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Abstract. We describe an algorithm for radial layout of undirected
graphs, in which nodes are constrained to the circumferences of a set
of concentric circles around the origin. Such constraints frequently occur
in the layout of social or policy networks, when structural centrality is
mapped to geometric centrality, or when the primary intention of the lay-
out is the display of the vicinity of a distinguished node. We extend stress
majorization by a weighting scheme which imposes radial constraints on
the layout but also tries to preserve as much information about the graph
structure as possible.

1 Introduction

In radial graph layout the nodes are constrained to be located on a set of con-
centric rings; for some or all nodes in a graph a radius is given, which typically
encodes the results of a preceding analysis step. Such drawings date back to the
1940s and are called ring or target diagrams [18]. The interpretation of these
rings is specific to the particular application at hand. The overall goals which
guide the design of radial layouts can be expressed as two criteria and are pos-
sibly contradictory:

– Representation of distances: The Euclidean distance between two nodes in
the drawing should correspond to their graph-theoretical distance. This is a
general objective common to all “organic” layout styles.

– Radial constraints: Nodes are associated with the radius of a circle centered
in the origin, and are constrained to be placed on the circumference of this
circle.

Radial layout occurs as a task in several applications. It is used for the ex-
ploration of large hierarchies in [19]; the hierarchy is laid out radially as a tree,
followed by an incremental force-based placement. This approach was later mod-
ified for dynamic real-time exploration of a filesharing network in [20], where
users interactively select a node to be moved into the center, while the current
immediate surrounding of that node is updated.
� Part of this work was done while the author was at the University of Konstanz,

Department of Computer & Information Science.

Konstanzer Online-Publikations-System (KOPS) 
URL: http://nbn-resolving.de/urn:nbn:de:bsz:352-opus-131271

Erschienen in: Graph Drawing / Eppstein, David; Gansner, Emden R. (Hrsg.). - Berlin, Heidelberg : Springer Berlin Heidelberg, 
2010. - (Lecture Notes in Computer Science ; 5849). - S. 107-118. - ISBN 978-3-642-11804-3 

https://dx.doi.org/10.1007/978-3-642-11805-0_12



108

A different approach is to extend the definition of level planarity to discrete
radial levels [1]; the traditional Sugiyama framework is enhanced accordingly for
linear-time embedding of level-planar graphs.

In the case of continuous radii representing some kind of substance, unary
constraints are imposed on the drawing for mapping centrality scores to visual
centrality [4]. The layout is done by simulated annealing, which allows for penalty
costs, e.g. for edge crossings, and is very flexible but also computationally de-
manding; this prohibits interactivity even for moderately sized graphs.

In the following, the two essential goals above are explicitly formulated as
objective functions, which measure how far a layout is from meeting the criteria,
and which are sought to be minimized. While the first objective is captured by
the traditional energy or stress measures, we try to fulfill the second objective
by introducing radial constraints into the energy-based layout model and using
a linear combination of the two objectives.

Quite recently, extensions of the stress term have been used for drawing graphs
with explicitly formulated aesthetic criteria, such as the uniform scattering of
the nodes in a graph over a unit disk [16], penalizing node overlaps [11], or
preserving a given topology [10].

All these approaches modify the distances themselves in one form or another,
while the approach presented in this contribution is based on engineering the
weights used in the stress minimization model. The weights are coefficients of
error terms involved in the quality criteria to be minimized. If chosen carefully,
the weights can be used to influence the configuration resulting from optimizing
the stress function modified by these weights; see Fig. 1 for an example. We
are not aware of previous work which makes systematic use of such a weighting
scheme to take up a particular perspective on a data set.

(a) unconstrained (b) with radial constraints

Fig. 1. Layouts of a social network (2075 nodes, 4769 edges), consisting of two known
clusters. The brightness of node colors is proportional to the graph-theoretical distances
from a distinguished focal node, which also defines the radii used in the constrained
layout, in which the two clusters are still visible.
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2 Preliminaries

Let G = (V, E) be an undirected graph, E ⊆ (
V
2

)
. We will denote the cardinalities

of the node and edge sets by n = |V | and m = |E|, respectively; it will be
convenient to index nodes by numbers, V = {1, . . . , n}. The graph-theoretical
distance between two nodes i, j is the number of edges on a shortest path between
i and j and is denoted di,j or, when there is no danger of confusion, dij . The
matrix D = (dij)ij ∈ R

n×n contains the distances between every two nodes in
G; the diameter of G is the maximum distance between any two nodes in G,
diam(G) = maxi,j∈V dij . All graphs are assumed to be connected; otherwise, all
connected components are just considered individually.

