
               Universität Konstanz

A-posteriori error analysis for lithium-ion concentrations in 
batteries utilizing the reduced basis method

Laura Iapichino
Stefan Volkwein
Andrea Wesche

Konstanzer Schriften in Mathematik

Nr. 342, Oktober 2015

ISSN 1430-3558

© Fachbereich Mathematik und Statistik
Universität Konstanz
Fach D 197, 78457 Konstanz, Germany

Konstanzer Online-Publikations-System (KOPS) 
URL: http://nbn-resolving.de/urn:nbn:de:bsz:352-0-303692

http://nbn-resolving.de/urn:nbn:de:bsz:352-0-303692




A-posteriori error analysis for lithium-ion concentrations in

batteries utilizing the reduced basis method

L. Iapichinoa, S. Volkweinb∗, and A. Wescheb

aDepartment of Precision and Microsystems Engineering, Delft University of Technology,

Mekelweg 2, 2628 CD Delft, The Netherlands; bDepartment of Mathematics and Statistics,

University of Konstanz, Germany

(October 16, 2015)

In the present paper the authors consider a parametrized nonlinear parabolic differ-
ential equation, which is motivated by lithium-ion battery models. A standard finite
volume (FV) discretization leads to a high-dimensional discrete nonlinear problem so
that simulation of the parametrized problem for various different parameters is very
costly. Therefore, the reduced-basis method is applied, so that the number of degrees of
freedom is reduced significantly and a fast numerical simulation of the model is possible.
To control the error, an a-posteriori error estimator is derived. Numerical experiments
show the efficiency of the approach.
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1. Introduction

The interest in lithium-ion batteries has been increased in the recent years. Several
companies worldwide are developing such batteries for consumer electronic appli-
cations, in particular, for electric-vehicle applications. To achieve the performance
and lifetime demands in this area exact mathematical models of the battery are re-
quired. In the present work we consider a parametrized partial differential equation
(µPDE) that occurs in lithium-ion battery models (see [20, 21]) as an equation for
the concentration of lithium-ions. This equation describes the mass transport in the
(positive) electrode of a battery. Let us refer to [6, 32], for instance, for a different
system of µPDEs describing lithium-ion batteries.

The discretization of the nonlinear µPDE using the (cell-centered) finite volume
(FV) techniques (see, e.g., [3]), leads to very large systems that are expensive to
solve. The goal is to develop a reduced-order model for the parametrized PDE that
is cheap to evaluate. This is motivated by applications like parameter estimations,
optimal control and design, where repeated evaluations of the nonlinear equation
are required. In the present paper, the spatial approximation is realized by applying
the reduced-basis (RB) method [12, 24], where the FV solution has to be computed
for certain different values of the parameters. The RB solution of the µPDE for

∗Corresponding author. Email: Stefan.Volkwein@uni-konstanz.de



any admissible parameter µ ∈D is computed (during the online stage) as Galerkin
projection into the RB space defined by a typically small set of solutions of the
µPDE computed during the offline stage and corresponding to a small subset of
parameter values Dtrain ⊊ D accurately chosen. A combination of the usual greedy
strategy and the method of proper orthogonal decomposition (the POD-greedy algo-
rithm; c.f. [13]) is used as the classical sampling strategy to select parameter values
that define the set of basis functions. To require as little FV solutions as possible,
a rigorous and quickly evaluated a-posteriori error estimate is needed in the greedy
method; see [7, 8] for parabolic problems. We derived an a-posteriori error esti-
mate for the µPDE under consideration, where we have to deal carefully with the
nonlinear term. This theoretical result is utilized in our numerical experiments to
construct a RB basis. After obtaining an efficient reduced order model we want to
utilize it in a parameter estimation problem. For RB discretization of the coupled
lithium-ion battery model we refer to [30, 31]. Further, POD reduced-order model-
ing for simulation and parameter estimation of battery models is utilized in [1] and
[18, 19], for instance.

The paper is organized in the following manner: In Section 2 we introduce the
µPDE describing the mass transport in the (positive) electrode of a battery. The
FV scheme is briefly explained in Section 3. The RB and POD method are explained
in Section 4. Further, the POD-greedy algorithm is recalled. Section 5 is devoted
to the a-posteriori error analysis. A parameter estimation problem is introduced in
Section 6 and numerical tests are presented in Section 7.

2. Problem formulation

For L > 0 let Ω = (0, L) ⊂ R be the spatial interval, T > 0 the final time and
Q = Ω× (0, T ). By H = L2(Ω) we denote the Lebesgue space of (equivalence classes
of) functions which are (Lebesgue) measurable and square integrable. Furthermore,
V =H1(Ω) ⊂H stands for the Sobolev space

V = {ϕ ∈H ∣ ∫
Ω
∣ϕ′(x)∣2 dx <∞}.

For more details on Lebesgue and Sobolev spaces we refer to [5], for instance. The
space L2(0, T ;V ) stands for the space of (equivalence classes) of measurable abstract
functions ϕ ∶ [0, T ]→ V , which are square integrable, i.e.,

∫
T

0
∥ϕ(t)∥2

V dt <∞.

