The biodiversity of carbon assimilation

Peter G. Kroth*

Department of Biology, University of Konstanz, Universitätsstr. 10, 78457 Konstanz, Germany

ABSTRACT

As all plastids that have been investigated so far can be traced back to endosymbiotic uptake of cyanobacteria by heterotrophic host cells, they accordingly show a high similarity regarding photosynthesis, which includes both the photosystems and the biochemical reactions around the CO₂ fixation via the Calvin–Bassham cycle. Major differences between the different algal and plant groups may include the presence or absence of carbon concentrating mechanisms, pyrenoids, Rubisco activases, carbonic anhydrases as well as differences in the regulation of the Calvin–Bassham cycle. This review describes the diversity of primary carbon fixation steps in algae and plants and the respective regulatory mechanisms.

Keywords:
Algae
Carbon concentrating mechanism
Evolution
Pyrenoid
Rubisco

Contents

Introduction ... 76
CO₂ fixation as a key process for the establishment of life on earth .. 77
Evolution of eukaryotic photoautotrophs .. 77
Rubisco as the key player of photosynthesis .. 77
Carbon concentrating mechanisms ... 79
Pyrenoids ... 79
Conclusions ... 80
Acknowledgements .. 80
References ... 80

Introduction

All organismic life on earth is based on carbon molecules. Accordingly the enzymatic fixation of atmospheric or dissolved CO₂ into larger organic molecules was the evolutionary invention that allowed the production of biomass required for life. The first product of CO₂ fixation usually is 3-PGA which is converted into different types of carbohydrates which subsequently can be transformed into other substances that are essential for the cell, like lipids or amino acids. The carbohydrates themselves can be used either as low-osmotic polymeric storage products (Oren, 2007), as components of cell walls, or simply being secreted. Although archaee and euabacteria developed a number of different ways to fix CO₂ biochemically, it is the reductive pentose phosphate pathway in plants and algae, employing Rubisco as the key enzyme, which is mostly used for primary production (Berg, 2011). As Rubisco is a very ancient enzyme, one could expect that during the long evolutionary periods, there was sufficient time for evolution to optimize this enzyme regarding turnover rate and substrate specificity. However, research in the recent decades revealed a rather poor performance of this enzyme type, including a low turnover rate, a low affinity for CO₂ (Spreitzer, 1999), together with a tendency to react with oxygen (Ogren and Bowes, 1971) during an oxygenase reaction, resulting in subsequent energy-consuming photorespiration reactions (Ogren, 2003; Sage, 2013; Sage and Sta, 2015). Thus algae and plants had to develop strategies to overcome the limitations of Rubisco’s enzymatic properties. One possible way to achieve this goal, is to increase the cellular enzymatic activity. Accordingly most organisms generate large amounts of Rubisco protein per cell to increase the total enzymatic activity (Ellis, 1979). Furthermore there are Rubisco types with varying catalytic and regulatory properties in different organismal groups (Tabita et al.,
CO₂ fixation as a key process for the establishment of life on earth