Two-dimensional node positions are denoted p(i) = (xi, yi); a layout of n
nodes is captured by two column vectors x = [x1, . . . , xn]T , y = [y1, . . . , yn]T ∈
R

n. The Euclidean distance between two nodes in a given layout p is defined as
‖p(i) − p(j)‖ =

(
(xi − xj)2 + (yi − yj)2

)1/2.

3 Stress, Weights, and Constraints

3.1 Stress

The foundation of the method presented in the following is multidimensional
scaling (MDS) [2,7]; originating in psychometrics and the social sciences, MDS
has been established and widely used in the graph drawing community for more
than three decades, as energy-based placement [15]. While there is a wide range of
variants and extensions, we will concentrate on the stress minimization approach
[12] in this contribution.

Given a set of desired distances among a set of n objects, the overall goal is to
place these objects in a low-dimensional Euclidean space in such a way that the
resulting distances fit the desired ones as well as possible. In the graph drawing
literature, the desired distances are usually graph-theoretical distances dij , and
the goal is to find two-dimensional positions p(1), . . . , p(n) with

‖p(i) − p(j)‖ ≈ dij (1)

attained as closely as possible for all pairs i, j. When the configuration is not
required to satisfy any further constraints, the objective function, called stress,
is the sum of squared residuals

σ(p) =
∑
i<j

wij

(
dij − ‖p(i) − p(j)‖)2 (2)

over all the n(n − 1)/2 pairs of nodes, where wij ≥ 0 is a weight for the con-
tribution of the particular error term (dij − ‖p(i) − p(j)‖)2 for pair i, j to the
stress.

There is a wide consensus that configurations with a small stress value tend to
be aesthetically pleasing. The state-of-the-art approach to finding such layouts
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is stress majorization [8,12]; starting from an initial configuration, it generates
a sequence of improving layouts. When no geometric coordinates are at hand,
the iteration may be initialized at random; however, more favorable and robust
strategies are available for initial layouts, such as classical MDS [5].

In an iterative process, new coordinates x̂ = [x̂1, . . . , x̂n]T , ŷ = [ŷ1, . . . , ŷn]T ∈
R

n are computed from the current ones with the update

x̂i ←
∑

j �=i wij (xj + dij · (xi − xj) · bij)∑
j �=i wij

(3)

ŷi ←
∑

j �=i wij (yj + dij · (yi − yj) · bij)∑
j �=i wij

(4)

where

bij =

{
1

‖p(i)−p(j)‖ if ‖p(i) − p(j)‖ > 0,

0 otherwise.
(5)

This is repeated until the relative change in the configuration is below some
threshold value, or after a predefined number of steps. The sequence of layouts
generated in this way can be shown to have non-increasing stress and to converge
towards a local minimum [9].

3.2 Weights for Constraints

In early applications of MDS, each pair i, j of objects was assigned the same unit
weight by setting wij = 1 in (2); when a desired distance was not known for a
pair, this pair was simply ignored by using a zero weight for its contribution to
the stress.

In graph drawing it is a de-facto standard to set wij = d−2
ij to emphasize

the quality of the fit of local distances, i.e., the contribution of pairs i, j with
smaller target distances is increased compared to pairs with larger distances.
This weighting scheme was introduced in elastic scaling by McGee [17], and is
equal to the one used by Kamada and Kawai [15]. Instead of fitting absolute
values by minimizing absolute residual error terms (dij − ‖p(i) − p(j)‖)2, the
goal is to achieve a fit of the distance magnitudes, expressed by relative error
terms (1 − ‖p(i) − p(j)‖/dij)2. Summing these over all pairs gives the sum

∑
i<j

(
1 − ‖p(i) − p(j)‖

dij

)2

=
∑
i<j

1
d2

ij

(
dij − ‖p(i) − p(j)‖)2

. (6)

In this sum the impact of larger distances in the unweighted stress (2) is lessened,
which is due to the square in the error term.