When t is fixed, the expression ϕ(t) stands for the function ϕ(t, ⋅) considered as a
function in Ω only. Recall that

W (0, T ) = {ϕ ∈ L2(0, T ;V ) ∣ϕt ∈ L2(0, T ;V )}

is a Hilbert space supplied with its corresponding inner product; see, e.g., [5].
The set of admissible parameters is given as

D = {µ = (µ1, µ2) ∈ R2 ∣µai ≤ µi ≤ µbi for i = 1,2}
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with 0 < µai ≤ µbi for i = 1,2. For an arbitrary µ = (µ1, µ2) ∈ D we consider the
semilinear parabolic problem

∂c

∂t
(t, x) − ∂

∂x
(µ1

∂c

∂x
(t, x)) = 0 for all (t, x) ∈ Q (1a)

together with the Neumann and Robin boundary conditions

∂c

∂x
(t,0) = 0, µ1

∂c

∂x
(t,L) = −µ2

√
c(t,L) for all t ∈ [0, T ] (1b)

and the initial condition

c(0, x) = c○(x) for all x ∈ Ω. (1c)

We assume that c○ belongs to C(Ω) and satisfies

0 < ca○ ≤ c○(x) ≤ cb○ for all x ∈ Ω (2)

with constants 0 < ca○ ≤ cb○ < ∞. Moreover, the concentration should be at least
non-negative so that we can evaluate the square root term in (1b).

Remark 2.1: 1) Problem (1) is motivated by a system of partial differential
equations which is used as a model for lithium-ion batteries; see [20, 21].
More precisely, (1) describes the mass transport in the (positive) electrode of
a lithium-ion battery and c stands for the concentration of lithium ions. The
nonlinear boundary condition in (1b) contains the c-dependent prefactor of
the Butler-Volmer equation describing the exchange of the lithium ions at the
interfaces between the electrode and the electrolyte [2].

2) Since the results of a one-dimensional battery model are comparable to the
ones obtained by the associated three-dimensional model [31], the spatial do-
main is chosen to be an interval in the present paper. ◇

For a given parameter µ ∈ D a function c = c(µ) ∈ L2(0, T ;V ) is called a weak
solution to (1) provided c satisfies c > 0 in Q and

∫
T

0
∫

Ω
−c(t)ϕt(t) + µ1cx(t)ϕx(t)dxdt + µ2∫

T

0

√
c(t,L)ϕ(t,L)dt = ∫

Ω
c○ϕ(0)dx

holds for all ϕ ∈H1(0, T ;H) ∩L2(0, T ;V ) with ϕ(T ) = 0 in Ω.

Assumption 2.2: For any µ ∈ D there exists a unique weak solution c = c(µ) ∈
W (0, T ) ∩C(Q) to (1) satisfying

cmin ≤ c(t, x) ≤ cmax for all (t, x) ∈ Q (3)

with µ-independent constants 0 < cmin ≤ cmax.

Remark 2.3: Let µ ∈ D and (2) hold. Then, it follows from [25, Proposition 3.3]
that there exists a time T○ > 0 such that (1) admits a unique solution in W (0, T○)∩
C(Q). This solution satisfies (3) in Q○ = [0, T○]×Ω. However, it is not a-priorly clear
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that we have T○ ≥ T , so that we can only ensure the unique existence of a positive
weak solution locally in time. ◇

3. Finite volume (FV) discretization

We discretize (1) by the classical FV method; see, e.g., [3]. The integration over
time is realized by the backward Euler method. For given N ∈ N let h = L/N be
the equidistant spatial grid size. Define the center points xi = h/2 + (i − 1)h for
i = 1, . . . ,N . We devide Ω into N subintervals Ωi = (xi − h/2, xi + h/2). Moreover,
for given K ∈ N let k = T /(K −1) be the equidistant time grid size and tj = (j −1)k,
j = 1, . . . ,K, the temporal grid points. By chj,i(µ), i = 1, . . . ,N and j = 1, . . . ,K, we

denote the FV approximation of the concentration c(µ) at (tj , xi) ∈ Q for a given
parameter µ ∈D. We define the vector

chj (µ) =
⎛
⎜
⎝

chj,1(µ)
⋮

chj,N (µ)

⎞
⎟
⎠
∈ RN for j = 1, . . . ,K and µ ∈D.

Proceeding in the standard way we derive the following FV scheme for given pa-
rameter µ ∈D:

0
!= Fhj (chj (µ);µ) ∶= Lhim(µ1)chj (µ) − Lhexchj−1(µ) + µ2gh(chj (µ)) (4)

for j = 2, . . . ,K, where we have used the matrices for the implicit and explicit parts

Lhim(µ1) = hIh + µ1Sh ∈ RN×N , Lhex = hIh ∈ RN×N ,

respectively, with the identity matrix Ih and the stiffness matrix

Sh = k
h

⎛
⎜⎜⎜⎜⎜
⎝

1 −1
−1 2 −1

⋱ ⋱ ⋱
−1 2 −1

−1 1

⎞
⎟⎟⎟⎟⎟
⎠

∈ RN×N , gh(chj (µ)) =

⎛
⎜⎜⎜⎜
⎝

0
⋮
0

k
√

chj,N (µ)

⎞
⎟⎟⎟⎟
⎠

∈ RN .

Moreover, we put ch1,i(µ) = c○(xi) for 1 ≤ i ≤ N . In the following assumption we
suppose that the FV scheme admits a unique solution with positive values.

Assumption 3.1: For any µ ∈ D, for any N ∈ N and K ∈ N there exists a unique
solution sequence {cNj (µ)}Kj=1 ⊂ RN satisfying ch1,i(µ) = c○(xi) for 1 ≤ i ≤ N and
(4). Moreover, we have

cmin ≤ chj,i(µ) ≤ cmax for 1 ≤ j ≤K and 1 ≤ i ≤ N (5)

with µ-independent constants cmin and cmax introduced in Assumption 2.2.