There are numerous theories on how life on earth has evolved (Cavalier-Smith, 2001; Miller, 1953). The most recent theory proposes that the first cells originated from hot hydrothermal vents in the oceans in porous mineral material consisting of metal sulfides serving as redox catalysts (Martin and Russell, 2003; Russell et al., 2010). Important issues for the successful establishment of the earliest cells are the creation of reactions chambers separated by biological membranes as well as the production of biomass allowing an increase of biological material by growth and division of cells (Lane et al., 2013). As reduced carbon is the most essential backbone of biological systems, the development of the first enzymes that allow the fixation of the – at that time (about up to 2–2.5 Ga ago, Raven et al., 2012) – highly abundant carbon dioxide must have been a major breakthrough. Two types of organisms capable of autotrophic CO₂ fixation are known, chemosynthetic and photoautotrophic organisms (Erb, 2011). The first group uses chemical energy directly, while the second group utilizes the energy of sunlight in order to fix CO₂. Up to now a number of biochemical CO₂ fixing processes have been described that all perform different reactions. If the theory holds true that cells originated in hydrothermal vents as described above (Martin and Russell, 2003), then it is likely that the first carboxylases might have been related to those that perform the bacterial Wood–Ljungdahl (or reductive acetyl-CoA) pathway (Huber and Wächtershäuser, 1997; Wood, 1991). The respective enzymes of this pathway (carbon monoxide dehydrogenase-acetyl-CoA synthase) use H₂ to reduce carbon dioxide to carbon monoxide which in a second step is fixed to a methyl group forming acetyl-CoA (Ragsdale, 2008). This reaction is the only one of the known carboxylating reactions with a positive net ATP balance (Ragsdale, 2008). Other, probably later developed, pathways to fix CO₂ are the reductive citric acid cycle (Arnon–Buchanan cycle; Evans et al., 1966), the 3-hydroxypropionate bicyclic (Zarzecny and Brecht, 2009), the hydroxypropionate/hydroxybutyrate cycle (Berg et al., 2007), the dicarboxylate/hydroxybutyrate cycle (Huber et al., 2008), and finally the Calvin–Bassham–Benzon cycle (Bassham and Calvin, 1957), which is the essential pathway for photoautotrophic reactions. In addition to these metabolic enzymes, a number of other enzymes have been described that include assimilatory carboxylases (that merely have the function to introduce functional groups), anaplerotic carboxylases (like for instance within the TCA-cycle), biosynthetic carboxylases (generating building blocks for instance in fatty acid synthesis) and redox balancing carboxylases (in some bacteria) (see Erb, 2011). Although nature apparently developed the principle of creating biomass via carboxylases several times independently (Schlada von Borzyskowski et al., 2013), the process of CO₂ fixation via the Calvin cycle using the enzyme ribulose-bisphosphate carboxylase (Rubisco) apparently had the strongest impact on the development of life on this planet especially when combined with oxygenic electron transport, like we do find it in cyanobacteria as well as in plastids of eukaryotic algae and land plants.

Evolution of eukaryotic photoautotrophs

Fossil records of bacterial biofilms indicate that unicellular organisms related to modern cyanobacteria might have been among the first organisms that coupled light driven biomass formation and CO₂ fixation with the cleavage of water resulting in a release of oxygen (Rasmussen et al., 2008). After the establishment of oxygenic photosynthesis the oxygen content of the oceans and the atmosphere did not increase instantly. Indeed it took another 1.5 billion years until the released oxygen was not instantly captured by reductive substances in the oceans and a net release of oxygen was possible (Blank and Sanchez-Baracaldo, 2010). Although CO₂ concentrations during that time of the early earth development, when cyanobacteria were the dominant oxygenic photosynthetic organisms, were still rather high (Raven et al., 2011), the modern cyanobacteria possess sophisticated CO₂ concentrating mechanisms that allow trapping of CO₂ within the cells and thus enhanced Rubisco efficiency (see below). There is a large biodiversity of cyanobacteria (Schirrmacher et al., 2013), but considering their restrictions as prokaryotes with regard to an asexual lifestyle and the absence of higher organized life forms, endosymbiotic processes involving cyanobacteria probably were the key events during evolution that allowed the development of higher organisms (Keeling, 2013). Photosynthesis as we know it from land plants thus obviously is an invention of the cyanobacteria (Archibald, 2009) and apparently has never been developed de novo in eukaryotes (at least that we know of from extant organisms). Instead, eukaryotic cells took up cyanobacteria via an endosymbiotic process (Fig. 1) and converted them into organelles (Bhattarcharya et al., 2007; Cavalier-Smith, 2013). It is more or less consensus today, that all studied plastids in algae and plants (with one exception, Pauliniella chromatophora (Nowack et al., 2008)) have been endosymbionts in which a eukaryotic host cell took up a cyanobacterium and converted it into an organelle (Delwiche and Palmer, 1997). Additionally, secondary and tertiary endosymbioses occurred in which eukaryotic algae, either ancestors of green algae or red algae, or even diatoms, haptophytes, or cryptophytes had been taken up by eukaryotic host cells (see Fig. 1 and also Keeling, 2013 for a current view on these processes). Accordingly plastids have been transmitted again and again during the endosymbiotic processes, thus it is not too surprising to see that all the plastids in general show very similar photosystems and photosynthetic reactions. Smaller differences here are mostly due to adaptations to environmental conditions or to genetic or biochemical modifications. Regarding for instance the regulation of Rubisco and the subsequent redox regulation of the reactions of the Calvin–Bassham cycle, there may be substantial differences in different algal groups (see Wilhelm et al., 2006; Michelet al., 2013; Mckhaill et al., 2014).

