

The rational changes are due to experience or information. Thus, it seems we have
already solved our task: if κ is my present doxastic state and I get informed about
the proposition A, then I move to the conditionalization κA of κ by A. This, how-
ever, would be a bad idea. Recall that we have κA( A ) = ∞, i.e., A is believed with
absolute certainty in κA; no future evidence could cast any doubt on the informa-
tion. This may sometimes happen; but usually information does not come so
firmly. Information may turn out wrong, evidence may be misleading, perception
may be misinterpreted; we should provide for flexibility. How?

One point of our first attempt was correct; if my information consists solely in
the proposition A, this cannot affect my beliefs conditional on A. Likewise, it can-
not affect my beliefs conditional on A . Thus, it directly affects only how firmly I
believe A itself. So, how firmly should I believe A? There is no general answer. I
propose to turn this into a parameter of the information process itself; somehow
the way I get informed about A entrenches A in my belief state with a certain
firmness x. The point is that as soon as the parameter is fixed and the constancy of
the relevant conditional beliefs accepted, my posterior belief state is fully deter-
mined. This is the content of

Definition 9: Let κ be a negative ranking function for A, A ∈ A such that κ(A),
κ( A ) < ∞, and x ∈ R*. Then the A→x-conditionalization κA→x of κ is defined by

κA→x(B) = 
κ (B | A) for B ⊆ A,

κ (B | A) + x for B ⊆ A
⎧
⎨
⎩

 . From this κA→x(B) may be inferred for all

other B ∈ A by the law of disjunction.

Hence, the effect of the A→x-conditionalization is to shift the possibilities in A
(upwards) so that κA→x(A) = 0 and the possibilities in A  (downwards) so that
κA→x( A ) = x. If one is attached to the idea that evidence consists in nothing but a

                                                  
11 Although there is a (by far not trivial) decision rule telling that costless memory is never bad,
just as costless information; cf. Spohn (1978, sect. 4.4).
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proposition, the additional parameter is a mystery. The processing of evidence
may indeed be so automatic that one hardly becomes aware of this parameter.
Still, I find it entirely natural that evidence comes more or less firmly. Suppose,
e.g., my wife is traveling in a foreign country and the train that she intended to
take has a terrible accident. Consider five scenarios: (i) a newspaper reports that
the only German woman on the train is not hurt, (ii) the ambassador calls me and
tells that my wife is not hurt, (iii) I see her on TV shocked, but apparently un-
harmed, (iv) I see her on TV giving an interview and telling how terrible the acci-
dent was and what a great miracle it is that she has survived unhurt, (v) I take her
into my arms (after immediately going to that foreign place). In all five cases I
receive the information that my wife is not hurt, but with varying and plausibly
increasing certainty.

One might object that the evidence and thus the proposition received is clearly
a different one in each of the scenarios. The crucial point, though, is that we are
dealing here with a fixed algebra A of propositions and that we have nowhere
presupposed that this algebra consists of all propositions whatsoever; indeed, that
would be a doubtful presupposition. Hence A may be course-grained and unable
to represent the propositional differences between the scenarios; the proposition in
A which is directly affected in the various scenarios may be just the proposition
that my wife is not hurt. Still the scenarios may be distinguished by the firmness
parameter.

So, the dynamics of ranking function I propose is simply this: Suppose κ is
your prior doxastic state. Now you receive some information A with firmness x.
Then your posterior state is κA→x. Your beliefs change accordingly; they are what
they are according to κA→x. Note that the procedure is iterable. Next, you receive
the information B with firmness y, and so you move to (κA→x)B→y. And so on. This
point will acquire great importance later on.

I should mention, though, that this iterability need not work in full generality.
Let us call a negative ranking function κ regular iff κ(A) < ∞ for all A ≠ ∅. Then
we obviously have that κA→x is regular if κ is regular and x < ∞. Within the realm
of regular ranking functions iteration of changes works unboundedly. Outside this
realm you may get problems with the rank ∞.

There is an important generalization of definition 9. I just made a point of the
fact that the algebra A may be too coarse-grained to propositionally represent all
possible evidence. Why assume then that it is just one proposition A in the algebra
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that is directly affected by the evidence? Well, we need not assume this. We may
more generally assume that the evidence affects some evidential partition E  =
{E1,…,En} ⊆ A of W and assigns some new ranks to the members of the partition,
which we may sum up in a complete ranking function λ on E. Then we may de-
fine the E→λ-conditionalization κE→λ of the prior κ by κE→λ(B) = κ(B | E i) +
λ(Ei) for B ⊆  Ei (i = 1,…,n) and infer κE→λ(B) for all other B by the law of dis-
junction. This is the most general law of doxastic change in terms of ranking func-
tions I can conceive of. Note that we may describe the E→λ-conditionalization of
κ as the mixture of all κEi

 (i = 1,…,n). So, this is a first useful application of mix-
tures of ranking functions.

Here, at last, the reader will have noticed the great similarity of my condition-
alization rules with Jeffrey’s probabilistic conditionalization first presented in
Jeffrey (1965, ch. 11). Indeed, I have completely borrowed my rules from Jeffrey.
Still, let us further defer the comparison of ranking with probability theory. The
fact that many things run similarly does not mean that one can dispense with the
one in favor of the other, as I shall make clear in part 3.

There is an important variant of definition 9. Shenoy (1991), and several au-
thors after him, pointed out that the parameter x as conceived in definition 9 does
not characterize the evidence as such, but rather the result of the interaction be-
tween the prior doxastic state and the evidence. Shenoy proposed a reformulation
with a parameter exclusively pertaining to the evidence:

Definition 10: Let κ be a negative ranking function for A, A ∈ A such that κ(A),
κ( A ) < ∞, and x ∈ R∗. Then the A↑x-conditionalization κA↑x of κ is defined by

κA↑x(B) = 
κ (B | A) − y for B ⊆ A,

κ (B | A) + x − y for B ⊆ A,
⎧
⎨
⎩

 where y = min{κ(A), x}. Again, κA↑x(B)

may be inferred for all other B ∈ A by the law of disjunction.

The effect of this conditionalization is easily stated. It is, whatever the prior ranks
of A and A  are, that the possibilities within A improve by exactly x ranks in com-
parison to the possibilities within A . In other words, we always have τA↑x(A) –
τ(A) = x (in terms of the prior and the posterior two-sided ranking function).

It is thus fair to say that in A↑x-conditionalization the parameter x exclusively
characterizes the evidential impact. We may characterize the A→x-conditionaliza-
tion of definition 9 as result-oriented and the A↑x-conditionalization of definition
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10 as evidence-oriented. Of course, the two variants are easily interdefinable. We
always have κA→x = κA↑y, where y = x – τ(A). Still, it is sometimes useful to
change perspective from one variant to the other.12

For instance, the evidence-oriented version helps to some nice observations.
We may note that conditionalization is reversible: (κA↑x) A ↑x  = κ. So, there is al-
ways a possible second change undoing the first. Moreover, changes always
commute: (κA↑x)B↑y = (κB↑y)A↑x. In terms of result-oriented conditionalization this
law would look more awkward. Commutativity does not mean, however, that one
could comprise the two changes into a single change. Rather, the joint effect of
two conditionalizations according to definition 9 or 10 can in general only be
summarized as one step of generalized E→λ-conditionalization. I think that re-
versibility and commutativity are intuitively desirable.

Change through conditionalization is driven by information, evidence, or per-
ception. This is how I have explained it. However, we may also draw a more phi-
losophical picture, we may also say that belief change according to definition 9 or
10 is driven by reasons. Propositions for which the information received is irrele-
vant do not change their ranks, but propositions for which that information is
positively or negatively relevant do change their ranks. The evidential force pulls
at the springs and they must find a new rest position for all the propositions for or
against which the evidence speaks, just in the way I have described in the previ-
ous section.

This is a strong picture captivating many philosophers. However, I have im-
plemented it in a slightly unusual way. The usual way would have been to attempt
to give some substantial account of what reasons are on which an account of be-
lief dynamics is thereafter based. I have reversed the order. I have first defined
conditionalization in definition 6 and the more sophisticated form in definitions 9
and 10. With the help of conditionalization, i.e., from this account of belief dy-
namics, I could define the reason relation such that this picture emerges. At the
same time this means to dispense with a more objective notion of a reason.
Rather, what is a reason for what is entirely determined by the subjective doxastic
state as represented by the ranking function at hand. Ultimately, this move is
urged by inductive skepticism as enforced by David Hume and reinforced by Nel-

                                                  
12 Generalized probabilistic conditionalization as originally proposed by Jeffrey was result-
oriented as well. However, Garber (1980) observed that there is also an evidence-oriented version
of generalized probabilistic conditionalization.
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son Goodman. But it is not a surrender to skepticism. On the contrary, we are
about to unfold a positive theory of rational belief and rational belief change, and
we shall see how far it carries us.

