Complexes trans-Pt(BODIPY)X(PEt$_3$)$_2$: excitation energy-dependent fluorescence and phosphorescence emissions, oxygen sensing and photocatalysis†

Peter Irmler and Rainer F. Winter*

We report on five new complexes with the general formula trans-Pt(BODIPY)X(PEt$_3$)$_2$ (Pt–X), where the platinum(II) ion is σ-bonded to a 4,4-difluoro-3,4-bora-3,4-diaza-indacen-8-yl (BODIPY) and an anionic ligand X$^-$ (X$^-$ = Cl$^-$, I$^-$, NO$_2^-$, NCS$^-$, CH$_3$$^-$). All five complexes were characterized by multinuclear NMR, electronic absorption and luminescence spectroscopy and by X-ray diffraction analysis. Four of these complexes show efficient intersystem crossing (ISC) from an excited singlet state to a BODIPY-centred T$_1$ state and exhibit dual fluorescence and phosphorescence emission from the BODIPY ligand. In Pt–I, the fluorescence is almost completely quenched, whereas the phosphorescence quantum yield reaches a value of 40%. The rate of ISC and the ratio of phosphorescence to fluorescence emissions depend on the excitation wavelength (i.e. on which specific transition is excited). The performance of these complexes as one-component oxygen sensors and their photocatalytic activities were tested by Stern–Volmer quenching experiments and by monitoring the oxidation of 1,5-dihydroxynaphthalene with 1O$_2$ generated from the long-lived triplet state of the sensitizer by triplet–triplet annihilation with 3O$_2$. Exceptionally high 1O$_2$ generation quantum yields of up to near unity were obtained.

Introduction

4,4-Difluoro-3,4-bora-3,4-diaza-indacene (BODIPY) dyes have been known for three decades for their excellent performances as fluorophores, their versatility and their chemical and photochemical robustness.$^{1-15}$ A particularly favourable asset of the BODIPY family of dyes is their modular construction from readily available building blocks, thus allowing for easy implementation of desirable properties or functionalities, e.g. for substrate binding, with important implications in the analytical sciences, or fine-tuning of the absorption and emission wavelengths.3,11,12 Phosphorescence from BODIPY dyes has, however, only rarely been observed and usually relies on the heavy atom effect of bromine or iodine substituents.$^{13-16}$ In particular, there are only a handful of phosphorescent metal–organic BODIPY derivatives, and until very recently, the phosphorescence quantum yields of such compounds did not exceed the rather modest value of 3.5%.17 In these complexes, the BODIPY dy(e) are either appended to a 2,2′-bipyridine ligand as in Ru–BDP11,1 or bonded to Pt(N$^\text{C}^\text{N}$) entities with cyclometalating bis(benzimidazol-2-yl)phenyl-derived ligands as in Pt$_2$–BDP,1 Fig. 1. Much higher quantum yields of up to 31% for the PEt$_3$ derivative Pt–Br (Fig. 1) were achieved in complexes trans-Pt(BODIPY)Br(PR$_3$)$_2$ (R = Ph, Et) featuring a σ-bonded 4,4-difluoro-3,4-bora-3,4-diaza-indacenyldye, which connects to the platinum(II) ion via its meso position. In the latter complexes, the Pt coordination centre acts as a remote heavy metal ion, as the HOMO and the LUMO are heavily biased to the BODIPY ligand and receive only very minor contributions from the coordination centre. As a consequence, the relevant excitation is adequately described as a BODIPY-based σ → π* transition with essentially no charge-transfer contributions from the [PtBr(PR$_3$)$_2$]$_3$ fragment. Long-lived excited triplet states of BODIPY dyes are of great interest for applications such as chemical sensing,16,21,22 triplet–triplet
annihilation-based upconversion17–19,23 and photodynamic therapy.13,15,24,25 For photodynamic therapy the ability of triplet emitters to transform triplet oxygen (\(3\text{O}_2\)) to singlet oxygen (\(\text{O}_2\)) in a triplet–triplet annihilation process is of pivotal relevance. Its cell toxicity makes the highly reactive \(3\text{O}_2\) molecule a powerful weapon against cancer cells.26–29

The different structural and electronic influences of a transition metal coligand entity on the photophysical properties of complexes, particularly the phosphorescence quantum yield \(\Phi_{\text{ph}}\), are not trivial, though. Decisive factors are the rate constant of the intersystem crossing (\(k_{\text{ISC}}\)), the ratio of the radiative and non-radiative decay rates, and the thermal accessibility of excited d-states, which typically provide non-radiative deactivation pathways.30 In the case of square-planar \(\text{Pt}^{II}\) complexes, the relative positioning of the \(d_z^2\) orbital with respect to the emissive \(T_1\) state is often of crucial relevance.31

This energy separation largely depends on the ligand-field splitting. Thus, by introducing strong-field ligands, the \(d_z^2\) orbital can be pushed to higher energy, increasing the energy barrier for non-radiative decay via excited d-states.30–33 In complexes of the type \(\text{trans-Pt(Dye)X(PR_3)_2}\) (\(X^- = \text{Br}^-, \text{Cl}^-, \Gamma^-, \text{CN}^-\)), where Dye represents a \(\sigma\)-bonded thioxanthonyl or a BODIPY attached via its meso position, the ligand-field splitting can be modulated by the PR\(_3\) ligand and the anionic ligand X\(^-\).34

Our previous study has already shown that PET\(_3\) ligands endow the BODIPY complexes with superior photophysical properties when compared to their PPH\(_3\) counterparts.20 Here we report our results on five new BODIPY complexes \(\text{trans-Pt(BODIPY)X(PET)_2}\) with anionic ligands X\(^-\) that cover a wider range of the spectrochemical series and differ with respect to their \(\text{trans}\)-influence35 and the results of our investigations into the performance of some representatives as one-component triplet sensors and sensitizers for the photocatalytic oxidation of 1,5-dihydroxynaphthalene (DHN) with molecular oxygen.

\section*{Results and discussion}

\subsection*{Synthesis and NMR spectroscopy}

All complexes were synthesized starting from \(\text{cis-Pt(} \eta^2\text{-C}_2\text{H}_4\}\) (PET\(_3\))\(_2\), which is obtained by heating \(\text{cis-Pt(Et)_2(PET)_3}\) in C\(_6\)D\(_6\) for 45 min to 114 °C.36 Oxidative addition of 8-bromo-4,4-difluoro-4-bora-3a,4a-diaza-s-indacene (Br-BODIPY, see Fig. 2) to the reactive Pt\(^0\)-species is fast at room temperature (r.t.). The resulting complex \(\text{cis-Pt(BODIPY)(Br(PET)_3)}_2\) is then transformed by AgOTf to \(\text{trans-Pt[BODIPY(O Tf)](PET)_3)}_2\). Subsequent treatment with NaX (X\(^-\) = Cl\(^-\), NO\(_2\)\(^-\), NCS\(^-\)) resulted in the replacement of the weakly coordinated OTf\(^-\) by the respective counter ion and provided complexes Pt–Cl, Pt–NO\(_2\), and Pt–NCS (see Fig. 2) in moderate to good yields. Our attempts to introduce a methyl ligand by transmetalation using the Grignard reagent MeMgI failed and the complex \(\text{trans-Pt(BODIPY)(PET)}_2\) (Pt–I) was formed instead. The use of MgMe\(_2\) as a transmetalating agent was likewise unsuccessful. Reaction of Pt–OTf with MeLi finally afforded Pt–CH\(_3\) (Fig. 2).