Rubisco as the key player of photosynthesis

In total, about 10¹⁷ g (100 Gt) of CO₂ are supposed to be converted into biomaterials and organic compounds per year (Field et al., 1998). All oxygenic photosynthetic organisms utilize Rubisco enzyme for CO₂ fixation instead of the other five autotrophic
Fig. 1. Schematic scenario of major endosymbiotic events in plastid evolution and the respective algal groups. Primary plastids originated via the endosymbiotic integration of a cyanobacterium into a heterotrophic host cell (bottom of the figure), resulting in plastids with two surrounding membranes in glaucophytes (which retained their peptidoglycan wall between the two plastid membranes), red algae, green algae, and their close relatives, the land plants. Both, ancestors of modern red algae and green algae, served as endosymbionts for secondary endosymbioses in which eukaryotic host cells took up the respective eukaryotic algae. The number of secondary endosymbioses is under debate, it is unclear yet whether for instance the cryptomonad and haptophyte plastids originated from the same endosymbiosis as those of stramenopiles and oxeas (the latter consisting of ciliates, apicomplexans, and dinoflagellates), which is pointed out by the question mark labeling the secondary endosymbiosis step (see also Keeling, 2013). Dinoflagellates consist of three different groups that possibly all originally possessed red type plastids (Peridinin-containing dinoflagellates, labeled group 2), some of which apparently have been subsequently replaced by either endosymbiotic haptophytes, cryptophytes or diatoms (group 1) or by a green algal (group 3). On the, those algae are shown that have evolved by uptake of a green alga, inducing the euglenophytes and the chlorarachniophytes. There so far is a single example for an independent primary endosymbiotic origin of plastids in the amoebo Paulinella chromatophorup (Nowack et al., 2008). For the major groups of algae and streptophytes the following parameters are shown: type of Rubisco, presence/absence of Rubisco activase, presence of absence of CCM in that group, presence/absence of a pyrenoid. References in Fig. 1: Ref1: Tabita et al. (2008); Ref2: Ratti et al. (2007); Ref3: Badger et al. (1997); Ref4: Fujita et al. (2008); Ref5: Meyer and Griffiths (2013); Ref6: Maberly et al. (2005); Ref7: Maier et al. (2006); Ref8: Raven et al. (2012); Ref9: Diaz and Maberly (2005); Ref10: Ota et al. (2009); Ref11: Pollock et al. (2003); Ref12: Casco-Silva and Salvucci (2013); Ref13: Uchino and Yokota (2003); Ref14: Bhattacharyya et al. (2014); Ref15: Raven (2003); Ref16: Li et al. (1999); Ref17: Badger and Price (2003).

Abbreviations: ES: endosymbiosis; M: mitochondrion; P: plastid; N: nucleus.

A pathway described above. Accordingly more than 99% of all organic carbon is fixed by Rubisco (Berg, 2011). Here, catalyzed by Rubisco, the tautomeric enediol form of the sugar bisphosphate ribulose 1,5-bisphosphate (RuBP) first accepts a molecule of CO2 resulting in intermediate 2-carboxy-3-keto-arabinitol,1,5-bisphosphate. After hydration, this intermediate forms two molecules of 3-phosphoglycerate. At least four different types of Rubisco enzyme complexes are known and termed forms I, II, III, IV. They can be found in cyanobacteria as well as in algal and land plant chloroplasts, but also in different types of eubacteria and archaea. The differentiation into different forms is based on differences in their primary sequences and their type of multi subunit complexes (Tabita et al., 2008; Tabita, 1999).