A reason for the favorable aesthetic properties of low-stress layouts is that no
node is preferred over others because minimizing the objective function tries to
achieve a balance in the fit of the desired distances. In most scenarios this is
appropriate and tends to give the drawing a balanced appearance.
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In some cases, users want to put more emphasis on some nodes, while other
nodes are regarded less important, by centering the view on a node and visualiz-
ing this node’s neighborhood more prominently. This can be done by introducing
suitable constraints on the configuration; when these constraints can be formu-
lated as desired distances, choosing the weights in a suitable way allows for
imposing them on the resulting layout.

What follows is a general framework for constraining drawings; while the
range of possible applications is wide, our contribution will concentrate on the
radial scenario. To avoid confusion, the objective function (2) will be termed
distance stress and denoted σW (p), with the subscript indicating that the stress
is modified by a weight matrix W = (wij)ij ∈ R

n×n. This stress model is
enhanced by a second set of weights Z = (zij)ij used in the constraint stress

σZ(p) =
∑
i<j

zij (dij − ‖p(i) − p(j)‖)2 (7)

whose minimization tries to fit the same distances and hence aims at representing
the same information, but highlights different aspects.

3.3 Interpolated Weights

A straightforward approach to imposing the constraints expressed in a weight
matrix is to directly minimize (7), but the resulting solutions tend to be trivial;
for example, consider a linear layout in which xi = ri, yi = 0 for all i ∈ V .
Instead, it is more effective to combine distance and constraint stress into a joint
majorization process, operating on a linear combination of the stress measures
σW (p) and σZ(p).

Initially, the nodes are allowed to move freely without considering the con-
straints at all, by minimizing just σW (x, y). Then, the constraints are granted
more and more control over the appearance of the drawing by dynamically chang-
ing the coefficients in this combination, and the bias is shifted from one to the
other criterion [3]. The influences of the distance and the radial components are
determined by the coefficients in the linear combination

σt(p) = (1 − t) · σW (p) + t · σZ(p) (8)

and the update terms for the majorization process (3) and (4) become

x̂i ←
∑

j �=i

(
(1 − t) · wij + t · zij

) · (xj + dij · (xi − xj) · bij

)
∑

j �=i

(
(1 − t) · wij + t · zij

) , (9)

ŷi ←
∑

j �=i

(
(1 − t) · wij + t · zij

) · (yj + dij · (yi − yj) · bij

)
∑

j �=i

(
(1 − t) · wij + t · zij

) . (10)

In the majorization, the radial constraints are not directly and immediately en-
forced; rather, the main visual features of the initial configuration are preserved.
Then the bias is shifted from the distance component towards the radial compo-
nent by gradually increasing t from 0 to 1. When the number of iteration steps
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k is predefined, a linear interpolation gives values t = 0, 1
k , 2

k , . . . , k−1
k , 1; other-

wise, the iterative process may be simply be repeated with a sequence of values
for k converging to 1 from below until the layout is sufficiently stable. Using
either variant, in each step, a slightly different objective function is sought to
be minimized, and the current iterate preconditions the next step, thus keeping
the series of iterates continuous.

In the multidimensional scaling literature, occasionally a distinction is made
between weakly and strongly constrained MDS problems [13]. In the former, the
solutions are allowed to deviate from the given constraints, and this deviation is
penalized by additional stress; in the latter, only solutions which exactly satisfy
the constraints are feasible. In a way, a strongly constrained MDS problem can
be thought of as a special case of a weakly constrained problem, in which the
deviation penalty is zero.

In this terminology, setting t = 1 in (8) turns a weakly constrained prob-
lem into a strongly constrained one, provided that the set of constraints is re-
alizable, i.e., a solution with zero constraint stress exists. In all other cases, it
should be noted that, even though the distance component vanishes when t → 1,
minimizing σt(p) is not the same as minimizing σZ(p) because of the running
preconditioning described above.