Remark 3.2: To solve (4) numerically we apply a globalized Newton method [4]
starting with the numerical solution of the previous time step. ◇
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4. The Reduced Basis (RB) Method

In this section we introduce briefly the RB method for (4). Applying the RB method
to (4) we want to diminish significantly the numberN of unknowns in comparison to
the FV model via Galerkin projection. We follow the approach presented in [13]. The
main idea of the RB method is that a certain number of appropriate FV solutions
can be used to construct the RB solutions by a linear combination. Clearly, applying
the RB method is only worth it, if one is interested in many function evaluations.
Here, we are interested in a parameter estimation for (1); see Sections 6 and 7.2.

4.1. The Reduced Basis Method for FV schemes

The first step of the RB method is to replace the parameter set D by a discrete
training set

Dtrain = {µ1, . . . ,µp} ⊂D with p ∈ N.

We start with the FV solution sequence {chj (µ(1))}Kj=1 ⊂ RN for an initial parameter

choice µ(1) ∈ Dtrain. Utilizing the POD method we construct with this information
the first RB basis vector(s) in RN . We estimate the error between the FV and the
RB solution constructed with this basis for all parameters µ ∈Dtrain. If the biggest
error is smaller than our predefined tolerance 0 < εgr ≪ 1 we found our reduced basis.
If it is above εgr, we compute the FV solution to the parameter, where the estimated
error is the biggest. This information we add to our already computed basis. Again
we estimate the error between the FV and the RB solution to all parameters µ of
our training set Dtrain, but now we utilize the updated basis for the computation
of the RB solution. We proceed with the so-called greedy algorithm as long as the
estimated error is above εgr.

One of the big advantages of the RB method is that the computation can be
decomposed into a computationally expensive offline and cheap online part. In the
offline part the RB is determined. Furthermore, all parameter-independent parts of
the RB model are computed. In the online part the RB solutions to the requested
parameter are computed.

The accuracy of the RB solutions in comparison to the FV solutions in Dtrain is
given by the tolerance εgr. If the mapping D ∋ µ↦ chj (µ) ∈ RN is sufficiently regular

for 1 ≤ j ≤K and Dtrain is chosen appropriately, the error ch(µ)− cN(µ) is close to
εgr for all µ ∈D. Let us mention that there are also techniques, where the parameter
set is discretized adaptively [11], but we do not follow this approach here.

Considering nonlinear problems some mathematical effort has to be put in de-
veloping the error estimator. An error estimator for linear problems is examined in
[13]. In [7, 8] a-posteriori error estimates for Galerkin approximations applied to
nonlinear parabolic equations are considered.

To find an appropriate basis for our selected parameter set range we need FV
solutions to selected parameters. For time dependent problems we apply the POD-
greedy algorithm, see Section 4.3: the computed FV solution of the greedy algorithm
is reduced in time by the POD method, see e.g. [29]. In this algorithm there are
two loops. The outer loop is similar to the well-known greedy algorithm for elliptic
problems. For the chosen parameter µ ∈ Dtrain the error between the FV and the
RB solution is the biggest. In the inner loop we apply the POD method to the
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snapshot matrix

Ch(µ) = [ch1(µ) ∣ . . . ∣ chK(µ)] ∈ RN×K for µ ∈Dtrain.

Let us introduce a weighted inner product in RN by

⟨x,y⟩W = x⊺Wy for x, y ∈ RN

with a symmetric and positive definite matrix W ∈ RN×N (i.e., W = W⊺ and W ≻ 0).
Suppose that we have computed an orthonormal RB basis {ξNi }Ni=1 ⊂ RN by the
POD-greedy algorithm with N ∋ N ≪ N . We set

Ξ = [ξ1 ∣ . . . ∣ ξN ] ∈ RN×N .

Using the Galerkin projection we approximate the solution chj (µ) ∈ RN by an N -

dimensional vector cNj (µ) for any j ∈ {1, . . . ,K}. Now, the RB approximation is
given by the vectors

cNj (µ) =
⎛
⎜
⎝

cNj,1(µ)
⋮

cNj,N (µ)

⎞
⎟
⎠
=
N

∑
i=1

cNj,i(µ)ξi = ΞcNj (µ) ∈ RN for j = 1, . . . ,K and µ ∈D,

where we set cNj (µ) = (cNj,1(µ), . . . , cNj,N(µ))⊺ ∈ RN . We replace chj (µ) in (4) by

cNj (µ) and multiply by ξ⊺i W from the left for 1 ≤ i ≤ N . Then, for any µ ∈ D we
derive the equations

0
!= ⟨ξi,Fhj (cNj (µ);µ)⟩

W
= ξ⊺i WFhj (cNj (µ);µ) for i = 1, . . . ,N and j = 2, . . . ,K

which can be expressed as

0
!= FNj (cNj (µ);µ) ∶= Ξ⊺WFhj (cNj (µ);µ) ∈ RN for j = 2, . . . ,K (6)

of N nonlinear equations for the N unknowns coefficients {cNj,i(µ)}Ni=1. More pre-
cisely, we find

FNj (cNj (µ);µ) = LNim(µ1)cNj (µ) − LNexc
N
j−1(µ) + µ2gN(ΞcNj (µ)) ∈ RN , (7)

where we have set the matrices

LNim(µ1) = Ξ⊺WLhim(µ1)Ξ ∈ RN×N , LNex = Ξ⊺WLhexΞ ∈ RN×N

and the vector

gN(ΞcNj (µ)) = Ξ⊺Wgh(ΞcNj (µ)) ∈ RN .