If one looks at the huge literature on belief change, one finds discussed pre-
dominantly three kinds of changes: expansions, revisions, and contractions. Opin-
ions widely diverge concerning these three kinds. For Levi, for instance, revisions
are whatever results form concatenating contractions and expansions according to
the so-called Levi identity and so investigates the latter (see his most recent ac-
count in Levi 2005). The AGM approach characterizes both, revisions and con-
tractions, and claims nice correspondences back and forth by help of the Levi and
the Harper identity (cf., e.g., Gärdenfors 1988, chs. 3 and 4). Or one might object
to the characterization of contraction, but accept that of revision, and hence reject
these identities. And so forth.

I do not really want to discuss the issue. I only want to point out that we have
already taken a stance insofar as expansions, revisions, and contractions are all
special cases of our A→x–conditionalization. This is easily explained in terms of
result-oriented conditionalization:

If κ(A) = 0, i.e., if A is not disbelieved, then κA→x represents an expansion by A
for any x > 0. If κ( A ) = 0, the expansion is genuine, if κ( A ) > 0, i.e., if A is al-
ready believed in κ, the expansion is vacuous. Are there many different expan-
sion? Yes and no. Of course, for each x > 0 another κA→x results. On the other
hand, one and the same belief set is associated with all these expansions. Hence,
the expanded belief set is uniquely determined.

Similarly for revision. If κ(A) > 0, i.e., if A is disbelieved, then κA→x represents
a genuine revision by A for any x > 0. In this case, the belief in A  must be given
up and along with it many other beliefs; instead, A must be adopted together with
many other beliefs. Again, there are many different revisions, but all of them re-
sult in the same revised belief set.

Finally, if κ(A) = 0, i.e., if A is not disbelieved, then κA→0 represents contrac-
tion by A. If κ( A ) > 0, i.e., if A is even believed, the contraction is genuine; then
belief in A is given up after contraction and no new belief adopted. If κ( A ) = 0,
the contraction is vacuous; there was nothing to contract in the first place. If κ(A)
> 0, i.e., if A  is believed, then κA→0 = κ A→0 rather represents contraction by A .

As I observed in Spohn (1988, footnote 20), it is easily checked that expan-
sions, revisions, and contractions thus defined satisfy all of the original AGM
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postulates (K*1-8) and (K–1-8) (cf. Gärdenfors 1988, pp. 54-56 and 61-64) (when
they are translated from AGM’s sentential framework into our propositional or
set-theoretical one). For those like me who accept the AGM postulates this is a
welcome result. For the others, it means finding fault with A→x-conditionaliza-
tion or with ranking theory or reconsidering their criticism of these postulates.

For the moment, though, it may seem that we have simply reformulated AGM
belief revision theory. This is not so; A→x-conditionalization is much more gen-
eral than the three AGM changes. This is clear from the fact that there are many
different expansions and revisions which the AGM account cannot distinguish. It
is perhaps clearest in the case of vacuous expansion which is no change at all in
the AGM framework, but may well be a genuine change in the ranking frame-
work, a redistribution of ranks which does not affect the surface of beliefs. An-
other way to state the same point is that weak and additional reasons also drive
doxastic changes, which, however, are inexpressible in the AGM framework.

This is not yet the core of the matter, though. The core of the matter is iterated
belief change, which I have put into the center of my considerations in Spohn
(1988). As I have argued there, AGM belief revision theory is essentially unable
to account for iterated belief change. I take almost 20 years of unsatisfactory at-
tempts to deal with that problem as confirming my early assessment. By contrast,
changes of the type A→x-conditionalization are obviously infinitely iterable.

In fact, my argument in Spohn (1988) was stronger. It was that if AGM belief
revision theory is to be improved so as to adequately deal with the problem of
iterated belief change, ranking theory is the only way to do it. I always considered
this to be a conclusive argument in favor of ranking theory.

This may be so. Still, the AGM theorists, and others as well, remained skepti-
cal. “What exactly is the meaning of numerical ranks?” they asked. One may well
acknowledge that the ranking apparatus works in a smooth and elegant way, has a
lot of explanatory power, etc. But all this does not answer this question. Bayesians
have met this challenge. They have told stories about the operational meaning of
subjective probabilities in terms of betting behavior, they have proposed an in-
genious variety of procedures for measuring this kind of degrees of belief. One
would like to see a comparative achievement for ranking theory.

It exists. Matthias Hild first presented it in a number of talks around 1997. I in-
dependently discovered it later on and presented it in Spohn (1999), a publication
on the web. So far, this is the only public presentation, admittedly an awkward
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one. There is no space here to fully develop the argument. However, the basic
point can easily be indicated so as to make the full argument at least plausible.

The point is that ranks do not only account for iterated belief change, but can
reversely be measured thereby. This may at first sound unhelpful. A→x-
conditionalization refers to the number x; so even if ranks can somehow be meas-
ured with the help of such conditionalizations, we do not seem to provide a fun-
damental measurement of ranks. Recall, however, that contraction by A (or A ) is
just A→0-conditionalization and is thus free of a hidden reference to numerical
ranks; it only refers to rank 0 which has a clear operational or surface interpreta-
tion in terms of belief. Hence, the idea is to measure ranks by means of iterated
contractions; if that works, it is really a fundamental measurement of ranks which
is based only on the beliefs one now has and one would have after various iterated
contractions.13

How does the idea work? Recall our observation above that the positive rank of
a material implication A→B is the sum of the degree of belief in B given A and the
degree of belief in the vacuous truth of the A→B, i.e., of A . Hence, after contrac-
tion by A , belief in the material implication A→B is equivalent to belief in B
given A, i.e., to the positive relevance of A to B. This is how the reason relation,
i.e., positive relevance, manifests itself in beliefs surviving contractions. Next
observe that positive relevance can be expressed by certain inequalities for ranks,
by certain differences between ranks being positive. This calls for applying the
theory of difference measurement, as paradigmatically presented by Krantz et al.
(1971, ch. 4).

This application is indeed successful. The resulting theorem says the following:
Iterated contractions behave thus and thus if and only if differences between ranks
behave thus and thus; and if differences between ranks behave thus and thus, then
there is a ranking function measured on a ratio scale, i.e., unique up to a multipli-
cative constant, which exactly represents these differences.

On the one hand, this provides for an axiomatization of iterated contraction
(going beyond Darwiche, Pearl (1997), in my view so far the best characterization
of iterated revision and contraction on the level of beliefs); this axiomatization is
                                                  
13 In section 2.1 I have suggested that one need not confine unopinionatedness to the two-sided
rank 0, one may as well represent it by two-sided ranks within an interval [-z, z]. Note, however,
that this suggestion deprives contraction of its uniqueness. Rather, any kind of A→x-conditio-
nalization would amount to a contraction as long as x  ≤ z. Hence, the measurement idea we are
about to pursue would then become problematic. It works properly only if unopinionatedness is
confined to the two-sided rank 0, as originally presented.
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assessible on intuitive or other grounds. On the other hand, one knows that if one
accepts this axiomatization of iterated contraction one is bound to accept ranks as
I have proposed them. Ranks do not fall from the sky, then; on the contrary, they
uniquely represent contraction behavior.

2.4    Conditional Independence and Bayesian Nets

It is worthwhile looking a bit more at the details of belief formation and revi-
sion. For this purpose we should give more structure to propositions. They have a
Boolean structure so far, but we cannot yet compose them from basic propositions
as we intuitively do. A common formal way to do this is to generate propositions
from (random) variables. I identify a variable with the set of its possible values. I
intend variables to be specific ones. E.g., the temperature at March 15, 2005, in
Konstanz (not understood as the actual temperature, but as whatever it may be,
say, between -100 and + 100°C) is such a variable. Or, to elaborate, if we consider
each of the six general variables temperature, air pressure, wind, humidity, preci-
pitation, cloudiness at each of the 500 weather stations in Germany twice a day at
each of the 366 days of 2004, we get a collection of 6×500×732 specific variables
with which we can draw a detailed picture of the weather in Germany in 2004.

So, let V be the set of specific variables considered, where each v ∈ V is just an
at least binary set. A possible course of events or a possibility, for short, is just a
selection function w for V, i.e., a function w on V such that w(v) ∈ v for all v ∈W.
Hence, each such function specifies a way how the variables in V may realize. The
set of all possibilities is then simply W = ×V. As before, propositions are subsets
of W. Now, however, we can say that propositions are about certain variables. Let
X ⊆ V. Then we say that w, w' ∈ W agree on X iff w(v) = w'(v) for all v ∈ X. And
we define that a proposition A is about X ⊆ V iff, for each w in A, all w' agreeing
with w on X are in A as well. Let A(X) be the set of propositions about X. Clearly,
A(X) ⊆ A(Y) for X ⊆ Y, and A = A(V). In this way, propositions are endowed with
more structure. We may conceive of propositions about single variables as basic
propositions; the whole algebra A is obviously generated by such basic proposi-
tions (at least if V is finite). So much as preparation for the next substantial step.