\(\text{\(^{195}\text{Pt}\)}\) NMR spectra of the \(\text{trans}\)-complexes show a triplet with a coupling constant \(J_{\text{PP}}\) in the range of 2692 Hz to 2450 Hz. Correspondingly, the \(\text{\(^{31}\text{P}\)}\) NMR spectra give a singlet for the two \(\text{trans}\)-disposed P donors, which is flanked by the \(\text{\(^{195}\text{Pt}\)}\) satellite doublet with the same \(J_{\text{PP}}\) coupling constant. The formation of a direct Pt–C \(\sigma\)-bond is confirmed by the observation of platinum satellites in the \(\text{\(^{13}\text{C}\)}\) NMR spectra, which range from 492 Hz to 409 Hz for \(J_{\text{PC}}\) and from 25 Hz to 17 Hz for \(\frac{3}{2}J_{\text{PC}}\) and \(\frac{1}{2}J_{\text{PC}}\) couplings, respectively. Some couplings could, however, not be detected due to a low signal-to-noise ratio. The NMR spectra can be found in the ESI, Fig. S1–S23.†

\section*{Single crystal X-ray diffraction}

Single crystals suitable for X-ray diffraction analysis were obtained for all five Pt complexes. Fig. 3 displays the ORTEP representations of their molecular structures. Relevant bond
lengths and angles can be taken from Table 1, and Table S1 of the ESI† summarizes the crystal and refinement data. \(\text{Pt–Cl, Pt–NCS, Pt–NO}_2 \) and \(\text{Pt–CH}_3 \) crystallize in the monoclinic space groups \(P2_1/c, P2_1/n, P2_1/c, \) or \(P2_1 \), respectively. The single crystal of \(\text{Pt–I} \) complies with the symmetry operations of the \(Cmc_2_1 \) space group in the orthorhombic crystal system. The unit cells of \(\text{Pt–Cl and Pt–CH}_3 \) contain two independent molecules with different sets of bond lengths and angles as given in Table 1.

In the present series of complexes the length of the \(\text{C1–Pt} \) σ-bond provides a measure for the \(\text{trans} \)-influence and consequently for the σ-donor strength of the anionic ligand \(X^- \), which increases in the order \(\text{Pt–NO}_2 < \text{Pt–Cl} \approx \text{Pt–Br} < \text{Pt–I} \approx \text{Pt–NCS} < \text{Pt–CH}_3 \). This ordering complies with that of a
related series of platinum complexes with a σ-bonded perylene or perylene monoamide dye. For Pt-CH$_3$, the difference between the Pt–C bond lengths to the methyl (2.127(12) or 2.137(11) Å) and the BODIPY ligands (2.039(11) or 2.053(12) Å for the two independent molecules of the unit cell) reflects the difference of the covalent radii of a sp3 and a sp2 carbon atom. Similar differences have e.g. been observed for trans-Pt(CH$_3$)$_2$(Ph)(PPh$_3$)$_2$, d(Pt–CH$_3$) = 2.226(4) Å, d(Pt–Ph = 2.058(4) Å). With the Pt–Me bond of Pt-CH$_3$ is expectedly longer than in complexes trans-Pt(CH$_3$)$_2$(PR$_3$)$_2$, owing to the opposite placement of two σ-carbyl ligands, which both exert a strong σ-trans-influence (cf. 2.08(1) Å for R = Ph or 2.069(8) Å for R = C$_6$H$_4$F-4). With deviations of 2.8$^\circ$ to 6.2$^\circ$ for the angle P1–Pt–P2 and 1.0$^\circ$ to 4.2$^\circ$ for bond angle C1–Pt–X (X = donor atom of the anionic ligand) and a maximum deviation of 4.0$^\circ$ for cis-angles X–Pt–P and C1–Pt–P from the ideal values and a coplanarity of all donor atoms with the Pt(n) ion the coordination centre exhibits a close to ideal square planar coordination geometry. This is also indicated by the summations of bond angles at the Pt(n) ion, which range from 359.94$^\circ$ to 360.20$^\circ$. The P1–Pt–P2 angle opens to the side of the sterically demanding BODIPY ligand.

The various steric and electronic influences of a Pt$_3$ fragment for tipping the scale towards either κN or κS coordination of a thiocyanate ligand are textbook examples for the phenomenon of coordination isomerism. N coordination in spite of the soft character of the [Pt(BODIPY)(PEt$_3$)$_2$] fragment is here favoured by the strong trans-influence of the opposite carbonyl ligand, the light donor atom, and by steric effects. Thus, N coordination maintains a near coincidence of the NCS$^-$ axis with the C1–Pt–N vector Pt–N3–C22 = 162.2(4)$^\circ$, S1–C22–N3 = 179.7(4)$^\circ$, thus avoiding unfavourable steric interactions with the cis-disposed PEt$_3$ ligands (Fig. 3c). N coordination of the NCS$^-$ ligand has likewise been observed in the related perylene complex of Espinet and coworkers. Packing diagrams of individual molecules in the crystal lattice are shown in Fig. S24–S28 of the ESL.† All structures exhibit several short intermolecular contacts. Most prevalent are hydrogen bonding interactions H⋯F–B between pyrrolic or methyl protons and the BF$_2^-$ fluorine atoms. These latter contacts are in the range of 2.330 to 2.539 Å, which is by 0.330 to 0.131 Å shorter than the sum of the van der Waals radii. Most notably, H⋯F contacts to methyl hydrogens of the PEt$_3$ ligands are frequently shorter than those to the hydrogen atoms attached to the heterocycles. These hydrogen bonds are sometimes augmented by C–H⋯π interactions between methyl protons and a pyrrolic carbon atom ranging from 2.634 to 2.757 Å. In several cases, additional contacts exist between pyrrolic or methyl protons and heteroatoms of the anionic ligand X$^-$, most importantly to the oxygen atoms of the nitrite ligand of Pt–NO$_2$ (2.378 to 2.487 Å with the shorter contacts again to PEt$_3$ methyl protons), the S atom of the κ-N-thiocyanate ligand in Pt–NCS (2.842 and 2.921 Å) or, very weakly, to the C$^-$ ligand in Pt–I (3.127 Å). The latter complex exhibits an interesting brick-wall packing in the ac plane, where individual molecules associate weakly along the c axis via C–H⋯–I interactions and, more strongly so, along the a axis by CH⋯π interactions between the pyrrolic carbon atom C9 and a PEt$_3$ methyl proton of neighbouring molecules positioned above and below (C–H⋯C = 2.684 Å, see Fig. S25b of the ESL). The structural relevance of CH⋯π interactions has recently been highlighted.43