Analogous to Assumption 3.1 we suppose the following hypothesis.
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Assumption 4.1: For any µ ∈ D, for any N ∈ N and K ∈ N there exists a unique
solution sequence {cNj (µ)}Kj=1 ⊂ RN satisfying (6) and

cmin ≤ cNj,i(µ) ≤ cmax for 1 ≤ j ≤K and 1 ≤ i ≤ N (8)

with µ-independent constants cmin and cmax introduced in Assumption 2.2.

4.2. Proper Orthogonal Decomposition (POD)

The POD method is used for the POD-greedy algorithm. It reduces the snapshot
matrix Ch(µ) ∈ RN×K in time and extracts the essential characteristics. To get
` ≤ d = rank Ch(µ) POD basis vectors and associated POD modes the following
optimization problem is solved [15, 16, 29]:

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

minJ(ψ1, . . . , ψ`) =
K

∑
j=1

αj ∥chj (µ) −
`

∑
i=1

⟨chj (µ), ψi⟩W
ψi∥

2

W

subject to {ψi}`i=1 ⊂ RN and ⟨ψi, ψj⟩W = δij for 1 ≤ i, j ≤ `,
(9)

where ∥ ⋅ ∥W = ⟨⋅ , ⋅⟩1/2
W denotes the weighted norm in RN , δij denotes the Kronecker

symbol and α1 = αM = ∆t/2, αj = ∆t, 2 ≤ j ≤ K − 1, are the trapezoidal weights
associated with or temporal grid; see [29, Section 4]. The solution of the optimization
problem (9) is characterized by the first ` eigenvectors {ψi}`i=1 solving the symmetric
eigenvalue problem

K

∑
j=1

αj ⟨chj (µ), ψi⟩W
chj (µ) = λiψi for i = 1, . . . ,N (10)

with λ1 ≥ . . . ≥ λd > λd+1 = . . . = λN = 0. In particular, we have [16, Proposition 1]

E(`) ∶=
K

∑
j=1

αj ∥chj (µ) −
`

∑
i=1

⟨chj (µ), ψi⟩W
ψi∥

2

W
=

d

∑
i=`+1

λi.

We introduce the POD space V ` = span {ψ1, . . . , ψ`} ⊂ RN and the orthogonal
projection P` ∶ RN → V ` by

P`x =
`

∑
i=1

⟨x, ψi⟩W
ψi = ΨΨ⊺Wx for x ∈ RN .

with Ψ = [ψ1 ∣ . . . ∣ψ`] ∈ RN×`. In Algorithm 4.1 the POD method is summarized.

4.3. Basis computation by the POD-greedy algorithm

Suppose that ∥ ⋅ ∥ is a (vector) norm on RN . The POD-greedy algorithm relies
essentially on the availability of a sharp error estimator ∆N(µ) for the error between
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Algorithm 4.1 (POD algorithm)

Require: Ch(µ) ∈ RN×K , 0 ≪ εpod < 1. W ∈ RN×N with W = W⊺ and W ≻ 0;
1: d ← rank Ch(µ);
2: {(ψi, λi)}di=1 ← solve (10);
3: `← 1
4: E(`)← λ1;
5: while E(`) < εpod(µ) and ` < d do
6: E(` + 1)← E(`) + λ`+1;
7: `← ` + 1;
8: end while
9: return POD basis {ψi}`i=1, eigenvalues {λi}`i=1 and error E(`);

the FV and the RB solution, i.e.,

eNj (µ) = ∥chj (µ) − cNj (µ)∥ ≤ ∆N
j (µ) and ηeff

j (µ) =
∆N
j (µ)

eNj (µ)
≈ 1

for any µ ∈ Dtrain and j ∈ {1, . . . ,K}, where ηeff
j (µ) is called the efficiency (of the

a-posteriori error estimator). If ηeff
j (µ) ≫ 1 holds the RB error is overestimated

too much which leads to large number of basis functions. Then, the POD-greedy
algorithm and the offline phase are computationally too expensive (and thus the
online phase because more basis vectors than needed are used). In the worst case
the tolerance for the RB solution is not even reached. The POD-greedy method is
presented in Algorithm 4.2 [13].

Algorithm 4.2 (POD-greedy algorithm)

Require: Dtrain = {µ1, . . . ,µp} ⊂D, 0 < εgr ≪ 1, 0 ≪ εpod < 1, an kmax ∈ N;

1: Choose µ(1) ∈Dtrain;
2: Ch(µ(1)) ← solve (4);
3: ψ1, . . . , ψ`1 ← call Algorithm 4.1 with inputs Ch(µ(1)) and εpod;
4: N ← `1, ξi ← ψi (1 ≤ i ≤ N) and k ← 1;
5: while k < kmax and maxµ∈Dtrain

∆N(µ) > εgr do

6: µ(k+1) ← argmaxµ∈Dtrain
∆N(µ);

7: Ch(µ(k+1)) ← solve (4);
8: ψ1, . . . , ψ`k+1 ← call Algorithm 4.1 with inputs Ch(µ(k+1))−P`Ch(µ(k+1)) and

εpod;
9: ξ1, . . . , ξN+`k+1 ← Algorithm 4.3 with ξ1, . . . , ξN , ψ1, . . . , ψ`k+1 ;

10: N ← N + `k+1 and k ← k + 1;
11: end while
12: return reduced-basis Ξ = [ξ1 ∣ . . . ∣ ξN ];

Remark 4.2: 1) In Algorithm 4.2 we may also use the error itself instead of the
(computationally expensive) estimator ∆N(µ). Then, the method is called
strong POD-greedy algorithm, in the other case weak.