This step consists in more closely attending to (doxastic) dependence and inde-
pendence in ranking terms. In a way, we have already addressed this issue: de-
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pendence is just positive or negative relevance, and independence is irrelevance.
Still, let me state

Definition 11: Let κ be a negative ranking function for A and A, B, C ∈ A. Then A
and B are independent w.r.t. κ, i.e., A ⊥ B, iff τ(B | A) = τ(B | A ), i.e., iff for all A'
∈ {A, A } and B' ∈ {B, B } κ( A' ∩ B') = κ( A') + κ( B'). And A and B are inde-
pendent given C w.r.t. κ, i.e., A ⊥ B / C, iff A and B are independent w.r.t. κC.

(Conditional) independence is symmetric. If A is independent from B, A  is so
as well. If A is independent from B and A' disjoint from A, then A' is independent
from B iff A ∪ A' is. ∅ and W are independent from all propositions. And so on.

The more interesting notion, however, is dependence and independence among
variables. Look at probability theory where research traditionally and overwhelm-
ingly focused on independent series of random variables and on Markov processes
which are characterized by the assumption that past and future variables are inde-
pendent given the present variable. We have already prepared for explaining this
notion in ranking terms as well.

Definition 12: Let κ be a ranking function for A = A(V), and let X, Y, Z ⊆ V be
sets of variables. Then X and Y are independent w.r.t. κ, i.e., X ⊥ Y, iff A ⊥ B for
all A ∈ A(X) and all B ∈ A(Y). Let moreover Z(Z) be the set of atoms of A(Z), i.e.,
the set of the logically strongest, non-empty proposition in A(Z). Then X and Y are
independent given Z w.r.t. κ, i.e., X ⊥ Y / Z, iff A ⊥ B / C for all A ∈ A(X), B ∈
A(Y), and C ∈ Z(Z).

In other words, X  ⊥ Y / Z iff all propositions about X are independent from all
propositions about Y given any full specification of the variables in Z. Conditional
independence among sets of variables obey the following laws:

(14) Let κ be a negative ranking function for A(V). Then for any mutually dis-
joint X, Y, Z, U ⊆ V:
(a) if X ⊥ Y / Z, then Y ⊥ X / Z [Symmetry],
(b) if X ⊥ Y ∪ U / Z, then X ⊥ Y / Z and X ⊥ U / Z [Decomposition],
(c) X ⊥ Y ∪ U / Z, then X ⊥ Y / Z ∪ U [Weak Union],
(d) X ⊥ Y / Z and X ⊥ U / Z ∪ Y, then X ⊥ Y ∪ U / Z [Contraction],



26

(e) if κ is regular and if X ⊥ Y / Z ∪ U and X ⊥ U / Z ∪ Y,
then X ⊥ Y ∪ U / Z [Intersection].

These are nothing but what Pearl (1988, p. 88) called the graphoid axioms; the
labels are also his (cf. p. 84). That probabilistic conditional independence satisfies
these laws was first proved in Spohn (1978, pp. 102f.) and Dawid (1979). The
ranking theorem (14) was proved in Spohn (1983, sect. 5.3 and 1988, sect. 6). I
conjectured in 1976, and Pearl conjectured, too, that the graphoid axioms give a
complete characterization of conditional independence. We were disproved, how-
ever, by Studeny (1989) w.r.t. probability measures, but the proof carries over to
ranking functions (cf. Spohn 1994a). Under special conditions, though, the gra-
phoid axioms are complete, as was proved by Geiger, Pearl (1990) for probability
measures and by Hunter (1991) for ranking functions (cf. again, Spohn 1994a).

I am emphasizing all this, because the main purport of Pearl’s path-breaking
book (1988) is to develop what he calls the theory of Bayesian nets, a theory that
has acquired great importance and is presented in many text books (see, e.g., Jen-
sen 1996 or Neapolitan 1990). Pearl makes very clear that the basis of this theory
consists in the graphoid axioms; these allow representing the conditional depend-
ence and independence among sets of variables by Bayesian nets, i.e., by directed
acyclic graphs, the nodes of which are variables. A vertex u → v of the graph then
represents the fact that v is dependent on u given all the variables preceding v in
some given order, for instance, temporally preceding v. A major point of this the-
ory is that it can describe in detail how probabilistic change triggered at some
node in the net propagates throughout the net. All this is not merely mathematics,
it is intuitively sensible and philosophically highly significant; for instance, infer-
ence acquires a novel and fruitful meaning in the theory of Bayesian nets.

Of course, my point now is that all these virtues carry over to ranking theory
with the help of observation (14). The point is obvious, but hardly elaborated; that
should be done. It will thus turn out that ranks and hence beliefs can also be repre-
sented and computationally managed in that kind of structure.

This is not yet the end of the story. Spirtes et al. (1993) have made amply clear
that probabilistic Bayesian nets have a most natural causal interpretation; a vertex
u → v then represents that the variable v directly causally depends on the variable
u. Spirtes et al. secure this interpretation, i.e., this connection of probability and
causality, through their three basic axioms: the causal Markov condition, the
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minimality condition, and, less importantly, the faithfulness condition (cf. Spirtes
et al. 1993, sect. 3.4). And they go on to develop a really impressive account of
causation and causal inference on the basis of these axioms and thus upon the the-
ory of Bayesian nets.

Again, all this carries over to ranking theory. Indeed, this is what ranks were
designed for in the first place. In Spohn (1983) I gave an explication of probabil-
istic causation that entails the causal Markov condition and the minimality condi-
tion, and also Reichenbach’s principle of the common cause, as I observed later in
Spohn (1994b).14 And I was convinced of the idea that, if the theory of causation
is bound to bifurcate into a deterministic and a probabilistic branch, these two
branches must at least be developed in perfect parallel. Hence, I proposed ranking
theory in Spohn (1983) in order to realize this idea.15 Of course, one has to discuss
how adequate that theory of deterministic causation is, just as the adequacy of the
causal interpretation of Bayesian nets is open to discussion. Here, my point is only
that this deep philosophical perspective lies within reach of ranking theory; it is
what originally drove that theory.

2.5     Objective Ranks?

Now, a fundamental problem of ranking theory is coming into sight. I have
emphasized that ranking functions represent rational beliefs and their rational dy-
namics and are thus entirely subject-bound. You have your ranking function and I
have mine. We may or may not harmonize them. In any case, they remain our
subjective property.

I have also emphasized the analogy to probability theory. There, however, we
find subjective and objective probabilities. There are radicals who deny the one or
the other kind of probability; and the nature of objective probabilities may still be
ill-understood. So, we certainly enter mined area here. Still, the predominant opin-
ion is that both, the subjective and the objective notion, are somehow meaningful.

Thus, we face a tension. It increases with our remarks about causation. I said I
have provided an analysis of causation in ranking terms. If this analysis were to
go through, the consequence would be that causal relations obtain relative to a
                                                  
14 I have analyzed the relation between Spirtes’ et al. axiomatic approach to causation and my
definitional approach a bit more thoroughly in Spohn (2001b).
15 For a recent presentation of the account of deterministic causation in terms of ranking functions
and its comparison in particular with David Lewis’ counterfactual approach see Spohn (2005b).
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ranking function, relative to the doxastic state of a subject. David Hume endorsed
and denied this consequence at the same time; he was peculiarly ambiguous. This
ambiguity must, however, be seen as his great achievement with which all phi-
losophers after him had and still have to struggle. In any case, it will not do to turn
causation simply into a subjective notion, as I seem to propose. If my strategy is
to work at all, then the actually existing causal relations have to be those obtaining
relative to the objectively correct ranking function. Is there any way to make sense
of this phrase? (It is not even a notion yet.)

Yes, partially. The beginning is easy. Propositions are objectively true or false,
and so are beliefs. Hence, a ranking function may be called objectively true or
false as well, according to the beliefs it embodies. However, this is a very small
step. Ranking functions can agree in their belief sets, i.e., in the propositions re-
ceiving rank 0, and yet widely diverge in the other ranks and thus in inductive and
dynamic behavior. So, the suggested beginning is a very small step, indeed.

Taking a bigger step is more difficult. In my (1993) I have made a precise and
detailed proposal; there is no space to repeat it here. Let me only briefly explain
the basic idea. It is simply this: If propositions and beliefs are objectively true or
false, then other features of ranking functions can be objectified to the extent to
which these features are uniquely reflected in the associated belief sets. One con-
structive task is then to precisely define the content of the phrase ‘uniquely re-
flected’ and the restrictions to be imposed. The other constructive task is to inqui-
re which specific feature can in this sense be objectified to which specific extent.