Table 1 Selected bond lengths [Å] and bond angles [°] of the complexes trans-Pt(BODIPY)X(PEt$_3$)$_2$ (Pt–X) and of Pt–Br20

<table>
<thead>
<tr>
<th></th>
<th>Pt–Br</th>
<th>Pt–Cl</th>
<th>Pt–I</th>
<th>Pt–NCS</th>
<th>Pt–NO$_2$</th>
<th>Pt–CH$_3$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bond angles†</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C1–Pt-P1</td>
<td>93.7(3)</td>
<td>92.9(3)</td>
<td>112.1(2)</td>
<td>92.6(2)</td>
<td>89.7(2)</td>
<td>92.3(3)</td>
</tr>
<tr>
<td>C1–Pt-P2</td>
<td>91.3(3)</td>
<td>90.5(3)</td>
<td>94.8(2)</td>
<td>93.0(2)</td>
<td>91.37(7)</td>
<td>91.3(3)</td>
</tr>
<tr>
<td>P1–Pt–X</td>
<td>87.73(8)</td>
<td>88.41(8)</td>
<td>87.13(7)</td>
<td>87.68(8)</td>
<td>88.71(7)</td>
<td>88.7(7)</td>
</tr>
<tr>
<td>P2–Pt–X</td>
<td>87.28(8)</td>
<td>88.16(8)</td>
<td>87.61(7)</td>
<td>87.76(8)</td>
<td>88.71(7)</td>
<td>90.62(11)</td>
</tr>
<tr>
<td>C1–Pt–X</td>
<td>178.6(3)</td>
<td>178.6(3)</td>
<td>178.3(2)</td>
<td>179.0(2)</td>
<td>176.03(8)</td>
<td>178.2(3)</td>
</tr>
</tbody>
</table>

†X represents the donor atom of the anionic ligand in trans-position to the dye at the Pt ion. The molecule has a mirror plane which is defined by the plane of the dye’s inner heterocycle. Atom C1 could not be refined anisotropically.

UV-vis spectroscopy, TD-DFT calculations and luminescence properties

The UV-Vis absorption spectra of complexes Pt–Cl to Pt–CH$_3$ are shown in Fig. 4. They are dominated by the sharp, vibrationally structured band of the attached BODIPY dye with extinction coefficients ε of 52 600 to 57 400 M$^{-1}$ cm$^{-1}$. Peaking at a narrow range of 461 to 472 nm (Table 2), the position is almost invariant to the identity of the ligand X$^-$. At higher energies in the near UV another weaker, asymmetric absorption is observed at $\lambda = 370$ to 300 nm with a maximum extinction coefficient of $ca. 11 000$ M$^{-1}$ cm$^{-1}$. In some cases that feature is resolved into two distinct bands which are separated...
by 20 to 30 nm. Time-dependent DFT (TD-DFT) calculations carried out on geometry optimized structures accordingly predict two separate absorptions in this energy range. The comparison of experimental and calculated TD-DFT data in Table 2 shows that our calculations reproduce the general absorption features well but overestimate the energy of the prominent BODIPY-based π → π* transition by ca. 4200 cm⁻¹. The TD-DFT data reveal that the intense band at the lowest energy arises from the HOMO → LUMO transition. As it is evident from the graphical depictions of the relevant orbitals of Pt–NO₂ and Pt–I in Fig. 5 and the compilation in Tables 2 and 3, the latter is adequately described as a π → π* transition of the BODIPY ligand with only very small contributions of the {PtX(PEt₃)₂} fragment. This also explains the negligible influence of the X⁻ ligand on the transition energies. The absorption near 320 nm originates from two energetically close-lying transitions (HOMO–5 → LUMO, HOMO–6 → LUMO for Pt–I, HOMO–6 → LUMO, HOMO–7 → LUMO/HOMO–8 → LUMO for Pt–NO₂, Table 2). One has distinct Pt[PEt₃]₂ → BODIPY charge-transfer (CT) character, while the second one involves another π → π* transition within the dye ligand. As we will see later, the more significant metal contribution to the higher energy transition has important implications on the intersystem crossing rate constants kISC from the different excited states.

Table S15 of the ESI† compares the calculated structure parameters of complexes Pt–Cl, Pt–I, Pt–NCS, and Pt–NO₂ to the experimental data from X-ray crystal diffraction and to those calculated for the T₁ state. Calculated bond parameters for the S₀ state retrace experimentally observed bond lengths and angles well. The only structural difference between the T₁ and the S₀ states is a slight elongation of the Pt–C₁ bond by 2–3 pm while all other bond lengths and bond angles remain essentially unaffected.

Like the previously reported complex Pt–Br₂⁶ all complexes exhibit dual fluorescence at λ ≈ 480 nm and phosphorescence at λ ≈ 640 nm when excited into their lowest energy absorption band. Emission spectra of the complexes and of Br–BODIPY are compared in Fig. 6 while relevant photophysical data are collected in Table 4. The small Stokes shifts of <500 cm⁻¹ and luminescence decay rates in the subnanosecond range are typical assets of BODIPY-based fluorescence emissions. The congruence of electronic absorption and excitation spectra as documented in Fig. S29–S33 of the ESI† and the blue shift of the fluorescence peaks compared to that of the Br–BODIPY precursor (λfl = 517 nm) demonstrate, that both emissions originate from the complexes and not from impurities or unreacted Br–BODIPY. That blue shift has been traced to a preferential lifting of the BODIPY LUMO owing to a slightly larger contribution of the strongly electron-donating {Pt(PEt₃)₂X} moiety⁴⁴ to the receptor orbital.²⁸ The long lifetimes of 162 to 439 μs at r.t. and the large Stokes shifts of ca. 5600 cm⁻¹ characterize the low-energy emission band as phosphorescence.