2) The basis vectors are chosen orthonormal for stability reasons, cf. [26, Section
5.7]. However, in numerical realizations instabilities may occur. For that reason
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the ξ’s are orthonormalized the after each Greedy step by Algorithm 4.3; see
e.g. [17]. We stop Algorithm 4.3 if the information of the new basis becomes
too small. This is the case if

∥wj∥1 =
N
∑
i=1

∣(wj)i∣ < εGS with εGS = 10−14,

where wj is the one determined in line 3 of Algorithm 4.3 and (wj)i denotes
its i-th component. Other stabilization techniques can be found in [27]. ◇

Algorithm 4.3 (Gram-Schmidt orthogonalization with weighted inner product)

Require: v1, . . . , vI ∈ RN ;
1: w1 ← v/∥v1∥W;
2: for i = 2 to I do
3: wi ← vi −∑i−1

j=1 ⟨wj , vi⟩Wwj ;
4: wi ← wi/∥wi∥W;
5: end for
6: return W-orthonormal basis [w1 ∣ . . . ∣wn] ∈ RN×I ;

5. Error analysis

In the present paper we improve the error estimator which was presented in [31,
Theorem 6.5].

5.1. Non-negative matrices and inverses

Recall the following definition; see, e.g., [23, p. 54].

Definition 5.1: A matrix A = ((aij)) ∈ RN×N is called an M-matrix if A is in-
vertible, its inverse A−1 possesses only non-negative coefficients and aij ≤ 0 for
1 ≤ i, j ≤ N with i ≠ j.

A sufficient condition for a matrix to be an M-matrix is given in the next lemma
[23, pp. 55-56]. For the definition of a strictly diagonally dominant matrix we refer
to [23, p. 48].

Lemma 5.2: Let A = ((aij)) ∈ RN×N be strictly diagonally dominant and assume
that aij ≤ 0 for 1 ≤ i, j ≤ N with i ≠ j and that aii > 0 for 1 ≤ i,≤ N . Then, A is an
M-matrix.

9



We have introduced the tridiagonal matrix

Lhim(µ1) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

h + µ1k
h −µ1k

h

−µ1k
h h + 2µ1k

h −µ1k
h

⋱ ⋱ ⋱

−µ1k
h h + 2µ1k

h −µ1k
h

−µ1k
h h + µ1k

h

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

∈ RN×N

in Section 3. Since µ1 ≥ µa1 > 0 holds, the diagonal elements are positive and the mi-
nor diagonal elements are non-positive. Furthermore, Lhim(µ1) is strictly diagonally

dominant. By Lemma 5.2 the matrix Lhim(µ1) is invertible for any µ ∈D. Moreover,
it follows analogously that

Lhim(µ1) + ηDh with η ≥ 0 and Dh =
⎛
⎜⎜⎜
⎝

0
⋱

0
1

⎞
⎟⎟⎟
⎠
∈ RN×N (11)

is an M-matrix and therefore regular as well for all µ ∈D.
We have introduced ∥ ⋅∥ as a (vector) norm on RN . The (associated) matrix norm

is defined as

∥A∥ = sup
∥x∥=1

∥Ax∥ = sup
x≠0

∥Ax∥
∥x∥

for A ∈ RN×N .

It follows that

∥Ax∥ ≤ ∥A∥∥x∥ for all A ∈ RN×N and x ∈ RN . (12)

Let A ∈ RN×N be regular. Using (12) we infer that

∥x∥ = ∥A−1Ax∥ ≤ ∥A−1∥∥Ax∥ for all x ∈ RN

which gives

∥Ax∥ ≥ ∥x∥
∥A−1∥

for all x ∈ RN . (13)

The next result is known as perturbation lemma; see, e.g., [23, p. 45].

Lemma 5.3: Let A, B ∈ RN×N be given. We suppose that A is invertible satisfying
∥A−1∥ ≤ β for a positive constant β. If ∥A − B∥ ≤ γ and βγ < 1, then B is also
invertible and satisfies

∥B−1∥ ≤ β

1 − βγ
.
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5.2. A-posteriori error analysis

For every µ ∈ D and j ∈ {1, . . . ,K} the error between the j-th FV solution chj (µ)
and the RB solution cNj (µ) is defined by

eNj (µ) = chj (µ) − cNj (µ) ∈ RN for j = 1, . . . ,K

and the residuals are given by

rNj (µ) = Fhj (cNj (µ);µ) ∈ RN for j = 2, . . . ,K. (14)

Since we solve (4) with a globalized Newton method, we can not guarantee that our
FV solution chj (µ) fulfils Fhj (chj (µ);µ) = 0. Instead, we have

∥Fhj (chj (µ);µ)∥ ≤ εnew for j ∈ {2, . . . ,K} and µ ∈D (15)

with a user-specified Newton tolerance 0 < εnew ≪ 1. Analogously, for RB solution
cNj (µ) the equation (6) is in general not valid, but it fulfils the inequality

∥FNj (cNj (µ);µ)∥ ≤ εnew for j ∈ {2, . . . ,K} and µ ∈D, (16)

where we utilize the same Newton tolerance εnew as for the FV system. Let us define
the matrix

Gh(µ) = Lhim(µ1) + ηDh with Dh as in (11) and η = µ2k
√
cmin +

√
cNj,N (µ)

, (17)

where we have introduced the matrix Dh in (11). If Assumption 4.1 and µ =
(µ1, µ2) ∈ D are satisfied, η > 0 follows. Therefore, Gh(µ) is an M-matrix and
invertible.