Very roughly, the results in my (1993) are this: First, positive relevance, i.e.,
the reason relation, is not objectifiable in this sense. Second, whenever A is a suf-
ficient or necessary direct cause of B w.r.t. κ, there is an associated material im-
plication of the form “if the relevant circumstances obtain, then if A, then B, or,
respectively, if A , then B ”. I call the conjunction of all these material implica-
tions the causal law associated with κ. The causal law is a proposition, an objec-
tive truth-condition. The point now is that there is a rich class of ranking functions
which, under certain presuppositions, can uniquely be reconstructed from their
causal laws and which may thus be called causal laws as well. In this sense and to
this extent, causal relations do obtain objectively.

A special case that I have worked on only recently deals with deterministic
laws. A strict law is, by all means, a regularity, an invariable obtaining of a certain
type of state of affairs. But not any regularity is a law. What I have proposed in
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Spohn (2002) is that a law is an independent and identically distributed (infinite)
repetition of the type of state in question or, rather, in order for that phrase to
make sense, an independent and identically distributed repetition of a certain rank-
ing assessment of that type of state. Hence, a law is a certain kind of ranking func-
tion. This sounds weird, because a law thus turns into a kind of doxastic attitude.
The literature on lawlikeness shows, however, that this is not so absurd a direction
(cf., e.g., Lange 2000). The main point, though, is that the ranking functions ex-
pressing deterministic laws are again of the objectifiable kind. So, there is a way
of maintaining even within this account that laws obtain mind-independently.

In fact, according to what I have sketched, a deterministic law is the precise
ranking analogue of a statistical law. De Finetti (1937) has proposed an ingenious
way of eliminating objective probabilities and statistical laws by showing, in his
famous representation theorem, that beliefs (i.e., subjective probabilities) about
statistical laws (describing an infinite sequence of independent and identically
distributed trials) are strictly equivalent to symmetric or exchangeable subjective
probabilities for these trials and that experience makes these symmetric probabili-
ties converge to the true statistical law. The eliminativist intention of the story is
mostly dismissed today; rather, objective probabilities are taken seriously. Still, de
Finetti’s account has remained a paradigm story about the relation between sub-
jective and objective probabilities.

I am mentioning all this because this paradigm story can be directly transferred
to ranking theory. Let κ be any ranking function for an infinite sequence of trials
which is regular and symmetric and according to which the outcome of a certain
trial is not negatively relevant to the same outcome in the next trial. Then κ is a
unique mixture of deterministic laws for that sequence of trials in the above-
mentioned sense, and experience makes κ converge to the true deterministic law
(cf. Spohn 2005a for all this).

This may suffice as a long enough overview of the basics of ranking theory and
its elaboration into various directions. In a way, my overall argument in part 4 of
this essay, when I shall make a bit more detailed comparative remarks about other
members of the Baconian probability family, should be clear by now: Bayesian
epistemology has enormous powers and virtues and rich details and ramifications.
Small wonder that Pascal by far outstripped Bacon. In a nutshell, I have explained
that many essential virtues can be duplicated in ranking theory; indeed, the dupli-
cation can stand on their own, having an independent significance. Bacon can
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catch up with Pascal. My rhetorical question will then be which other versions of
Baconian probability is able to come up with similar results.

Still, one might suspect that I can claim these successes only by turning Bacon
into a fake Pascal. I have never left the Bayesian home, it may seem. Hence, one
might even suspect that ranking theory is superfluous and may be reduced to the
traditional Bayesian point of view. In other words, it is high time to study more
closely the relation between probability and ranking theory. This will be our task
in the next part.

3. Ranks and Probabilities

The relation between probabilities and ranks is surprisingly complex and fasci-
nating. I first turn to the more formal aspects of the comparison before discussing
the philosophical aspects.

3.1     Formal Aspects

The reader will have observed since long why ranks behave so much like prob-
abilities. There is obviously a simple translation of probability into ranking the-
ory: translate the sum of probabilities into the minimum of ranks, the product of
probabilities into the sum of ranks, and the quotient of probabilities into the dif-
ference of ranks. Thereby, the probabilistic law of additivity turns into the law of
disjunction, the probabilistic law of multiplication into the law of conjunction (for
negative ranks), and the definition of conditional probabilities into the definition
of conditional ranks. If the basic axioms and definitions are thus translated, then it
is small wonder that the translation generalizes; take any probabilistic theorem,
apply the above translation to it, and you almost surely get a ranking theorem.
This translation is obviously committed to negative ranks; therefore I always fa-
vored negative over positive ranks. However, the translation is not fool-proof; see,
e.g., Spohn (1994a) for slight failures concerning conditional independence (be-
tween sets of variables) or Spohn (2005a) for slight differences concerning posi-
tive and non-negative instantial relevance. The issue is not completely cleared up.

Is there a deeper reason why this translation works so well?  Yes, of course.
The translation of products and quotients of probabilities suggests that negative
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ranks simply are the logarithm of probabilities (with respect to some base < 1).
This does not seem to fit with the translation of sums of probabilities. But it does
fit when the logarithmic base is taken to be some infinitesimal i (since for two
positive reals x ≤ y  ix + iy = ix-j for some infinitesimal j). That is, we may under-
stand ranks as real orders of magnitude of non-standard probabilities. This is the
basic reason for the pervasive analogy.

Does this mean that ranking epistemology simply reduces to non-standard
Bayesianism? This may be one way to view the matter. However, I do not par-
ticularly like this perspective. Bayesian epistemology in terms of non-standard
reals is really non-standard. Even its great proponent, David Lewis, mentions the
possibility only in passing (for the first time in 1980, p. 268). It is well known that
both, non-standard analysis and its continuation as hyperfinite probability theory,
have their intricacies of their own, and it is highly questionable from an episte-
mological point of view whether one should buy these intricacies. Moreover, even
though this understanding of ranks is in principle feasible, it is nowhere worked
out in detail. Such an elaboration should also explain the slight failures of the
above translation. Hence, even formally the relation between ranks and non-
standard probabilities is not fully clear. Finally, there are algebraic incoherencies.
As long as the probabilistic law of additivity and the ranking law of disjunction
are finitely restricted, there is no problem. However, it is very natural to conceive
probability measures as σ-additive (although there is a big argument about this
point), whereas it is very natural to conceive of ranking functions as complete (as
I have argued). This is a further disanalogy, which is not resolved, as far as I see,
by the suggested understanding of ranks.

All in all, I prefer to stick to the realm of standard reals. Ranking theory is a
standard theory, and it should be compared to other standard theories. So, let us
put the issue of hyperfinite probability theory to one side.

Let us instead pursue another line of thought. I have heavily emphasized that
the fundamental point of ranking theory is to represent the statics and the dynam-
ics of belief or of taking-to-be-true; it is the theory of belief. So, instead of in-
quiring the relation between ranks and probabilities we might as well ask the more
familiar question about the relation between belief and probability.

This relation is well known to be problematic. One naive idea is that belief
vaguely marks some threshold in probability, i.e., that A is believed iff its subjec-
tive probability is greater than 1 – ε for some small ε. But this will not do, as is
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hightlighted by the famous lottery paradox (see Kyburg 1961, p. 197). According
to this idea you may believe A and believe B, but fail to believe A & B. However,
this amounts to saying that you do not know the truth table of conjunction, i.e.,
that you have not grasped conjunction at all. So, this idea is a bad one, as almost
all commentators to the lottery paradox agree. One might think then about more
complicated relations between belief and probability, but I confess not to have
seen any convincing one.

The simplest escape from the lottery paradox is, of course, to equate belief with
probability 1. This proposal faces two further problems, though. First, it seems
intuitively inadequate to equate belief with maximal certainty in probabilistic
terms; beliefs need not be absolutely certain. Secondly, but this is only a theoreti-
cal version of the intuitive objection, only belief expansion makes sense according
to this proposal, but no genuine belief revision. Once you assign probability 1 to a
proposition, you can never get rid of it according to all rules of probabilistic
change. This is obviously inadequate; of course, we can give up previous beliefs
and easily do all the time.

Jeffrey’s radical probabilism (1991) is a radical way out. According to Jeffrey,
all subjective probabilities are regular, and his generalized conditionalization pro-
vides a dynamics moving within regular probabilities. However, Jeffrey’s picture
and the proposal of equating belief with probability 1 do not combine; then we
would believe in nothing but the tautology. Jeffrey did not deny beliefs, but he
denied their relevance for epistemology; this is what the adjective ‘radical’ in ef-
fect signifies. He did not believe in any positive relation between belief and prob-
ability, and probability is all you need – a viable conclusion from the lottery para-
dox perhaps, though only as a last resort.