![Graphical depiction of relevant orbitals of Pt–Cl, Pt–I, Pt–NCS, Pt–NO₂ and Pt–CH₃ in a ca. 10⁻⁵ M CH₂Cl₂ solution at 298 K.](image)

Table 2: Absorption data of complexes Pt–Cl, Pt–I, Pt–NCS, Pt–NO₂ and Pt–CH₃ in ca. 10⁻⁵ M CH₂Cl₂ solutions at 298 K and TD-DFT calculations in CH₂Cl₂

<table>
<thead>
<tr>
<th>Absorption data</th>
<th>TD-DFT data</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\lambda_{\text{max}}) [nm] ((\epsilon \times 10^3) [M⁻¹ cm⁻¹])</td>
<td>(\lambda) [nm]</td>
</tr>
<tr>
<td>-----------------</td>
<td>-------------</td>
</tr>
<tr>
<td>Pt–Cl 321 (11.1), 340 (7.4), 467 (57.4)</td>
<td>293</td>
</tr>
<tr>
<td></td>
<td>310</td>
</tr>
<tr>
<td></td>
<td>390</td>
</tr>
<tr>
<td>Pt–I 322 (12.5), 352 (4.3) 471 (25.6)</td>
<td>295</td>
</tr>
<tr>
<td></td>
<td>309</td>
</tr>
<tr>
<td>Pt–NCS 320 (10.5), 337 (9.2), 469 (34.2)</td>
<td>392</td>
</tr>
<tr>
<td>Pt–NO₂ 325 (11.7), 472 (57.0)</td>
<td>265</td>
</tr>
<tr>
<td></td>
<td>294</td>
</tr>
<tr>
<td>Pt–CH₃</td>
<td>314 (11.1), 346 (7.1) 461 (55.2)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Assignment</th>
</tr>
</thead>
<tbody>
<tr>
<td>n.c.</td>
</tr>
</tbody>
</table>

*a Oscillator strength. b n.c. = not calculated.
(Table 4). From the comparison of emission spectra in Fig. 6 and the data in Table 4 it becomes immediately apparent that larger phosphorescence quantum yields Φ_{Ph} go along with a decrease of those of the fluorescence emission Φ_{Fl} and vice versa. No luminescence data could be obtained for Pt–CH$_3$, as this complex decomposed when irradiated in the fluorescence spectrometer. Fig. S34 of the ESI† illustrates that the decomposition product still constitutes a BODIPY dye. The distinct red-shift of the fluorescence peak and its similar position to that of the Br–BODIPY precursor suggest that the BODIPY-ligand is detached from the Pt atom during photochemical degradation. Facile Pt-BODIPY bond breaking in this complex is likely caused by the strong σ-trans-influence of the methyl ligand and the concomitant weakening of the Pt-C(BODIPY) σ-bond, which is even amplified in the excited T$_1$ state (Tables 1 and S15 of the ESI†).

The ratio of phosphorescence to fluorescence intensities increases in the order Pt–NO$_2$ < Pt–NCS < Pt–Cl < Pt–I; Pt–Br.

<table>
<thead>
<tr>
<th></th>
<th>Pt</th>
<th>BODIPY</th>
<th>PEt$_3$</th>
<th>X$^-$b</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pt–Cl</td>
<td>LUMO</td>
<td>4</td>
<td>94</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>HOMO</td>
<td>1</td>
<td>98</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>H–5</td>
<td>16</td>
<td>43</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>H–6</td>
<td>2</td>
<td>95</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Spin densityc</td>
<td>0.012</td>
<td>1.975</td>
<td>0.017</td>
</tr>
<tr>
<td>Pt–I</td>
<td>LUMO</td>
<td>3</td>
<td>94</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>HOMO</td>
<td>1</td>
<td>98</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>H–5</td>
<td>14</td>
<td>47</td>
<td>39</td>
</tr>
<tr>
<td></td>
<td>H–6</td>
<td>3</td>
<td>92</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Spin densityc</td>
<td>0.009</td>
<td>1.978</td>
<td>0.019</td>
</tr>
<tr>
<td>Pt–NCS</td>
<td>LUMO</td>
<td>3</td>
<td>94</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>HOMO</td>
<td>1</td>
<td>98</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>H–5</td>
<td>18</td>
<td>41</td>
<td>41</td>
</tr>
<tr>
<td></td>
<td>H–6</td>
<td>2</td>
<td>93</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Spin densityc</td>
<td>0.003</td>
<td>1.978</td>
<td>0.020</td>
</tr>
<tr>
<td>Pt–NO$_2$</td>
<td>LUMO</td>
<td>3</td>
<td>93</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>HOMO</td>
<td>1</td>
<td>98</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>H–6</td>
<td>3</td>
<td>90</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>H–7</td>
<td>40</td>
<td>16</td>
<td>37</td>
</tr>
<tr>
<td></td>
<td>H–8</td>
<td>50</td>
<td>6</td>
<td>31</td>
</tr>
<tr>
<td></td>
<td>Spin densityc</td>
<td>–0.003</td>
<td>1.982</td>
<td>0.020</td>
</tr>
</tbody>
</table>

aPercent contributions of the given fragments. bX$^-$ represents the anionic ligand in trans-position to the dye at the Pt ion. cSpin density contribution of the respective fragment to the spin density surface.

Fig. 5 Energies and graphical representations of the relevant molecular orbitals along with calculated electronic transitions of (a) Pt–NO$_2$ and (b) Pt–I.

Fig. 6 Emission spectra of Pt–Cl, Pt–I, Pt–NO$_2$, Pt–NCS and Br–BODIPY in degassed CH$_2$Cl$_2$ solutions at concentrations of ca. 10$^{-6}$ M upon irradiation into the lowest energy absorption band of the complexes.
quantum yield for the higher energy absorption band(s), the phosphorescence is the dominant wavelength. Fig. 7a and b illustrate that, on irradiation into the highest energy absorption band at 322 nm, the intensities of the phosphorescence and fluorescence emission vanish altogether on excitation into the high-energy absorption band. As the already very weak fluorescence of Pt–I was found to vanish altogether on irradiation into the high-energy absorption band at 322 nm, the phosphorescence and fluorescence emissions were monitored at different excitation wavelengths. Fig. 7a and b illustrate that, on irradiation into the highest energy absorption band(s), the phosphorescence quantum yield Φ_P of Pt–NO_2 further increases at the expense of that of the fluorescence emission (Φ_F). The notion that the ratio of phosphorescence and fluorescence emission intensities may depend on the excitation wavelength has been per-}

Table 4 Luminescence data of Pt–Br_2, Pt–Cl, Pt–I, Pt–NO_2, and Pt–NCS in N_2 saturated CH_2Cl_2 and toluene solutions, respectively, at concentrations of ca. 10^-6 M. If not stated otherwise the samples were excited into the lowest energy absorption band.