The enzymes of most algal and higher plant chloroplasts have been termed form I-B and like all type I enzymes, they consist of eight large and eight small subunits (L4S8) (Spreitzer and Salvucci, 2002; Tabita et al., 2008). This Ib enzyme apparently has evolved directly from the respective cyanobacterial form I enzyme (Badger et al., 1997). Some cyanobacteria also possess a green form IA Rubisco which is related to proteobacteria. Red algae and those algal groups that developed via secondary endosymbiosi­ s by uptake of a red alga (like the chrysophytes, brown algae, diatoms, haptophytes or some dinoflagellates), possess a form ID Rubisco which is phylogenetically related to α/β purple bacteria like Ralstonia eutrophus. However, in most dinoflagellates, such as Amphidinium carterae, a much more different type of Rubisco is found which is termed type II (Morse et al., 1995) and which apparently was obtained by lateral gene transfer. The respective complex here consist of large subunits only. The Rubisco types III and IV have been discovered recently in archaea and some green sulphur phototrophic bacteria (Finn and Tabita, 2003). While the type III Rubisco apparently has a similar functionality as I and II enzymes, type IV Rubisco is not capable of RuBP dependent CO2 fixation (Watson et al., 1995), accordingly they have also been
termed Rubisco-like proteins (Tabita et al., 2007). Rubisco enzymes in cyanobacteria, algae and land plants can be regulated on different levels (Spritzeter and Salvucci, 2002), among others via (i) ions like Mg²⁺, which during illumination are moved out the thylakoid lumen into the stroma, (ii) the presence of carbon dioxide, (iii) pH, and (iv) Rubisco activase (Sage et al., 2008), which together with Rubisco can be activated by reduced thioredoxin (Mueller-Cajar et al., 2014), and a number of metabolites. In land plants, genes encoding the large and the small subunits are located in different compartments: Rubisco, encoding the large subunit is on the plastid genome, while Rubisco is found in the nucleus. In red algae and algae deriving from red algae by secondary endosymbiosis both genes are still on the plastid genome forming an operon (Hwang and Tabita, 1991). Interestingly, no genes for a Rubisco activase have been found so far in these algae, while genes encoding CbbX proteins have been identified instead. The CbbX protein, an AAA+ ATPase unrelated to Rubisco activase, originally has been discovered to have Rubisco activase activity in the α-proteobacterium Rhodobacter sphaeroides (Mueller-Cajar et al., 2011).