The point that probability theory cannot account for belief revision may appar-
ently be dealt with by an expansion of the probabilistic point of view, namely by
resorting to Popper measures. These take conditional probability as the basic no-
tion, and thus probabilities conditional on propositions having absolute probability
0 may be well defined. That is, you may initially believe A, i.e., assign probability
1 to A, and still learn that A , i.e., conditionalize w.r.t. A , and thus move to poste-
rior probabilities and even beliefs denying A. In this way, one can stick to the
equation of belief with probability 1 and escape the above objection. Have we
finally reached a stable position?
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No, we have not. One point of Spohn (1986) was to rigorously show that AGM
belief revision is just the qualitative counterpart of Popper measures. Conversely,
this entails that the inability of AGM belief revision theory to model iterated be-
lief revision, which I criticized in my (1988), holds for Popper measures as well.
In fact, Harper (1976) was the first to note this problem vis à vis Popper measures,
and thus I became aware of the problem and noticed the parallel.

Harper proposed a very complicated solution to the problem that is, as far as I
know, not well received; but it may be worth revisiting. My conclusion was a dif-
ferent one. If AGM belief revision theory is incomplete and has to be evolved into
ranking theory, the probabilistic point of view needs likewise to get further ex-
panded. We need something like probabilified ranks or ranked probabilities; it is
in terms of them that we can unrestrictedly explain iterated probabilistic change.

A ranking function associates with each rank a set of propositions having that
rank. A ranked probability measure associates with each rank an ordinary prob-
ability measure. The precise definition is straightforward. Hence, I confined my-
self to mentioning the idea in my (1988, sect. 7); only in my (2005c) I took the
trouble to explicitly introduce it. One should note, though, that as soon as one
assumes the probability measures involved to be σ-additive, one again forces the
ranks to be well-ordered (cf. Spohn 1986); this is why in my (2005c) only the
probabilification of complete ranking functions is defined.

One may say that ranking theory thus ultimately reduces to probability theory.
I find this misleading, however. What I have just sketched is rather a unification
of probability and ranking theory; after all, we have employed genuine ranking
ideas in order to complete the probabilistic point of view. The unification is in-
deed a powerful one; all the virtues of standard Bayesianism which I have shown
to carry over to ranking theory distinguish this unification as well. It provides a
unified account of confirmation, of lawlikeness, even of causation. It appears to
be a surprising, but most desirable wedding of Baconian and Pascalian probabil-
ity. I shall continue on the topic in the next section.

The previous paragraphs again urge the issue of hyperfinite probability; ranked
probabilities look even more like probabilities in terms of non-standard reals.
However, I cannot say more than I already did; I recommend the issue for further
investigation.16

                                                  
16 For quite a different way of relating probabilities and ranks appealing neither to infinitesimals
nor to Popperian conditional probabilities see Giang, Shenoy (1999).
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I should use the occasion for clarifying a possible confusion, though. McGee
(1994, pp. 181ff.) showed that Popper measures correspond to non-standard prob-
ability measures in a specific way. Now, I have suggested that ranked probabili-
ties do so as well. However, my (1986 and 1988) together entail that ranked prob-
abilities are more general than Popper measures. These three assertions do not fit
together. Yet, the apparent conflict is easily dissolved. The correspondence prov-
ed by McGee is not a unique one. Different non-standard probability measures
may correspond to the same Popper measure, just as different ranked probabilities
may. Hence, if McGee says that the two approaches, Popper’s and the non-stand-
ard one, “amount to the same thing” (p. 181), this is true only for the respects
McGee is considering, i.e., w.r.t. conditional probabilities. It is not true for the
wider perspective I am advocating here, i.e., w.r.t. probability dynamics.

3.2     Philosophical Aspects

The relation between belief and probability is not only a formal issue, it is
philosophically deeply puzzling. It would be disturbing if there should be two (or
more) unrelated ways of characterizing our doxastic states.

The nicest option would be reductionism, i.e., reducing one notion to the other.
This can only mean reducing belief to probability. As we have seen, however, this
option seems barred by the lottery paradox. Another option is eliminativism as
most ably defended in Jeffrey’s radical probabilism also mentioned above. This
option is certainly viable and most elegant. Still, I find it deeply unsatisfactory; it
is unacceptable that our talk of belief should merely be an excusable error ulti-
mately to be eliminated. Thus, both versions of monism seem excluded.

Hence, we have to turn to dualism, and then interactionism may seem the most
sensible position. Of course, everything depends on the precise form of interaction
between belief and probability. In Spohn (2005c) I had an argument with Isaac
Levi whom I there described as the champion of interactionism. My general expe-
rience, though, is that belief and probability are like oil and water; they do not mix
easily. Quite a different type of interactionism is represented by Hild (t.a.) who
has many interesting things to say about how ranking and probability theory do
mesh, indeed how heavily ranking ideas are implicitly used in statistical method-
ology. I do not have space to assess this type of interactionism.
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When the fate of interactionism is unclear one might hope to return to reduc-
tionism and thus to monism, not in the form of reducing belief to probability, but
in the form of reducing both to something third. This may be hyperfinite prob-
ability, or it may be ranked probabilities as suggested above. However, as already
indicated, I consider this to be at best a formal possibility with admittedly great
unifying formal power. Philosophically, I am not convinced. It is intuitively sim-
ply inadequate to equate belief with (almost) maximal probabilistic certainty, i.e.,
with probability 1 (minus an infinitesimal), even if this does not amount to unre-
visability within these unifications. This intuition has systematic counterparts. For
centuries, the behavioral connection of subjective probabilities to gambling and
betting has been taken to be fundamental; many hold that this connection provides
the only explanation of subjective probabilities. This fundamental connection does
not survive these unifications. According to them, I would have to be prepared to
bet my life on my beliefs; but this is true only of very few of my many beliefs. So,
there are grave frictions that should not be plastered by formal means.

In view of all this, I have always preferred separatism, at least methodologi-
cally.  If monism and interactionism are problematic, then belief and probability
should be studied as two separate fields of interest. I sense the harshness of this
position; this is why I am recommending it so far only as a methodological one
and remain unsure about its ultimate status. However, the harshness is softened by
the formal parallel which I have extensively exploited and which allows formal
unification. Thus, separatism in effect amounts to parallelism, at least if belief is
studied in ranking terms. Indeed, the effectiveness of the parallel sometimes
strikes me as a pre-established harmony.

Let me pursue, in this spirit, the philosophical comparison between ranks and
standard probabilities. I have already emphasized the areas in which the formal
parallel also makes substantial sense: confirmation, causation, etc. Let us now fo-
cus on three actual or apparent substantial dissimilarities, which in one or the
other way concern the issue what our doxastic states have to do with reality.

The first aspect of this issue is the truth connection; ranks are related to truth in
a way in which probabilities are not. This is the old point all over again. Ranks
represent beliefs which are true or false, whereas subjective probabilities do not
represent beliefs and may be assessed in various ways, as well-informed, as rea-
sonable, but never as true or false. Degrees of belief may perhaps conform to de-
grees of truthlikeness; however, it is not clear in the first place whether degrees of
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truthlikeness behave like probabilities (cf. Oddie 2001). Or degrees of belief may
conform to what Joyce (1998) calls the norm of gradational accuracy; and he gi-
ves an interesting argument to the effect that degrees of belief then have to behave
like probabilities.17 Such ideas are at best a weak substitute, however; they never
yield an application of truth in probability theory as we have it in ranking theory.

This is a clear point in favor of ranking theory. And it is rich of consequences.
It means that ranking theory, in contrast to probability theory, is able to connect
up with traditional epistemology. For instance, Plantinga (1993, chs. 6 and 7) de-
spairs of finding insights in Bayesianism he can use and dismisses it, too swiftly I
find. This would have been different with ranking theory. The reason why ranking
theory is connectible is obvious. Traditional epistemology is interested in knowl-
edge, a category entirely foreign to probability theory; knowledge, roughly, is
justified true belief and thus analyzed by notions within the domain of ranking
theory. Moreover, the notion of justification has become particularly contested in
traditional epistemology; one focal issue was then to give an account of the truth-
conduciveness of reasons, again notions within the domain of ranking theory.

I am not claiming actual epistemological progress here. But I do claim an ad-
vantage of ranking over probability theory, I do claim that traditional epistemol-
ogy finds in ranking theory adequate formal means for discussing its issues, and
using such means is something I generally recommend as a formal philosopher.

The second aspect is the behavioral connection. Our doxastic states make some
actions rational and others irrational, and our theories have to say which. Here,
probability theory seems to have a clear advantage. The associated behavioral the-
ory is, of course, decision theory with its fundamental principle of maximizing
conditional expected utility. The power of this theory need not be emphasized
here. Is there anything comparable on offer for ranking theory?