<table>
<thead>
<tr>
<th></th>
<th>λ_{max,Fl} [nm] (Stokes shift [cm^{-1}])</th>
<th>λ_{max,Ph} [nm] (Stokes shift [cm^{-1}])</th>
<th>Φ_{Fl,exc 467} (Φ_{Fl,exc 322})</th>
<th>Φ_{Ph,exc 467} (Φ_{Ph,exc 322})</th>
<th>τ_F [ns]</th>
<th>τ_P [μs]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pt–Br_2</td>
<td>479 (491)</td>
<td>637 (5669)</td>
<td>0.011</td>
<td>0.312</td>
<td>n.d.</td>
<td>162</td>
</tr>
<tr>
<td>Pt–Cl</td>
<td>478 (493)</td>
<td>633 (5615)</td>
<td>0.016 (0.005)</td>
<td>0.349 (0.356)</td>
<td>0.174</td>
<td>277</td>
</tr>
<tr>
<td>Pt–I</td>
<td>479 (491)</td>
<td>631 (5520)</td>
<td>0.016 (0.005)</td>
<td>0.349 (0.356)</td>
<td>0.174</td>
<td>245</td>
</tr>
<tr>
<td>Pt–NO_2</td>
<td>478 (491)</td>
<td>641 (5631)</td>
<td>0.002 (0.000)</td>
<td>0.166 (0.209)</td>
<td>0.484</td>
<td>297</td>
</tr>
<tr>
<td>Pt–NCS</td>
<td>483 (483)</td>
<td>645 (5623)</td>
<td>0.115 (0.052)</td>
<td>0.470</td>
<td>0.470</td>
<td>439</td>
</tr>
<tr>
<td></td>
<td>480 (489)</td>
<td>637 (5623)</td>
<td>0.048 (0.024)</td>
<td>0.244 (0.323)</td>
<td>1.027</td>
<td>313</td>
</tr>
</tbody>
</table>

a Fluorescence and phosphorescence quantum yields measured at an excitation wavelength of 467 nm or 322 nm, respectively. *b* Not determined. *c* Measured in toluene solution at r.t. *d* Measured in a toluene glass at 77 K.

occupies a position intermediate between Pt–NCS and Pt–Cl. This ordering parallels an increasing trans-influence of the ligand X, but shows no clear correlation to its positioning within the spectroelectrochemical series. This indicates that thermal population of excited d-states is most probably not the dominant pathway for radiationless decay of the excited states, although the documented complexities of such processes still warrant caution.

As the already very weak fluorescence of Pt–I was found to vanish altogether on irradiation into the high-energy absorption band at 322 nm, the phosphorescence and fluorescence emissions were monitored at different excitation wavelengths. Fig. 7a and b illustrate that, on irradiation into the higher energy absorption band(s), the phosphorescence quantum yield Φ_P of Pt–NO_2 further increases at the expense of that of the fluorescence emission (Φ_F). The notion that the ratio of phosphorescence and fluorescence emission intensities may depend on the excitation wavelength has been per-}

Fig. 7 (a) Emission spectra of Pt–NO_2 on excitation at λ = 326 nm and λ = 472 nm, respectively. (b) Absorption and excitation spectra of Pt–NO_2. The excitation spectra were recorded for the fluorescence band at 483 nm and the phosphorescence band at 646 nm. Measurements were performed on degassed CH_2Cl_2 solutions at concentrations of ca. 10^-6 M.
populating (a) higher S_n state(s), has more significant contributions from Pt[PEt$_3$]$_2$ → BODIPY charge-transfer (ML → L′CT, Fig. 5 and Tables 2 and 3). As is illustrated in Scheme 1, the faster $k_{ISC,n}$ from the higher-lying ML → L′CT excited state provides an even more competitive pathway for population of the phosphorescent T_1 state than ISC from S_1. Excitation into (a) higher S_n state(s) thus decreases the fluorescence quantum yield Φ_F while further boosting Φ_P. The highest phosphorescence quantum yields are found for the simple halogenido complexes. The values of Φ_P of 36.4% or 39.7% for Pt–I on excitation at 467 or at 322 nm, respectively, are, to the best of our knowledge, the highest phosphorescence quantum yields of any BODIPY derivative, even surpassing those of Pt–Br.20

Emission quenching by 3O_2 and 1O_2 generation

The very long lifetimes of the excited triplet states of up to 439 μs make these compounds interesting candidates for applications such as triplet molecule sensing and photocatalysis. Their capabilities to act as one-component sensors for triplet molecules were tested by Stern–Volmer quenching experiments using 3O_2 as the quencher. Fig. 9 and as Fig. S35 and S37 of the ESI† illustrate the results of such experiments for Pt–I, Pt–Cl and Pt–NO$_2$. The Stern–Volmer equation is given as $I_0/I = 1 + K_{SV}[O_2]$, where I_0 is the luminescence intensity under exclusion of oxygen, I is the luminescence intensity at a specific oxygen concentration, and K_{SV} is the Stern–Volmer quenching constant, which is a measure for the sensitivity of the sensor. Fig. 10 displays plots of $(I_0/I) - 1$ and $(\tau_0/\tau) - 1$ as a function of the partial oxygen pressure ($p(O_2)$). The quenching constants of $K_{SV} = 2380 \pm 170$ bar$^{-1}$ for Pt–Cl and $K_{SV} = 2580 \pm 70$ bar$^{-1}$ for Pt–I are identical within the experimental error limits. As expected from the longer triplet state lifetime, Pt–NO$_2$ has an even larger K_{SV} of 2810 ± 110 bar$^{-1}$. Quenching constants evaluated by the ratios of lifetimes are somewhat smaller but still reach values of close to 2000 to 2200 bar$^{-1}$. All complexes show high sensitivities for small partial oxygen pressures. Above $p(O_2) = 0.1$ bar the plots start to deviate from linearity which relates to the low intensity of the residual signal. Our results render complexes Pt–Cl, Pt–I and Pt–NO$_2$ particularly efficient oxygen sensors when compared to other

![Fig. 8 Spin density surfaces of the T_1 state of (a) Pt–Cl, (b) Pt–I, (c) Pt–NCS, and (d) Pt–NO$_2$.](image)
successful platinum-based systems.49–54 We note here that a lower lifetime of the phosphorescence emission and hence lesser sensitivity towards \(\text{O}_2 \) quenching as it was observed for \(\text{Pt}-\text{Br} \) allows for \(\text{O}_2 \) detection in solution up to atmospheric concentration levels of the surrounding gas phase.