Theorem 5.4 (A-posteriori error estimate): Let µ ∈ D, Assumptions 3.1 and 4.1
hold. Suppose that {chj (µ)}Kj=1 and {cNj (µ)}Kj=1 denote the (inexact) FV and the RB
solutions satisfying (15) and (16), respectively, with the Newton tolerance εnew > 0.
Let the M-matrix Gh(µ) be given by (17). If the step size satisfies

k ≤
√
cmin +

√
cNj,N (µ)

2µb2 ∥Gh(µ)−1∥∥Dh∥
for j ∈ {2, . . . ,K}, (18)

then

∥eNj (µ)∥ ≤ 2 ∥Gh(µ)−1∥(εnew + ∥rNj (µ)∥ + ∥Lhex∥∥eNj−1(µ)∥) (19)

for j ∈ {2, . . . ,K} and µ ∈D, where the residual rNj (µ) has been introduced in (14).
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Proof. Let µ ∈D and j ∈ {1, . . . ,K}. Using (4), (7) and the equation

√
chj,N (µ) −

√
cNj,N (µ) =

chj,N (µ) − cNj,N (µ)
√

chj,N (µ) +
√

cNj,N (µ)
=

eNj,N (µ)
√

chj,N (µ) +
√

cNj,N (µ)

we obtain

Fhj (chj (µ);µ) − Fhj (cNj (µ);µ)

= Lhim(µ1)eNj (µ) − LhexeNj−1(µ) + µ2k (
√

chj,N (µ) −
√

cNj,N (µ))
⎛
⎜⎜⎜
⎝

0
⋮
0
1

⎞
⎟⎟⎟
⎠

= Lhim(µ1)eNj (µ) − LhexeNj−1(µ) +
µ2keNj,N (µ)

√
chj,N (µ) +

√
cNj,N (µ)

⎛
⎜⎜⎜
⎝

0
⋮
0
1

⎞
⎟⎟⎟
⎠
.

(20)

Recall that µ2 ≥ µa2 > 0 and chj,N (µ), cNj,N (µ) ≥ cmin > 0 hold for all j ∈ {2, . . . ,K}
and all µ ∈D. Therefore,

ηhj (µ2) ∶=
µ2√

chj,N (µ) +
√

cNj,N (µ)

is positive and the tridiagonal matrix Lhim(µ1)+kηhj (µ2)Dh is an M-matrix (compare
(11)). From (20) and (13), it follows that

∥Fhj (chj (µ);µ) − Fhj (cNj (µ);µ) + LhexeNj−1(µ)∥

= ∥(Lhim(µ1) + kηhj (µ2)Dh)eNj (µ)∥ ≥ ∥eNj (µ)∥/∥(Lhim(µ1) + kηhj (µ2)Dh)−1∥
(21)

for all j ∈ {2, . . . ,K} and all µ ∈ D. Thus, we infer from (21), (12), (14) and the
triangle inequality that

∥eNj (µ)∥ ≤ ∥(Lhim(µ1) + kηhj (µ2)Dh)−1∥

⋅ ∥Fhj (chj (µ);µ) − Fhj (cNj (µ);µ) + LhexeNj−1(µ)∥

≤ ∥(Lhim(µ1) + kηhj (µ2)Dh)−1∥ (εnew + ∥rNj (µ)∥ + ∥Lhex∥∥eNj−1(µ)∥) .

(22)

To derive an a-posteriori error estimate, we have to avoid the FV term chj,N (µ) in
(22). Due to Assumption 3.1 we have

0 ≤

√
chj,N (µ) −√

cmin

(√cmin +
√

cNj,N (µ))(
√

chj,N (µ) +
√

cNj,N (µ))

= 1
√
cmin +

√
cNj,N (µ)

− 1
√

chj,N (µ) +
√

cNj,N (µ)
≤ 1

√
cmin +

√
cNj,N (µ)
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for all j ∈ {2, . . . ,K} and all µ ∈D. Therefore, if k satisfies (18), it follows that

∥Gh(µ) − (Lhim(µ1) + kηj(µ2)Dh)∥

= µ2k(
1

√
cmin +

√
cNj,N (µ)

− 1
√

chj,N (µ) +
√

cNj,N (µ)
)∥Dh∥

≤
µ2k ∥Dh∥

√
cmin +

√
cNj,N (µ)

≤ µ2

µb2

1

2 ∥Gh(µ)−1∥
≤ 1

2 ∥Gh(µ)−1∥

for j ∈ {2, . . . ,K} and µ ∈D. Hence, we conclude from

∥Gh(µ)−1∥ ∥Gh(µ) − (Lhim(µ1) + kηj(µ2)Dh)∥ ≤ 1

2

and Lemma 5.3 that

∥(Lhim(µ1) + kηj(µ2)Dh)−1∥ ≤ 2 ∥Gh(µ)−1∥

for all j ∈ {2, . . . ,K} and all µ ∈D.

Remark 5.5: Estimate (19) depends on the constant cmin, which is usually un-
known. Due to Theorem 5.4 we have cNj (µ) → chj (µ) as N → N for any j ∈
{1, . . . ,K}. Hence, we assume that

chj,N (µ) ≥
cNj,N (µ)

4
> 0 for N sufficiently large.