This appears excluded, for the formal reason that there is a theory of integra-
tion and thus of expectation in probabilistic, but none in ranking terms; this is at
least what I had thought all along. However, the issue has developed. There are
various remarkable attempts of stating a decision theory in terms of non-probabi-
listic or non-additive representations of degrees of belief employing the more
general Choquet theory of integration.18 Indeed, there is one for ranking theory as
                                                  
17 Cf., however, Maher’s (2002) criticism of Joyce’s argument.
18 Economists inquired the issue; see, e.g., Gilboa (1987), Schmeidler (1989), Jaffray (1989), Sa-
rin, Wakker (1992) for early contributions, and Wakker (2005) for a recent one. The AI side con-
curs; see, e.g., Dubois, Prade (1995), Brafman, Tennenholtz (2000), and Giang, Shenoy (2005).
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well. Giang, Shenoy (2000) translate the axiomatic treatment of utility as it is
given by Luce, Raiffa (1957, sect. 2.5) in terms of simple and compound lotteries
directly into the ranking framework, thus developing a notion of utility fitting to
this framework. These attempts doubtlessly deserve further scrutiny (cf. also
Halpern 2003, ch. 5).

Let me raise, though, another point relating to this behavioral aspect. Linguistic
behavior is unique to humans and a very special kind of behavior. Still, one may
hope to cover it by decision theoretic means, too. Grice’s intentional semantics
employs a rudimentary decision theoretic analysis, and Lewis’ (1969) theory of
conventions uses game (and thus decision) theoretic methods in a very sophisti-
cated way. However, even Lewis’ account of coordination equilibrium may be
reduced to a qualitative theory (in Lewis (1975) he explicitly uses only qualitative
terminology). In fact, the most primitive linguistic behavioral law is the disquota-
tion principle: if a seriously and sincerely utters “p”, then a believes that p.19 The
point is that these linguistic behavioral laws and in particular the disquotation
principle is stated in terms of belief. There is no probabilistic version of the dis-
quotation principle, and it is unclear what it could be. The close relation between
belief and meaning is obvious and undoubted, though perhaps not fully under-
stood in the philosophy of language. I am not suggesting that there is a linguistic
pragmatics in terms of ranking functions; there is none yet. I only want to point
out that the standing of ranking theory concerning this behavioral aspect is at least
promising.

There is a third and final aspect, again apparently speaking in favor of prob-
ability theory. We do not only make decisions with the help of our subjective
probabilities, we also do statistics. That is, we find a lot of relative frequencies in
the world, and they are closely related to probabilities. We need not discuss here
the exact nature of this relation. Concerning objective probabilities, it is exten-
sively discussed in the debate about frequentism, and concerning subjective prob-
abilities it is presumably best captured in Reichenbach’s principle postulating that
our subjective probabilities should rationally converge to the observed relative
frequencies. What is clear, in any case, is that in some way or other relative fre-
quencies provide a strong anchoring of probabilities in reality from which the

                                                  
19 If a speaks a foreign language, the principle takes a more complicated, but obvious form. There
is also a disquotation principle for the hearer, which, however, requires a careful exchange of the
hearer’s and the speaker’s role.
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powerful and pervasive application of statistical methods derives. Subjective pro-
babilities are not simply free-floating in our minds.

For many years I thought that this is another important aspect in which ranking
theory is inferior to probability theory. Recently, though, I have become more
optimistic. Not that there would be any statistics in ranking terms20; I do not see
ranks related to relative frequencies. However, a corresponding role is played by
the notion of exception. In section 2.5, I left the precise account of objectifiable
ranking functions in the dark. If one studies that account more closely, though,
one finds that these objectifiable ranking functions, or indeed the laws as I have
indicated them in section 2.5, are exception or fault counting functions. The rank
assigned to some possible world by such a ranking function is just the number of
exceptions from the law embodied in this function that occur in this world.

This is a dim remark so far, and here is not the place to elaborate on it. Still, I
find the opposition of exceptions and relative frequencies appealing. Often, we
take a type of phenomenon as more or less frequent, and then we apply our so-
phisticated statistical methodology to it. Equally often, we try to cover a type of
phenomenon by a deterministic law, we find exceptions, we try to improve our
law, we take recourse to a usually implicit ceteris paribus condition, etc. As far as
I know, the methodology of the latter perspective is less sophisticated. Indeed,
there is little theory. Mill’s method of relevant variables, e.g., is certainly an old
and famous attempt to such a theory (cf. its reconstruction in Cohen 1977, ch. 13).
Still, both perspectives, the statistical and the deterministic one, are very familiar
to us. I am suggesting that the deterministic perspective can be thoroughly de-
scribed in terms of ranking theory.21 It would moreover be most interesting to at-
tend to the vague borderline. Somewhere, we switch from one to the other per-
spective, from exceptions to small relative frequencies or the other way around. I
am not aware of any study of this borderline, but I am sure it is worth getting in-
quired. Perhaps, it also illuminates the relation of belief and probability, the de-
terministic and the statistical attitude.

All these broad implications are involved in a comparison of ranks and prob-
abilities. I would find it rather confusing to artificially combine them in some uni-

                                                  
20 Recall, however, that Hild (t.a.) finds a much closer connection of probabilities and ranks within
statistical methodology.
21 I attempted to substantiate this suggestion with my account of strict and ceteris paribus laws in
Spohn (2002) and with my translation of de Finetti’s representation theorem into ranking theory in
Spohn (2005a).
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fied theory, be it hyperfinite or ranked probabilities. It is more illuminating to
keep them separate. Also, I did not want to argue for any preference. I wanted to
present the rich field of comparison in which both theories can show their great,
though partially diverging virtues. There should be no doubt, however, that the
driving force behind all these considerations is the formal parallelism which I
have extensively used in part 2 und explained in section 3.1.

4. Further Comparisons

Let me close the paper with a number of brief comparative remarks about al-
ternative accounts subsumable under the vague label ‘Baconian probability’. I
have already made a lot of such remarks en passant, but it may be useful to have
them collected. I shall distinguish between the earlier and usually more philoso-
phical contributions on the one hand and the more recent, often more technical
contributions from the computer science side on the other hand. The borderline is
certainly fuzzy, and I certainly do not want to erect boundaries. Still, the centuries
old tendency of specialization and evacuation of problems from philosophy may
be clearly observed here as well.

4.1     Earlier and Philosophical Literature

It is perhaps appropriate to start with L. Jonathan Cohen, the inventor of the la-
bel. In particular his (1977) is an impressive document of dualism, indeed separa-
tism concerning degrees of provability and degrees of probability or inductive
(Baconian) and Pascalian probability. His work is, as far as I know, the first ex-
plicit and powerful articulation of the attitude I have taken here as well.22

However, his functions of inductive support are rather a preform of my ranking
functions. His inductive supports correspond to my positive ranks. Cohen clearly
endorsed the law of conjunction for positive ranks; see his (1970, pp. 21f. and p.
63). He also endorsed the law of negation; but he noticed its importance only in
his (1977, pp. 177ff.), whereas in his (1970) it is well hidden as theorem 306 on p.
226. His presentation is a bit imperspicuous, though, since he is somehow at-

                                                  
22 I must confess, though, that I had not yet noticed his work when I basically fixed my ideas on
ranking functions in 1983.
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tached to the idea that i, i.e., having an inductive support ≥ i, behaves like iter-
able S4-necessity and since he even brings in first-order predicate calculus.

Moreover, Cohen is explicit on the relationality of inductive support; it is a
two-place function relating evidence and hypothesis. Hence, one might expect to
find a true account of conditionality. This, however, is not so. His conditionals
behave like strict implication23, a feature Lewis (1973, sect. 1.2-3) has already
warned against. Otherwise, Cohen discusses only laws of support with fixed evi-
dence – with one exception, the consequence principle, as he calls it (1970, p. 62).
Translated into my notation it says for a positive ranking function π that

(15) π(C | A) ≥ π(C | B) if A ⊆ B,

which is clearly not a theorem of ranking theory. These remarks sufficiently indi-
cate that the aspect so crucial for ranking functions is scarcely and wrongly devel-
oped in Cohen’s work.

The first clear articulation of the basic Baconian structure is found, however,
not in Cohen’s work, but in Shackle (1949, 1969). His functions of potential sur-
prise clearly correspond to my negative ranking functions; axiom (9) in (1969, p.
81) is the law of negation, and axiom (4) and/or (6) in (1969, p. 90) express the
law of disjunction. At least informally, Shackle also recognizes the duality of
positive and negative ranks. He is explicit that potential surprise expresses cer-
tainty of wrongness, i.e., disbelief, and that there is conversely certainty of right-
ness (1969, p. 74).

His general attitude, however, is not so decidedly dualistic as that of Cohen.
His concern is rather a general account of uncertainty, and he insists that prob-
ability does not exhaust uncertainty. Probability is an appropriate uncertainty
measure only if uncertainty is ‘distributional’, whereas potential surprise accounts
for ‘non-distributional’ uncertainty. So, he also ends up with an antagonistic
structure; but the intention was to develop two special cases of a general theory.