The feasibility of using these complexes as sensitizers for \(\text{^1O}_2 \) generation from \(\text{^3O}_2 \) by triplet–triplet annihilation in productive chemical reactions55,56 such as the oxidation of 1,5-dihydroxynaphthalene (DHN) was investigated using the complexes \(\text{Pt}–\text{Cl} \) and \(\text{Pt}–\text{I} \) as catalysts. The catalytic cycle of the photocatalytic system consisting of the sensitizer, aereal \(\text{O}_2 \) and DHN is shown in Scheme 2. On the basis of this mechanism, the rate-law of DHN consumption can be written as

\[
\nu_i = \frac{k_i [\text{O}_2][\text{DHN}]}{k_{\text{obs}}}. \tag{1}
\]

At the initial stage of the reaction oxygen concentration can be treated as constant. The previous equation can therefore be simplified to

\[
\nu_i = k_i [\text{O}_2][\text{DHN}] \text{using a pseudo first-order rate constant } k_{\text{obs}}. \tag{2}
\]

Rewriting this formula as

\[
\ln\left(\frac{C_i}{C_0}\right) = -k_{\text{obs}}t,
\]

where \(C_0 \) denotes the concentration of DHN at a certain reaction time \(t \) while \(C_i \) is the initial concentration of DHN, allows for determining \(k_{\text{obs}} \) from the slope of a plot of \(\ln(C_i/C_0) \) vs. reaction time \(t \). The associated values of \(k_i \) and the number of photons absorbed by the sensitizer provide the \(\text{^1O}_2 \) generation quantum yield \((\Phi_A) \) by using the relative method with methylene blue (MB) as a reference sensitizer.57 Details of these experiments are provided in the Experimental section. Fig. 11a depicts the changes of the absorption spectra of the reaction mixture with irradiation time \(t \) using \(\text{Pt}–\text{Cl} \) as a sensitizer, while Fig. 11b compares plots of \(\ln(C_i/C_0) \) as a function of \(t \) for \(\text{Pt}–\text{Cl}, \text{Pt}–\text{I} \) and the MB standard. The rate constants \(k_{\text{obs}} \), the reaction rates \(k_i \) of DHN consumption, and quantum yields for the generation of \(\text{^1O}_2 \) \((\Phi_A) \) in the photooxidation of DHN are summarized in Table 5. Both platinum complexes obey a linear relation between \(\ln(C_i/C_0) \) and the irradiation time \(t \) from which \(k_i \) was determined. This precludes side reactions and proves that the sensitizers are stable under these conditions. Control experiments in the absence of light showed that none of the sensitizers promotes oxidation of DHN to Juglone under dark conditions (see Fig. S38 and S39 in the ESIF). Both complexes show a significantly higher rate \(k_i \) of DHN consumption than MB. Most remarkably, \(\text{Pt–I} \) and \(\text{Pt–Cl} \) have exceptionally high quantum efficiencies \(\Phi_A \) of 0.95 \((\text{Pt–I})\) or even near unity \((\text{Pt–Cl})\) and clearly outperform the MB standard \((\Phi_A \approx 0.57)\).58–60 Contributing factors are the high ISC efficiencies and the long lifetimes of the triplet state \((\tau_{\text{Ph}} = 277 \mu\text{s} \text{ for } \text{Pt–Cl}, \tau_{\text{Ph}} = 297 \mu\text{s for } \text{Pt–I})\).

Summary and conclusions

We report on the synthesis and the spectroscopic and photophysical properties of five new complexes \(\text{trans-Pt(BODIPY)X} \) \((\text{PEt}_3)_2 \) (\(\text{Pt–X, X}^- = \text{Cl}^-, \text{I}^-, \text{NO}_2^-, \text{NCS}^-, \text{CH}_3^- \)). All contain a \(\sigma \)-bonded BODIPY ligand that binds to the platinum ion via its meso position. With the exception of \(\text{Pt–CH}_3 \), all complexes show dual fluorescence and phosphorescence emissions from the attached BODIPY dye at wavelengths that are largely invariant to the nature of the ligand \(X^- \). Phosphorescence quantum yields and Pt–C(BODIPY) bond lengths increase in the order

\[
\Phi_{\text{NO}_2^-} < \Phi_{\text{NCS}^-} < \Phi_{\text{Cl}^-} < \Phi_{\text{I}^-} < \Phi_{\text{CH}_3^-}
\]

in parallel with the \(\sigma \)-trans-influence of the ligand \(X^- \).

Scheme 2 Mechanism for the photooxidation of 1,5-dihydroxynaphthalene (DHN) by \(\text{^1O}_2 \) catalyzed by a sensitizer, producing Juglone after the elimination of a water molecule.
appreciable Pt(PEt₃)₂

ion properties as recently discussed and observed by Chou

direct pathway for Pt-triggered ISC than just the heavy atom
Thus, the higher-energy MLCT absorption of
be further explored in our future work.

Most importantly, the ratio of phosphorescence to fluorescence intensities of each complex depends on the excitation wavelength. This is a direct consequence of the different natures of the initially populated excited states (BODIPY-based \(\pi \to \pi^* \) or a higher excited state with appreciable Pt(PEt₃)₂ \(\pi^* \) ML \(\to \) L' charge-transfer character), which results in different rate constants \(k_{ISC} \). Thus, the higher-energy MLCT absorption offers a more direct pathway for Pt-triggered ISC than just the heavy atom effect. Our present results provide experimental manifestation of the concept of excitation energy-dependent emission properties as recently discussed and observed by Chou and his coworkers. 33, 45, 47

Additional studies into phosphorescence quenching by ¹O₂ have yielded exceptionally large Stern–Volmer quenching constants of ca. 2000 bar⁻¹ and demonstrated that these complexes are excellent one-component sensors for triplet molecules. Moreover, they constitute highly efficient sensitizers for photocatalytic reactions involving ¹O₂ as the reactant, combining exceptionally high quantum efficiencies near unity for ¹O₂ generation with good photostabilities. These treats will be further explored in our future work.

Experimental section
Materials and general methods
DHN was bought form Acros Organics and purified by sublimation (\(p = 4 \times 10^{-3} \) mbar, 160° C oil bath). cis-Pt(BODIPY)Br-(PEt₃)₂ was prepared as described elsewhere. 20 All manipulations where conducted under air except for reactions involving MeMgI, MgMe₂ and MeLi, which were performed under N₂ atmosphere by standard Schlenk techniques. Solvents for the reactions under inert gas atmosphere were distilled over adequate drying agents and stored under N₂ atmosphere. All other solvents were used as received from the suppliers.

NMR experiments were carried out on a Bruker Avance III DRX 400 or a Bruker Avance DRX 600 spectrometer. ¹H and ¹³C NMR spectra were referenced to the solvent signal, while ³¹P and ¹⁹⁵Pt NMR spectra were referenced using the Absolute Reference tool in the MestReNova software. NMR data are given as follows: chemical shift (\(\delta \) in ppm), multiplicity (br, broad; d, doublet; dd, doublet of doublets; m, multiplet; s, singlet; t, triplet), integration, coupling constant (Hz). Unequivocal signal assignments were achieved by 2D NMR experiments. The numbering of the nuclei follows that of the crystal structures in
Fig. 3. Combustion analysis was conducted with an Elementar vario MICRO cube CHN-analyzer from Heraeus.