Carbon concentrating mechanisms

CO₂ is one basic substrate required for photosynthesis. Plants dwelling on land and algae living in water have different problems regarding their CO₂ supply. Most plants can easily take up CO₂ from the atmosphere via their stomata. However, during water limitation, due to closure of the stomata, CO₂ entry can be limited (Meyer and Griffiths, 2013). Algae have a different problem. Living submerged, the accumulation of inorganic carbon from the water by algae is limited by the diffusion rate of carbon dioxide (CO₂) in water, the potentially limited availability of CO₂ in surface waters with high photosynthesis rates and the dehydration kinetics of bicarbonate to CO₂ (Reinfelder, 2011). Interestingly plants and algae both evolved inorganic carbon (or CO₂) concentrating mechanisms (CCMs) which may increase the supply of CO₂ to Rubisco. Here, basically the first step of carbon fixation involves the formation of a C₄ compound or organic acid using enzymes like the phosphoenolpyruvate carboxylase (PEPC), which have a higher substrate affinities than Rubisco as well as no oxygenase properties. In plants, some specialized CCMs are found, being termed C₄ and CAM (crassulacean acid metabolism) (Wang et al., 2014), based on a spatial (mesophyll and bundle sheath cells) or a temporal (day and night) separation of the individual carbon fixation reactions, respectively. Both processes, C₄ photosynthesis and CAM, rely on a first fixation of HCO₃⁻ to an organic molecule and a subsequent decarboxylation and release of CO₂ in close proximity to Rubisco, where it may increase Rubisco activity (Bräutigam et al., 2014). In C₄ plants, with the exception of single-cell C₄ photosynthesis (Edwards et al., 2004), this CO₂-concentrating mechanism usually requires compartmentalized photosynthetic reactions in two distinct cell types. The product generated by PEPC, a C₄ acid, is subsequently converted to either malate or aspartate in bundle sheath cells and then translocated to mesophyll cells where it is decarboxylated in close proximity to Rubisco. Certain variations of this process are known in different plants (Wang et al., 2014). In algae biophysical or biochemical CCMs may vary between different alga and may involve a combination of inorganic carbon transporters, which require ATP, NAPDH or an ion gradient as energy source, carbonic anhydrases (CAs) and confinement of Rubisco to a micro-compartment within the plastid (Raven et al., 2012). The transporters are required to build up intracellular pools of bicarbonate, which by CAs can be converted to CO₂ based on the equilibrium distribution. In cyanobacteria, the Rubisco is mostly confined to carboxysomes, small proteinaceous structures that are surrounded by polyhedral protein shells about 80 to 140 nanometres in diameter (Kae et al., 2013). In a number of eukaryotic algae, but not in all, Rubisco can be found in one or more pyrenoids (Raven et al., 2012) within the plastids (see below). Interestingly, for the unicellular diatoms, it was reported that they may possess a biochemical C₄ pathway (Reinfelder et al., 2000). There is, however, still some disagreement on how relevant this process may be in this algal group. There is experimental evidence that a C₄-type CCM operates in at least one marine diatom, Thalassiosira weissflogii (Roberts et al., 2007b), while for other diatoms there are contradictory results (Granum et al., 2009; McGinn and Morel, 2008; Roberts et al., 2007a). In Phaeodactylum tricornutum silencing of the enzyme pyruvate-orthophosphate dikinase (PPDK), usually involved in C₄ pathways, did not affect the photosynthetic properties of the alga (Haimovich-Dayan et al., 2013). However, due to the limited number of species investigated and methodological differences between the studies direct comparisons are complicated. Although diatoms may contain a number of carboxylating enzymes in different compartments (Kroth et al., 2008), no decarboxylating enzyme has yet been identified in diatom plastid stroma, thus in the same compartment as the Rubisco. In a single group algae, the chrysophytes, no CCM was detected at all, probably restricting the distribution of these algae to niches with sufficient CO₂ availability (Maberly et al., 2009). Generally, it is interesting to observe that different kinds of CCMs with different operational modes can be found within nearly all groups of photosynthetic organisms (Fig. 1). This raises the question whether the poor enzymatic performance of Rubisco might have triggered the development of these processes or whether environmental changes, both on the global or the long term scale, but also microclimate conditions may have induced them, thereby increasing the competitiveness of those organisms that possess such a CCM.

Pyrenoids

Pyrenoids are crystal-like proteinaceous structures that are found in the plastids of a number of eukaryotic algae and in a single group of land plants, the hornworts. Interestingly they are no indicators for specific groups as they have been found in all major algal taxa, while they may be missing in a number of organisms from the same lineage (see Badger et al., 1997). A recent study implies five to six origins and an equal number of subsequent losses of pyrenoids in hornworts (Villarreal and Renner, 2012). Pyrenoids have been studied on the morphological level mostly by electron microscopy but their biochemical structure and the function of the pyrenoids are still largely unknown. It has been suggested that they may play an important role in carbon concentrating mechanisms (Moroney and Ynalvez, 2007) by separating Rubisco from the C₄ in the stroma of the chloroplast. Pyrenoids can have very diverse morphologies, from simple aggregates of Rubisco to more complicated structures like thylakoids spanning through the pyrenoid body. For instance in the marine diatom P. tricornutum the structure of the pyrenoid has been reported as a lens-shaped body residing in the central part of the stroma with two layered thylakoid membranes that penetrate the center of the pyrenoid. Recently it was demonstrated that in Chlamydomonas reinhardtii the small subunit of Rubisco is involved in pyrenoid formation (Meyer et al., 2012). The unifying feature of pyrenoids is the presence of large amounts of Rubisco, for instance in C. reinhardtii most of Rubisco protein is located in the pyrenoid (Borkhensious et al., 1998). Similarly, pyrenoids of Chlorella pyrenoidosa (McKay and Gibbs, 1989) or Euglena gracilis (Osafune et al., 1990) have been shown very early to represent the major amount of Rubisco within the plastids. It seems obvious that other proteins may also be found in pyrenoids, although a proteomic inventory is still lacking. However, in addition to Rubisco, also nitrate reductase (NR) (Lopez-Ruiz et al., 1991), Rubisco activase (McKay et al., 1991), and the LCB/C complex (Wang and Spalding, 2006; Yamano et al., 2010) have been localized in the pyrenoids of C. reinhardtii. The LCI (low-CO₂ (LC)-inducible) genes have recently been demonstrated to be present in
a number of different eukaryotic algae including diatoms (Yamano et al., 2010). Two of the respective proteins LCIB and C have been shown to interact and furthermore have been localized in the vicinity of the pyrenoid structure of C. reinhardtii (Yamano et al., 2010), possibly shedding the pyrenoid from CO2 leakage or recapturing leaking CO2 from the pyrenoid (Mitra et al., 2004; Yamano et al., 2010).