It is most interesting to see how hard Shackle struggles with an appropriate law
of conjunction for negative ranks. The first version of his axiom 7 (1969, p. 80)
claims, in our terminology, that

(16) κ(A ∩ B) = max {κ(A), κ(B)}.
                                                  
23 This is particularly obvious from Cohen (1979, p. 219, def. 5).
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He accepts the criticism this axiom has met, and changes it into a second version
(1969, p. 83), which I find must be translated into

(17) κ(B) = max {κ(A), κ(B | A)}

(and is hence no law of conjunction at all). He continues that it would be falla-
cious to infer that

(18) κ(A ∩ B) = min [ max {κ(A), κ(B | A)}, max {κ(B), κ(A | B)}].

In (1969, ch. 24) he is remarkably modern in discussing “expectation of change of
own expectations”. I interpret his formula (i) on p. 199 as slightly deviating from
the second version of his axiom 7 in claiming that

(19) κ(A ∩ B) = max {κ(A), κ(B | A).

And on pp. 204f. he even considers, and rejects (for no convincing reason), the
equation

(20) κ(A ∩ B) = κ(A) + κ(B | A),

i.e., our law of conjunction for negative ranks. In all these discussions, conditional
degrees of potential surprise appear to be an unexplained primitive notion. So,
Shackle may have been here on the verge of getting things right. On the whole,
though, it seems fair to say that his struggle has not led to a clear result.

Isaac Levi has always pointed to this pioneering achievement of Shackle, and
he has made his own use of it. In a way he did not develop Shackle’s functions of
potential surprise; he just stuck to the laws of negation and of disjunction for
negative ranks. In particular, there is no hint of any notion of conditionalization.
This is not to say that his epistemology is poorer than the one I have. Rather, he
finds a place for Shackle’s functions in his elaborated doxastic decision theory,
more precisely, in his account of belief expansion. He adds a separate account of
belief contraction, and with the help of what is called Levi’s identity he can thus
deal with every kind of belief change. He may even claim to come to grips with
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iterated change.24 One may thus sense that his edifice is at cross-purposes with
mine.

A fair comparison is hence a larger affair. I have tried to give it in Spohn
(2005c). Let me only mention one divergence specifically related to ranking func-
tions. Since Levi considers ranking functions as basically identical with Shackle’s
functions of potential surprise and since he sees the latter’s role in expansion, he
continuously brings ranking functions into the same restricted perspective. I find
this inadequate. I rather see the very same structure at work at expansions as well
as at contractions, namely the structure of ranks. Insofar I do not see any need of
giving the two kinds of belief change an entirely different treatment.

This brings me to the next comparison, with AGM belief revision theory (cf.
e.g., Gärdenfors 1988). I have already explained that I came to think of ranking
theory as a direct response to the challenge of iterated belief revision for AGM
belief revision theory, and I have explained how A→x-conditionalization for ranks
unifies and generalizes AGM expansion, revision, and contraction. One may
wonder how that challenge was taken up within the AGM discussion. Disap-
pointingly, in my view; in the last 15 years, essentially ideas were ventilated
which I thought to have effectively criticized already in Spohn (1988).

By no means, though, one should underestimate the richness of the AGM dis-
cussion, of which, e.g., Rott (2001) or Hanson (1999) give a good impression. A
pertinent point is that ranking theory generalizes and thus simply sides with the
standard postulates for revision and contraction (i.e., (K*1-8) and (K–1-8) in Gär-
denfors 1988, pp. 54-56 and 61-64). The ensuing discussion has shown that these
postulates are not beyond criticism and that many alternatives are worth discuss-
ing (cf., e.g., Rott 2001, pp. 103ff., who lists three alternatives of K*7, nine of
K*8, six of K–7, and ten of K–8). I confess I would not know how to modify
ranking theory in order to do justice to such alternatives. Hence, a fuller compari-
son with AGM belief revision theory would have to advance a defense of the
standard postulates against the criticisms related with the alternatives.

The point is, of course, relevant in the debate with Levi, too. He prefers what
he calls mild contraction to standard AGM contraction. If that preference would
stand, I could not subsume Levi’s contraction under ranking theory. Hence, doing
full justice to Levi’s position would require discussing this preference as well.

                                                  
24 Many aspects of his epistemology are already found in Levi (1967). The most recent statement is
given in Levi (2005), where one also gets a good idea of the development of his thought.
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It is worth mentioning the origins of AGM belief revision theory that clearly lie
in conditional logic. Gärdenfors’ (1978) epistemic semantics for conditionals was
a response to the somewhat unearthly similarity spheres semantics for counter-
factuals in Lewis (1973), and via the so-called Ramsey test Gärdenfors’ interest
more and more shifted from belief in conditionals to conditional beliefs and thus
to the dynamics of belief. Hence, one finds a great similarity in the formal struc-
tures of conditional logic and belief revision theory. In particular, Lewis’ similar-
ity spheres correspond to Gärdenfors’ entrenchment relations (1988, ch. 4). In a
nutshell, then, the progress of ranking theory over Lewis’ counterfactual logic lies
in proceeding from an ordering of counterfactuality (as represented by Lewis’
nested similarity spheres) to a cardinal grading of disbelief (as embodied in nega-
tive ranking functions).

Indeed, the origins reach back farther. Conditional logic also has a history, the
earlier one being still quite indeterminate. However, the idea of having an order-
ing of levels of counterfactuality or of far-fetchedness of hypotheses is explicitly
found already in Rescher (1964). If π is a positive ranking function taking only
finitely many values 0, x1, …, xm, ∞, then π-1(∞), π-1(xm), …, π-1(x1), π-1(0) is just
a family of modal categories M0, …, Mn (n = m+2), as Rescher (1964, pp. 47-50)
describes it. His procedure on pp. 49f. for generating modal categories makes
them closed under conjunction; this is our law of conjunction for positive ranks.
And he observes on p. 47 that all the negations of sentences in modal categories
up to Mn-1 must be in Mn = π-1(0); this is our law of negation.

To resume, I cannot find an equivalent to the ranking account of conditionali-
zation in all this literature. However, the philosophical fruits I have depicted in
part 2 and also in section 3.2 sprang from this account. Therefore, I am wondering
to which extent this literature can offer similar fruits, and for all I know the an-
swer tends to be negative.

4.2     More Recent Computer Science Literature

In view of the exploding computer science literature on uncertainty since the
80’s even the brief remarks in the previous section on the earlier times were dis-
proportionate. However, it is important, I think, not to forget about the origins.
My comparative remarks concerning the more recent literature must hence be
even more cursory. This is no neglect, though, since Halpern (2003), in book
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length, provides comprehensive comparisons of the various approaches with an
emphasis on those respects (conditionalization, independence, etc.) that I take to
be important, too. Some rather general remarks must do instead and may never-
theless be illuminating.

In the computer science literature, ranking theory is usually subsumed under
the heading “uncertainty” and “degrees of belief”. This is not wrong. After all,
ranks are degrees, and if (absolute) certainty is equated with unrevisability, revis-
able beliefs are uncertain beliefs. Still, the subsumption is also misleading. My
concern was not to represent uncertainty and to ventilate alternative models of
doing so. Thus stated, this would have been an enterprise with too little guidance.
My concern was exclusively to statically and dynamically represent ungraded
belief, and my observation was that this necessarily leads to the ranking structure.
If this is so, then, as I have emphasized, all the philosophical benefits of having a
successful representation of ungraded belief are conferred to ranking theory. By
contrast, if one starts modeling degrees of uncertainty, it is always an issue
(raised, for instance, by the lottery paradox vis à vis probability) to which extent
such a model adequately captures belief and its dynamics. So, this is a principled
feature that sets ranking theory apart from the uncertainty literature.

The revisability of beliefs was directly studied in computer science under head-
ings like “default logic” or “nonmonotonic reasoning”. This is another large and
natural field of comparison for ranking theory. However, let me cut things short.
The relation between belief revision theory and nonmonotonic reasoning is me-
ticulously investigated by Rott (2001). He proved far-reaching equivalences be-
tween many variants on both sides. This is highly illuminating. At the same time,
however, it is a general indication that the concerns that led me to develop AGM
belief revision theory into ranking theory are not well addressed in these areas of
AI. Of course, such lump-sum statements must be taken with caution.

The uncertainty literature has observed many times that these areas are within
their reach. Among many others, Pearl (1988, ch. 10) has investigated the point
from the probabilistic side, and Halpern (2003, ch. 8) has summarized it from his
more comprehensive perspective. This direction of thought is clearly feasible, but
the reverse one is less clear (though my claim in sect. 2.3 of measuring ranks with
the help of iterated contractions may be a step in the reverse direction).