Then, we replace cmin by cNj,N (µ)/4 and proceed as in the proof of Theorem 5.4.
From

√
chj,N (µ) +

√
cNj,N (µ) ≥ 3

2

√
cNj,N (µ)

we derive the following estimate for sufficiently large N : The matrix

Ĝh(µ) = Lhim(µ1) + η̂Dh ∈ RN×N with Dh as in (11) and η̂ = 2µ2k

3
√

cNj,N (µ)

is an M-matrix. If the step size satisfies

k ≤
3
√

cNj,N (µ)

4µb2 ∥Ĝh(µ)−1∥∥Dh∥
for j ∈ {2, . . . ,K},

then

∥eNj (µ)∥ ≤ 2 ∥Ĝh(µ)−1∥ (εnew + ∥rNj (µ)∥ + ∥Lhex∥∥eNj−1(µ)∥) (23)

for all j ∈ {2, . . . ,K} and all µ ∈D. ◇
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Remark 5.6: In Section 7.1 we estimate the error in the maximum norm. Hence,
we have to compute ∥(G(µ))−1∥∞. For tridiagonal matrices like in the present case,
there exist efficient algorithms. We use one of Hargreaves, cf. [9, Algorithm]. In our
numerical example the computation of the norm ∥(G(µ))−1∥∞ for a 102×102 matrix
lasts less than 0.01 seconds, for a 103 × 103 matrix less than 0.1 seconds. ◇

6. Parameter estimation problem

We suppose that Assumption 2.2 holds. The nonlinear model (1) contains a param-
eter µ ∈ D, which has to be identified in order to calibrate the model. However,
measurements for the concentration c(µ) are not directly available. Instead, the
state of charge

SoC(t;µ) = 1

cmax
∫

Ω
c(t, x;µ)dx for t ∈ [0, T ] (24)

can be measured, where c(⋅ , ⋅ ;µ) ∈ C =W (0, T )∩L∞(Q) is the unique weak solution

to (1) for given µ ∈ D. Suppose that SoCd ∈ L∞(0, T ) is a given desired state of
charge profile. Then, we consider the least squares objective

Ĵ ∶D→ R, Ĵ(µ) = 1

2
∫

T

0
∣SoC(t;µ) − SoCd(t)∣2 dt for µ ∈D,

where SoC(t,µ) is given by (24). Now, the parameter estimation can be expressed
as

min Ĵ(µ) subject to µ ∈D. (25)

Problem (25) is a PDE-constrained, non-convex optimization problem so that many
local optimal solutions my occur. Moreover, it is not a-priorily clear that (25) admits
an optimal solution at all. We refer the reader to [14, 28] for more details on this
subject.

Here, we follow the approach “first discretize then optimize”, cf. e.g. [14]. Suppose
that Assumption 3.1 holds. We utilize the already defined temporal grid tj = (j−1)k,
1 ≤ j ≤K and replace the temporal integral by a trapezoidal rule:

Ĵ(µ) ≈ k
4
∣SoC(t1;µ) − SoCd(t1)∣

2 + k
2

K−1

∑
j=2

∣SoC(tj ;µ) − SoCd(tj)∣
2

+ k
4
∣SoC(tK ;µ) − SoCd(tK)∣2 for µ ∈D.

Next, we replace the state of charge by a FV approximation and evaluate the spatial
integral by a midpoint rule:

SoC(tj ;µ) ≈ SoChj (µ) = h

cmax

N
∑
i=1

chj,i(µ) for j ∈ {1, . . . ,K},

where chj,i(µ) denotes the unique FV approximation for the concentration at

14



(tj , xi) ∈ Q and for µ ∈D. Finally, we define the FV reduced objective as

Ĵhk (µ) = k
4
∣SoCh1(µ) − SoCd(t1)∣

2 + k
2

K−1

∑
j=2

∣SoChj (µ) − SoCd(tj)∣
2

+ k
4
∣SoChK(µ) − SoCd(tK)∣2.

Instead of (25) we consider the FV-based parameter estimation problem

min Ĵhk (µ) subject to µ ∈D. (26)

Problem (26) depends on the size of N which may be large. Therefore, we are
interested to utilize the RB method introduced in Section 3 in order to solve (26)
approximately, but fast. Let us assume that Assumption 4.1 is valid. We replace the
FV approximation SoChj (µ) of the state of charge by the following RB discretization:

SoCNj (µ) = h

cmax

N
∑
i=1

cNj,i(µ) for j ∈ {1, . . . ,K},

where cNj,i(µ) denotes the unique RB approximation for the concentration at (tj , xi)
and for µ ∈ D. Then, the RB-based parameter identification problem is expressed
as

min ĴNk (µ) subject to µ ∈D (27)

with

ĴNk (µ) = k
4
∣SoCN1 (µ) − SoCd(t1)∣

2 + k
2

K−1

∑
j=2

∣SoCNj (µ) − SoCd(tj)∣
2

+ k
4
∣SoCNK(µ) − SoCd(tK)∣2.

In Section 7.2 we will present numerical experiment for the parameter estimation
problem.

7. Numerical experiments

In this section we first set an RB model which we use for the parameter estimation
with respect to a desired SoC. All computations are done on a laptop: Linux Mint
17 Qiana, 64-bit; Intel(R) Core(TM) i5-4200U CPU 1.60GHz; 8 GB RAM; Matlab
8.1.0.604 (R2013a).