4 Radial Layout

4.1 Target Diagrams

The focus is put on a node by emphasizing the visual display of its vicinity, con-
straining all others to attain Euclidean distances corresponding to their graph-
theoretical distances, i.e., relative to the focused node, all structural distance-k
neighborhoods are mapped to a geometric k-neighborhood.

The constraint weight matrix takes only pairs of nodes into account in which
the focused node is involved, while reducing all other weights to zero. Without
loss of generality, let n be the index of the node to be focused. D and W are
defined as above, and the constraint weight matrix Z = (zij)ij has only zero
entries except for the n-th row and column, which contains weights

zij =

{
wij if i = n or j = n

0 otherwise
(11)

derived from the distances to the focal node, so that interpolating from W to Z
gradually increases the focal node’s relative impact on the configuration.

A famous social network was studied by Zachary and, subsequently, many
other sociologists. It describes the friendship relations among 34 members in a
karate club in a US university in the 1970s [21]. Over the course of a two-year
study, the network breaks apart into two clubs because of disagreements between
the administrator and the instructor, who leaves the club and takes about half
of the members with him. Fig. 2 shows how the same initial layout is modified
to a radial layout focused on the instructor (a) and the administrator (b).



113

(a) focusing on the instructor

(b) focusing on the administrator

Fig. 2. Radial layouts of Zachary’s karate club network (n = 34, m = 77), by weight
interpolation, for t ∈ {0, 0.9, 1}. Members leaving with the instructor are shown as
yellow squares, members staying with the administrator as red circles.

4.2 Centrality Drawings

When the radial constraints do not directly correspond to one of the columns
in the distance matrix, we assume that this additional input is given as a vector
r = [r1, . . . , rn]T ∈ R

n, with ri ≥ 0 for all i ∈ {1, . . . , n}. The radial constraints
can be formulated in terms distances to the center, added to the distance matrix;
since node i is located on a circle with radius ri if its Euclidean distance to the
center is equal to ri, and the center has coordinates (0, 0), this is equivalent to

‖p(i)‖ ≈ ri. (12)

The origin is treated as an additional dummy node indexed with n + 1. The
stress majorization procedure is applied to a layout problem of n + 1 objects; in
[3] such a dummy is used to enforce a circular configuration by using the same
radius for all objects. The distance and weight matrices involved in (8) are

D =

⎡
⎢⎢⎢⎣

d11 · · · d1n r1

...
. . .

...
...

dn1 · · · dnn rn

r1 · · · rn 0

⎤
⎥⎥⎥⎦ , W =

⎡
⎢⎢⎢⎣

d−2
11 · · · d−2

1n 0
...

. . .
...

...
d−2

n1 · · · d−2
nn 0

0 · · · 0 0

⎤
⎥⎥⎥⎦ , Z =

⎡
⎢⎢⎢⎣

0 · · · 0 r−2
1

...
. . .

...
...

0 · · · 0 r−2
n

r−2
1 · · · r−2

n 0

⎤
⎥⎥⎥⎦ (13)
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(a) betwenness centrality (b) closeness centrality

Fig. 3. Centrality layouts of the karate club social network, using two centrality mea-
sures to define the radii of nodes

Let c = [c1, . . . , cn]T be a centrality measure on the nodes of graph G. For every
node i ∈ V its radius is given by

ri =
diam(G)

2
·
⎛
⎝1 −

ci − min
j∈V

cj

max
j∈V

cj − min
j∈V

cj + c(G)

⎞
⎠ , (14)

where multiplying with half the diameter serves to keep distances and the radial
constraints on the same scale, and c(G) is an offset parameter that prevents more
than one maximally central nodes from coinciding in the center [4]. Simplified
pseudo-code, which is targeted at radial constraints, is given in Algorithm 1. The
majorization is realized as a local variant, in which the coordinates are updated
node-by-node immediately.

For dynamic visualization scenarios, an inherently smooth transition between
layouts with different foci is obtained by simply using the intermediate layouts
given by the steps in the majorization process. In the transition from one focus
to the other, it is advantageous to not directly interpolate between the two
corresponding constraint weight matrices, but to take a detour via the original
weight matrix having entries d−2

ij , so as to re-introduce all the shortest-path
distances to remove artifacts potentially introduced after focusing on the first
node.