So, let me return to accounts of uncertainty in a bit more detail, and let me take
up possibility theory first. It originates from Zadeh (1978), i.e. from fuzzy set the-
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ory and hence from a theory of vagueness. Its elaboration in the book by Dubois,
Prade (1988) and many further papers shows its wide applicability, but never de-
nies its origin. So, it should at least be mentioned that philosophical accounts of
vagueness (cf., e.g., Williamson 1994) have nothing much to do with fuzzy logic.
If one abstracts from this interpretation, though, possibility theory is formally very
similar to ranking theory. If Poss is a possibility measure, then the basic laws are:

(21) Poss(∅) = 0, Poss(W) = 1, and Poss(A ∪ B) = max { Poss(A), Poss(B)}.

So far, the difference is merely one of scale. Full possibility 1 is negative rank 0,
(im)possibility 0 is negative rank ∞, and translating the scales translates the char-
acteristic axiom of possibility theory into the law of disjunction for negative
ranks. Indeed, Dubois and Prade often describe their degrees of possibility in such
a way that this translation fits not only formally, but also materially.

Hence, the key issue is again how conditionalization is treated within possibil-
ity theory. There is some uncertainty. First, there is the motive that also dominated
Shackle’s account of the functions of potential surprise, namely to keep possibility
theory as an ordinal theory where degrees of possibility have no arithmetical
meaning. Then the idea is to stipulate that

(22) Poss(A ∩ B) = min {Poss(A), Poss(B | A)} = min {Poss(B), Poss(A | B)}.

This is just Shackle’s proposal (19).25 The idea continues to go beyond (19) only
by turning (22) into a definition of conditional possibility by additionally assum-
ing that conditionally things should be as possible as possible, i.e., by defining
Poss(B | A) as the maximal degree of possibility that makes (22) true:

(23) Poss(B | A) = 
P(A∩ B), if  Poss(A∩ B) < Poss(A)
1, if  Poss(A∩ B) = Poss(A)
⎧
⎨
⎩

⎫
⎬
⎭

.

Halpern (2003, Proposition 3.9.2, Theorem 4.4.5, and Corollary 4.5.8) entails that
Bayesian net theory works also in terms of conditional possibility thus defined.
Many things, though, do not work well. It is plausible that Poss(B | A) is between

                                                  
25 At the same time, though, it confirms, contra Shackle, equation (18). This only shows once more
the indecision of Shackle.
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the extremes 1 and Poss(A ∩ B). However, (23) implies that it can take only those
extremes. This is unintelligible. (22) implies that, if neither Poss(B | A) nor Poss(A
| B) is 1, they are equal, a strange symmetry. And so on. Such unacceptable con-
sequences spread through the entire architecture.

However, there is a second way to introduce conditional possibilities (cf., e.g.,
Dubois, Prade 1998, p. 206), namely by taking numerical degrees of possibility
seriously and defining

(24) Poss(B || A) = Poss(A ∩ B) / Poss(A).

This looks much better. Indeed, if we define κ(A) = log Poss(A), the logarithm
taken w.r.t. some positive base < 1, then κ is a negative ranking function such that
also κ(B | A) = log Poss(B || A). Hence, (24) renders possibility and ranking theory
isomorphic, and all the philosophical benefits may be gained in either terms. Still,
there remain interpretational differences. If we are really up to degrees of belief
and disbelief, then the ranking scale is certainly more natural; this is particularly
clear when we look at the possibilistic analogue to two-sided ranking functions.
My remarks about objectifiable ranking functions as fault counting functions
would make no sense for a possibilistic scale. And so on. Finally, one must be
aware that the philosophical benefits resulted from adequately representing belief.
Hence, it is doubtful whether the formal structure suffices to maintain the benefits
for alternative interpretations of possibility theory.

Let me turn to some remarks about (Dempster-Shafer) DS belief functions.
Shafer (1976) built on Dempster’s ideas for developing a general theory of evi-
dence. He saw clearly that his theory covered all known conceptions of degrees of
belief. This, and its computational manageability, explains its enormous impact.
However, before entering any formal comparisons the first argument that should
be settled is a philosophical one about the nature of evidence. There is the DS the-
ory of evidence, and there is a large philosophical literature on observation and
confirmation, Bayesianism being its dominant formal expression. I have explained
why ranking theory and its account of reasons is a member of this family, too. Of
course, this argument cannot even be started here. My impression, though, is that
it is still insufficiently fought out, certainly hampered by disciplinary boundaries.

In any case, it is to be expected that DS belief functions and ranking functions
are interpretationally at cross-purposes. This is particularly clear from the fact that
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negative ranking functions, like possibility measures or Shackle’s functions of
potential surprise, are formally a special case of DS belief functions; they are con-
sonant belief functions as introduced in Shafer (1976, ch. 10). There, p. 219,
Shafer says that consonant belief functions “are distinguished by their failure to
betray even a hint of conflict in the evidence”; they “can be described as ‘pointing
in a single direction’.” From the perspective of Shafer’s theory of evidence this
may be an adequate characterization. As a description of ranking functions, how-
ever, it does not make any sense whatsoever. This emphasizes that the intended
interpretations diverge completely.

Even formally things do not fit together. We saw that the virtues of ranking
theory depend on the specific behavior of conditional ranks. This does not gener-
alize to DS belief functions. There is again an uncertainty how to conditionalize
DS belief functions; there are two main variants (cf. Halpern 2003, p. 103 and p.
132, which I use as my reference book in the sequel). The central tool of Shafer’s
theory of evidence is the rule of combination proposed by Dempster (1967); it is
supposed to drive the dynamics of DS belief functions. Combination with certain
evidence is identical with one of the two variants of conditionalization (cf.
Halpern 2003, p. 94). According to Shafer, other uncertain evidence is also to be
processed by this rule. One might think, though, instead to handle it with Jeffrey’s
generalized conditionalization, which is indeed definable for both kinds of condi-
tional belief functions (cf. Halpern 2003, p. 107). However, both kinds of Jeffrey
conditionalization diverge from the rule of combination (cf. Halpern 2003, p. 107
and p. 114).

Indeed, this was my argument in Spohn (1990, p. 156) against formally equat-
ing ranking functions with consonant belief functions: Ranking dynamics is dri-
ven by a ranking analogue to Jeffrey conditionalization, but it cannot be copied by
the rule of combination since the corresponding combinations move outside the
realm of consonant belief functions. And, as I may add now, it does not help to let
the dynamics of DS belief functions be driven by Jeffrey condtionalization instead
of the rule of combination: Consonant belief functions are not closed under Jef-
frey conditionalization as well, whereas ranking functions are thus closed.26 I con-
                                                  
26 Does this contradict the fact that ranking functions are equivalent to possibility measures (with
their second kind of conditionalization), that possibility measures may be conceived as a special
case of DS belief (or rather: plausibility) functions, and that Jeffrey conditionalization works for
possibility measures as defined by Halpern (2003, p. 107)? No. The reason is that Jeffrey condi-
tionalization for possibility measures is not a special case of Jeffrey conditionalization for DS
belief functions in general. Cf. Halpern (2003, p. 107).
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clude that there is no formal subsumption of ranking functions under DS belief
functions. Hence, their interpretations do not only actually diverge, they are bound
to do so.

Smets’ transferable belief model (cf., e.g., Smets 1998) proposes a still more
general model for changing DS belief functions in terms of his so-called speciali-
zations. One should check whether it offers means for formally subsuming rank-
ing functions under his model. Even if this would be possible, however, the inter-
pretational concerns remain. Smets’ specializations are so much wedded to Sha-
fer’s conception of evidence that any subsumption would appear artificial and
accidental. The philosophical argument about the nature of evidence is even more
pressing here.

A final remark: There is a bulk of literature treating doxastic uncertainty not in
terms of a specific probability measure, but in terms of convex sets of probability
measures. The basic idea behind this is that one’s uncertainty is so deep that one is
not even able to fix one’s subjective probability. In this case, doxastic states may
be describes as sets of measures or in terms of probability intervals or in terms of
lower and upper probabilities. Again, the multiple ways of elaborating this idea
and their relations are well investigated (see again Halpern 2003). Indeed, DS be-
lief functions, which provide a very general structure, emerges as generalizations
of lower probabilities. Even they, though, do not necessarily transcend the prob-
abilistic point of view, as Halpern (2003, p. 279) argues; DS belief functions are
in a way tantamount to so-called inner measures. May we say, hence, that the al-
ternative formal structures mentioned ultimately reduce to probabilism (liberal-
ized in the way explained)? We may leave the issue open, though it is obvious that
the liberal idea of uncertainty conceived as sets of subjective probabilities is, in
substance, a further step away from the ideas determining ranking theory. Even if
probabilism were successful in this way, as far as ranking theory is concerned we
would only be thrown back to our comparative remarks in section 3.

We may therefore conclude that ranking theory is a strong independent pillar in
that confusingly rich variety of theories found in the uncertainty literature. This
conclusion is the only point of my sketchy comparative remarks. Of course, it is
not to deny that the other theories serve other purposes well. It is obvious that we
are still far from an all-purpose account of uncertainty or degrees of belief.
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