X-ray diffraction analysis of single crystals was performed at 100 K on a STOE IPDS-II diffractometer equipped with a graphite-monochromated radiation source (\(\lambda = 0.71073 \) Å) and an image plate detection system. A crystal mounted on a fine glass fiber with silicone grease was employed. If not indicated otherwise, the selection, integration, and averaging procedure of the measured reflex intensities, the determination of the unit cell dimensions and a least-squares fit of the 2\(\theta \) values as well as data reduction, LP-correction, and space group determination were performed using the X-Xray software package delivered with the diffractometer. A semiempirical absorption correction was performed.\(^{61} \) All structures were solved by the heavy-atom methods (SHELXS-97, SHELXS-2013, or SHELXS-2014).\(^{52,63} \) Structure solutions were completed with difference Fourier syntheses and full-matrix least-squares refinements using SHELXL-97, SHELXS-2013, or SHELXS-2014.\(^{63} \)minimizing \(w(F_o^2 - F_c^2) \). The weighted \(R \) factor (\(wR^2 \)) and the goodness of the fit GOF are based on \(F^2 \). All non-hydrogen atoms were refined with anisotropic displacement parameters, while hydrogen atoms were treated in a riding model. Molecular structures in this work are plotted with ORTEP 3.\(^{24,65} \) or Mercury.\(^{66} \) CIF files of Pt-CI, Pt-I, Pt-NCS, Pt-NO\(_2\), and Pt-CH\(_3\) have been deposited at the Cambridge Structure Data Base as CCDC 1474955 (Pt-CI), 1474956 (Pt-NCS), 1474957 (Pt-I), 1474958 (Pt-NO\(_2\)), and 1474959 (Pt-CH\(_3\)).

UV-Vis absorption spectra were recorded on a TIDAS fiberoptic diode array spectrometer MCS from j&m in HELLMA quartz cuvettes with 1 cm optical path length at room temperature.

Computational details

The ground state electronic structures were calculated by density functional theory (DFT) methods using the Gaussian 09\(^{57} \) program packages. Quantum chemical studies were performed without any symmetry constraints. Open shell systems were calculated by the unrestricted Kohn-Sham approach (UKS).\(^{68} \) Geometry optimization followed by vibrational analysis was made either in vacuum or in solvent media. The quasirelativistic Wood-Boring small-core pseudopotentials (MWB)\(^{59,76} \) and the corresponding optimized set of basis functions\(^{71} \) for Pt and the 6-31G(d) polarized double-\(\zeta \) basis set\(^{72} \) for the remaining atoms were employed together with the Perdew, Burke and Ernzerhof exchange and correlation functional (PBE1PBE).\(^{73-75} \) Solvent effects were accounted for by the Polarizable Conductor Continuum Model (PCM)\(^{76-78} \) with standard parameters for dichloromethane. Absorption spectra and orbital energies were calculated using time-dependent DFT (TD-DFT)\(^{79} \) with the same functional/basis set combination as mentioned above. For easier comparison with the experiment, the obtained absorption and emission energies were converted into wavelengths and broadened by a Gaussian distribution (full width at half-maximum = 3000 cm\(^{-1} \)) using the programm GaussSum.\(^{80} \) Molecular orbitals were visualized with the GaussView programm\(^{81} \) or with Avogadro.\(^{82} \)

Luminescence spectroscopy and quenching experiments

All luminescence spectra and excited state lifetimes were recorded for ca. 10\(^{-4} \) M solutions in CH\(_2\)Cl\(_2\) or toluene with a PicoQuant FluoroTime 300 spectrometer at room temperature, if not stated otherwise. Luminescence experiments under inert gas atmosphere and defined O\(_2\) concentrations were conducted in a quartz cuvette modified with an angle valve from Normag. Defined O\(_2\) concentrations were adjusted by completely degassing the sample and subsequent injection of adequate volumes of air and nitrogen by syringe. Quantum yields were measured using a Hamamatsu Absolute PL Quantum Yield Measurement System C9920-02 equipped with an integrating sphere.

\(^{1} \)O\(_2 \) generation from Pt-X sensitizers

For the photoreactions involving \(^{1} \)O\(_2 \) generation, a CH\(_2\)Cl\(_2\)/MeOH (9/1) solution containing DHN (1.2 \(\times \) 10\(^{-4} \) M) and a sensitizer (1.7 mol\% with respect to DHN) was irradiated in a quartz cell of 1 cm path length using the Xenon lamp of a PicoQuant FluoroTime 300 spectrometer (\(\lambda_{ex} \) (Pt-CI, Pt-I) = 460 ± 5 nm, \(I_0(460 \pm 5 \) nm) = 1.3 mW; \(\lambda_{ex} \) (MB) = 655 ± 5 nm, \(I_0(655 \pm 5 \) nm) = 580 \(\mu \)W). UV-Vis absorption spectra were recorded at intervals of 5-20 min on a Varian Cary 50 spectrometer. The consumption of DHN was monitored by the decrease of the absorption at 301 nm (\(\epsilon = 7664 \) M\(^{-1} \) cm\(^{-1} \)),\(^{57} \) while Juglone production was monitored by an increase of the absorption at 427 nm (\(\epsilon = 3811 \) M\(^{-1} \) cm\(^{-1} \)).\(^{57} \) The yield of Juglone was calculated from the concentration of Juglone and the initial concentration of DHN. The singlet oxygen quantum yield (\(\Phi_\Delta \)) was determined using eqn (1).\(^{57,83} \)

\[
\Phi_\Delta = \Phi_{\Delta, std} (\nu_i / I_{std} / \epsilon / \Delta) I
\]

where \(\Phi_{\Delta, std} \) is the singlet oxygen quantum yield of the standard sensitizer MB (\(\Phi_\Delta = 0.57 \)),\(^{58-60} \) \(\nu_i \) is the rate of DHN consumption and \(I \) and \(I_{std} \) are the number of photons absorbed by the sensitizer and the standard, respectively. \(I \) was estimated from eqn (2) using the \(\lambda \) interval 455 to 465 nm for Pt-CI and Pt-I, and 650 to 660 nm for MB,

\[
I = \int I_\lambda (1 - 10^{-\epsilon / \lambda} \mu_i) d\lambda
\]

where \(I_\lambda \) is the wavelength dependence of the intensity of the incident light evaluated with a photometer (for values vide supra), \(\epsilon(\lambda) \) is the extinction coefficient of the respective sensitizer recorded in CH\(_2\)Cl\(_2\)/MeOH (9/1), \(C_o \) is the concentration of the sensitizer, and \(I \) is the length of the optical cell.