4.3 Travel Time Maps

When traveling with a public transportation system, schematic maps are essen-
tial for many users. Such maps depict lines, stations, zones, and connections to
other traffic systems. Since the primary use for such a map is travel planning
within this network, usability and readability are more important criteria than
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Algorithm 1. Radial layout
Input: connected undirected graph G = ({1, . . . , n}, E), radii r1, . . . , rn ∈ R+

number of iterations k ∈ N

Output: coordinates x, y ∈ R
n with

√
x2

i + y2
i = ri for all i ∈ {1, . . . , n}

D ← matrix of shortest path distances dij

W ← matrix of inverse squared distances d−2
ij

(x, y) ← layout with low σW (x, y)
for t = 0, 1

k
, 2

k
, . . . , k−1

k
, 1 do

ai ← ‖p(i)‖−1 if ‖p(i)‖ > 0, 0 otherwise
set all bij as in (5)
foreach i ∈ {1, . . . , n} do

xi ←
∑

j �=i(1 − t) · wij

(
xj + dij · (xi − xj) · bij

)
+ t · r−2

i (rixiai)

(1 − t)
∑

j �=i wij + t · r−2
i

yi ←
∑

j �=i(1 − t) · wij

(
yj + dij · (yi − yj) · bij

)
+ t · r−2

i (riyiai)

(1 − t)
∑

j �=i wij + t · r−2
i

the accurate representation of actual geographic positions. In the graph drawing
literature, this drawing style is called metro map layout [14].

One of the most prominent schematic maps is Beck’s famous London tube
map; it has been and is still being reworked and improved and has inspired simi-
lar maps for systems of public transportation all over the world. While schematic
maps are widely perceived as very useful, a potential drawback is that they tend
to distort a user’s perception of closeness, thus compromising the decisions made
in the travel planning process, e.g., because stations are displayed as more prox-
imate than they actually are.

If the starting and ending stations of a planned journey are known, the radial
constraints can be used to highlight the time needed for traveling between them,
by focusing only on one, as described above. In addition, shortest paths between
the two stations can be highlighted by putting the focus on both of them at the
same time.

Let the nodes in the focus be n − 1 and n, without loss of generality. Again,
D, W ∈ R

n×n are defined as the matrices of shortest-path distances and their
inverse squares, respectively. The weight matrix used is Z = (zij)ij ∈ R

n×n with

zij =

{
wij if i ∈ {n − 1, n} or j ∈ {n − 1, n}
0 otherwise

(15)

and contains a (n − 2) × (n − 2) submatrix with zero entries.
We use the connection graph of the London tube with estimated minimal

travel times obtained from the Transport for London web site, or derived from the
geographic distance, where estimates are not available. For the sake of simplicity,
we did not consider the time needed to walk from one track to the other when
changing lines (see also [6]).
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(a) travel time from Golders Green (b) travel time from Greenwich

(c) travel time between Golders Green and Greenwich

Fig. 4. Radial layouts of the London Tube graph using estimated travel times. The
concentric circles indicate travel times in multiples of 10 minutes. The stations are
constrained to be at distance equal to their minimum travel times.

Radial layouts are given in Fig. 4, where stations are placed at a distance
from the center proportional to their estimated minimum travel times from (a)
Golders Green and (b) Greenwich independently and (c) from both stations at
the same time.

5 Conclusion

Radial constraints fit well into the framework of multidimensional scaling by
stress majorization because the radii can be expressed in terms of desired
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Euclidean distances, which requires only minor modifications of available im-
plementations of the stress minimization.

Motivated by the results obtained from the relatively simple radial constraints,
and other experiments, we feel that they deserve more attention, because they
allow the aesthetic goals of the visualization results to be explicitly formulated
and quantified, and can be easily plugged into existing algorithms.

We think that, with the careful choice of a weighting scheme, the ideas pre-
sented above are easily carried over to layout tasks with more general constraints,
such as the display of grouping, the computation of dynamic layouts, and the
visualization of edge strength, certainty, or probability.
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