7.1. Setting the RB model

To check the suitability of our developed error estimators in Section 4 we do four
different greedy runs. In all runs we consider the (estimated) error in the maximum
norm and add one POD-mode in every greedy step. Our considered parameter set is
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N 300
h 0.03
k 0.1
c○ 55

cmax 60
K 20

Table 1. Parameters for the RB model.

Run 1 Run 2 Run 3 Run 4
toff [s] 4.53 ⋅ 101 1.98 ⋅ 102 1.86 ⋅ 102 3.25 ⋅ 101

tFVM [s] 1.16 1.16 1.16 1.16
tRBM [s] 5.52 ⋅ 10−3 5.36 ⋅ 10−3 5.49 ⋅ 10−3 5.36 ⋅ 10−3

speed-up 210 216 211 216
N 14 13 13 13

est. 1.91 ⋅ 10−7 8.66 ⋅ 10−5 8.66 ⋅ 10−5 4.50 ⋅ 10−7

err. 1.91 ⋅ 10−7 8.85 ⋅ 10−7 8.85 ⋅ 10−7 8.85 ⋅ 10−7

Table 2. Results for the four different runs: computational offline time, computational time for the com-

putation of a FV solution, computational time for the computation of a RB solution, speed-up, number of
basis vectors, value of the estimator after the last POD-greedy step and value of the error after the last

POD-greedy step.

D = [0.05,5] × [10−3,10−1]. The interval [0.05,5] as well as the interval [10−3,10−1]
we discretize equidistantly with five nodes including the boundaries. Hence our
training set Dtrain has the cardinal number 25. The remaining parameters are listed
in Table 1. The accuracy of the damped Newton method is εnew = 10−10 for the FV
as well as for the RB solution. The greedy algorithm stops if the error is smaller
than εgr = 10−6 or if the estimated error is smaller than εgr = 10−4 because we expect
for this problem that the error estimators overestimate the error about two scales,
cf. [31].

Run 1 Strong greedy: for the estimation of the error between the RB and FV solution
the error itself is used.

Run 2 Weak greedy: for the estimation of the error the estimator of Theorem 5.4
(error est. 1) is used.

Run 3 Weak greedy: the error is estimated by the error of Remark (23) (error est 2).
Run 4 Weak greedy: the error is estimated by the residual. We stop the greedy algo-

rithm as soon as the residual gets smaller than 10−6.

In Figure 1 we plot the decay of the error and its estimators for the four differ-
ent runs. We can hardly see a difference between the plots. As expected the two
estimators overestimate the error about two scales. The values for the estimator 1
(19) and 2 (23) seem to agree. The computational time for the FV solutions to the
complete training set is 1.74 ⋅ 101 s. The different computational times, number of
basis vectors, the value for the estimated error and error itself is listed in Table 2.

7.2. Parameter estimation

We use the RB model which we generated in the second run of the previous sub-
section for our optimization process. The results we compare to the results which
we gain by using the FV model for the optimization process. We get the desired
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Figure 1. Decay of the error and its estimates for the four runs: Run 1 (up left), Run 2 (up right), Run 3

(bottom left) and Run 4 (bottom right).

SoC by inserting µd in our FV model. We use the Matlab routine fmincon and the
sequential quadratic programming (SQP), cf. e.g. [22]. We do not set a user defined
gradient but use the Matlab internal one. The remaining settings for fmincon we set
the maximum number of iterations MaxIter = 1,000, the tolerance for the function
value for the termination is set TolFun = 10−10, termination tolerance for the step
size TolX = 10−15 and the maximum of function evaluations maxFunEvals = 1,000.
The lower bound is given by µa = (0.05,0.001) and the upper bound is given by
µb = (5,0.1). We do two numerical tests. In the first one we require comparative
small values for µ1 and µ2 and the initial values are comparative big. In the second
test we change the roles. The results are listed in Tables 3 and 4. The optimization
results using the FV- or the RB model are the same. Hence our RB-model is suitable
for the parameter estimation procedure. The speed-up factor is in this example is
around 8.

The numerical results lead us to the assumption that the diffusion coefficient µ1

has a negligible impact on the SoC for the considered parameter set range. The
parameter µ2 has an bigger impact. To confirm our assumption we plot the SoC in
dependency on µ1 and µ2, cf. Figure 2.
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FVM ROM

µd (0.1,0.005)
µinit (2.0,0.09)

µcomp (2.0000,0.0050) (2.0000,0.0050)
stopping criteria local minimum found:

first-order optimality
measure TolFun

local minimum found:
first-order optimality
measure TolFun

topt [s] 21.01 2.51
iterations 10 10

funct. eval. 33 33
residual 3.57 ⋅ 10−17 3.57 ⋅ 10−17

Table 3. Parameter estimation - test 1: required parameter µd, initial parameter µinit, estimated parameter
µcomp, stopping criteria, computational time for the optimization process, number of iterations, number of

function evaluations, residual.

FVM ROM

µd (2.0,0.09)
µinit (0.1,0.005)

µcomp (0.1000,0.0912) (0.1000,0.0912)
stopping criteria local minimum found:

first-order optimality
measure TolFun

local minimum found:
first-order optimality
measure TolFun

topt [s] 19.42 2.46
iterations 11 11

funct. eval. 36 36
residual 5.46 ⋅ 10−14 5.46 ⋅ 10−14

Table 4. Parameter estimation - test 2: required parameter µd, initial parameter µinit, estimated parameter
µcomp, stopping criteria, computational time for the optimization process, number of iterations, number of

function evaluations, residual.
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