\(\text{trans-Chloro-}(4,4\text{-difluoro-4-bora-3a,4a-diaza-indacen-8-yl)-bis(triethylphosphine)-platinum}\((\text{u}) \) (Pt-CI)

40 mg (57 \(\mu \)mol, 1 eq.) of \(\text{cis-Pt(BODIPY)Br(P} \) \(\text{Et}_{2} \) \(\text{P} \)), and 19.5 mg (76 \(\mu \)mol, 1.4 eq.) of AgOTf were dissolved in 0.8 ml of CD\(_2\)Cl\(_2\). The solution was heated to reflux for 5 min which led to the
formation of trans-Pt(BODIPY)(OTf)(PEt3)2. The heterogeneous mixture was filtered and the filtrate was added to a solution of 66.6 mg (114 μmol, 2 eq.) of NaCl in 2.6 ml of MeOH. The orange suspension was stirred for 45 min. The solvents were then removed in vacuo and the solid was extracted with CH2Cl2. The product was purified by column chromatography (silica, CH2Cl2, Rf = 0.72). After washing with n-pentane (2 x 0.6 ml) the analytically pure product was obtained. Yield: 32%. Single crystals were obtained by slow evaporation of a CH2Cl2 solution.

\[\text{trans-Pt(BODIPY)(OTf)(PEt3)2 + NaCl} \rightarrow \text{trans-Pt(BODIPY)(OTf)(PEt3)2, yield 32%} \]

To trans-Pt(BODIPY)(OTf)(PEt3)2 prepared as described above was dissolved in 5 ml of dry THF under N2 atmosphere. To this was evaporated to dryness. For 20 min, the precipitate was filtered off. The solution was evaporated to dryness.

The crude product was purified by column chromatography (silica deprotonated with 5% NEt3, CH2Cl2 : PE = 5:1 , Rf = 0.72). After washing twice with 0.3 ml of n-pentane the yellow product was obtained in 58% yield. Single crystals suitable for X-ray diffraction analysis were obtained by slow evaporation of a CH2Cl2 solution.

\[\text{trans-Pt(BODIPY)(OTf)(PEt3)2 + CH2Cl2} \rightarrow \text{trans-Pt(BODIPY)(OTf)(PEt3)2, yield 58%} \]

trans-10daco-(4,4-difluoro-4-bora-3a,4a-diaza-s-indacen-8-yl)-bis(triethylphosphine)-platinum(II) (Pt-1)

\[\text{trans-Pt(BODIPY)(OTf)(PEt3)2} + \text{CH2Cl2} \rightarrow \text{trans-10daco-(4,4-difluoro-4-bora-3a,4a-diaza-s-indacen-8-yl)-bis(triethylphosphine)-platinum(II) (Pt-1)} \]

trans-10daco-(4,4-difluoro-4-bora-3a,4a-diaza-s-indacen-8-yl)-bis(triethylphosphine)-platinum(II) (Pt-1)

To trans-Pt(BODIPY)(OTf)(PEt3)2 prepared as described above from 40 mg (57 μmol, 1 eq.) of cis-Pt(BODIPY)Br(PEt3)2 in CH2Cl2, a solution of 7.9 mg (114 μmol, 2 eq.) of NaNO2 in 2.6 ml of MeOH was added. The orange solution was stirred for 1.5 h at r.t., the solvents were removed and the crude solid was extracted with CH2Cl2. The product was purified by column chromatography (silica deprotonated with 5% NEt3, PE : EE = 1 : 1, Rf = 0.41). After removing the solvent at low temperature the yellow product was washed two times with n-pentane and dried in vacuo. Yield: 26%. Single crystals for X-ray diffraction analysis were obtained by slow evaporation of a CH2Cl2 solution.

\[\text{trans-Pt(BODIPY)(OTf)(PEt3)2 + NaNO2} \rightarrow \text{trans-10daco-(4,4-difluoro-4-bora-3a,4a-diaza-s-indacen-8-yl)-bis(triethylphosphine)-platinum(II) (Pt-1)} \]

trans-(4,4-Difluoro-4-bora-3a,4a-diaza-s-indacen-8-yl)-(nitrito)bis(triethylphosphine)-platinum(II) (Pt-NO3)

A solution of 30 mg (57 μmol, 1 eq.) of cis-Pt(BODIPY)Br(PEt3)2 and 19.5 mg (76 μmol, 1.4 eq.) of AgOTf in 0.8 ml of CH2Cl2 was refluxed for 5 min. The solution was filtered and 2.6 ml of a methanolic solution of NaSCN (9.2 mg, 114 μmol, 2 eq.) was added. After stirring the reaction mixture for 1.5 h all volatiles were removed and the crude product was extracted with CH2Cl2. The product was further purified by column chromatography (silica deprotonated with 5% NEt3, PE : EE = 3 : 1, Rf = 0.32). The product was washed with small amounts of n-pentane. Yield: 36%. Single crystals for X-ray diffraction analysis were obtained by slow evaporation of a CH2Cl2 solution.

\[\text{trans-(4,4-Difluoro-4-bora-3a,4a-diaza-s-indacen-8-yl)-(nitrito)bis(triethylphosphine)-platinum(II) (Pt-NO3)} \]
allowed to warm to room temperature over 4 h. The mixture was filtered, the solvent was removed and the crude solid was purified by column chromatography (silica deprotonated with 5% NEt₃, petroleum ether : ethyl acetate = 8 : 3, Rf = 0.73). The product was washed two times with n-pentane and dried in vacuo. Yield: 49%. Single crystals were obtained by slow diffusion of n-pentane in a saturated C₆D₆ solution. ¹H NMR (600 MHz, C₆D₆): δ 7.92 (br s, 2H, H3, H5), 7.47 (d, 2H, ¹JHH = 3.48 Hz, H3, C7), 6.31 (dd, 2H, ¹JHH = 3.48 Hz, ¹JHPt = 2.05 Hz, H4, H8), 1.35 (m, 12H, P–CH₂–), 0.70 (dt, 18H, ¹JHH = 7.67 Hz, ¹JHPt = 15.68 Hz, P–CH₂–CH₃), −0.24 (t with satellites, 3H, ¹JCH₂ = 6.82 Hz, ¹JHPt = 24.9 Hz, CH₃). ¹³C NMR (161.9 MHz, C₆D₆): δ 115.6 (s, C4, C8), 14.3 (s, C2, C6), 136.4 (s, C5, C9), 132.2 (s with satellites, ¹JPC = 17.0 Hz, C1), 146.4 (s, C3, C7), 115.6 (s, C4, C8). (t with satellites, ¹JPC = 17.0 Hz, ¹JPC = 67.1 Hz, P–CH₂–), 8.0 (s with satellites, ¹JPC = 25.5 Hz, P–CH₂–CH₃), −14.0 (t, ¹JPC = 8.0 Hz, with satellites, ¹JPC = 412.7 Hz, C10). ¹⁹⁵Pt NMR (86.0 MHz, C₆D₆): δ = -4396 (t, ¹JPPt = 2692 Hz), C, H, N analysis calculated for C₂₂H₃₉BF₂N₂P₂Pt: C, 41.46; H, 6.17; N, 4.39. Found: C, 41.34; H, 6.47; N, 4.51.

Notes
The authors declare no competing financial interest.

Acknowledgements
We thank the state of Baden-Württemberg and the Deutsche Forschungsgemeinschaft for providing us with access to the computational facilities of the bwFor computer cluster JUSTUS.

References