Furthermore recently two plastidic fructose-1,6-bisphosphate aldolases (FBAs) have been shown to reside in the pyrenoid of the diatom P. tricornutum (Allen et al., 2011). As the enzymatic FBA reaction is one of the primary rate limiting factors of the Calvin cycle in higher plants this indicates that diatom pyrenoids also play a central role in controlling carbon metabolism. Although an involvement of pyrenoidal carbonic anhydrases (CA) in photosynthesis has been proposed earlier in algae with CCMS, the CAs PCA1 and 2 are the first CAs to be verified in pyrenoids (Kitao et al., 2008; Matsuda and Kroth, 2014).

Conclusions

Considering the rich biodiversity of photosynthetic organisms from bacteria and unicellular algae to multicellular plants and from picoplankton to huge and massive trees, the process of carbon fixation and of photosynthesis is astonishingly well conserved. Starting from the orientation and functionality of the dual photosystem arrangements over Rubisco functionality to the reactions of the reductive pentose phosphate pathway, there is a high general similarity of the processes. Although it appears obvious that certain components, like the CbbX protein (replacing the Rubisco active in red algae and diatoms), and the type II Rubisco found in some dinoflagellates, are substituting original proteins, these changes do not severely affect the general principle of photosynthesis. Considering that both, cyanobacteria and plastids, over the long period since primary endosymbiosis developed independently and under completely different conditions, this impressively demonstrates how highly developed both the functionality and the efficiency of the photosynthetic apparatus in the cyanobacteria must have been already before plastids have been established.

Acknowledgements

PGK is grateful for financial support by the German Research Foundation DFG (SFB 969, TP4A), the Konstant Research School Chemical Biology (Kors-CB) and the University of Konstanz. PGK also would like to thank Dr. Ansgar Gruber as well as anonymous reviewers for helpful discussions and suggestions. This paper is a joint effort of the corresponding authors and an outcome of a workshop kindly supported by sDiv, the Synthesis Centre of the German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig (DFG FZT 118).

References

Blank CE, Sanchez-Baracaldo P. Timing of morphological and ecological innovations in the cyanobacteria—a key to understanding the rise in atmospheric oxygen. Geobiology 2010;8:1–23.

McKee RJ, Gilgan VH, Vaughan RC. Rubisco active site is present in the pyrenoid of green algae. Protoplasma 1991;162:38–45.

Villareal JC, Renner SS. Hormon pyrenoids, carbon-concentrating structures, evolved and were lost at least five times during the last 100 million years. Proc Natl Acad Sci USA 2012;109:18873–8.

Wang Y, Spalding MH. An inorganic carbon transport system responsible for acclimation specific to air levels of CO₂ in Chlamydomonas reinhardtii. Proc Natl Acad Sci USA 2006;103:1010–5.

Wood HG. Life with CO₂ or CO, and Hz as a source of carbon and energy. FASEB J 1991;5:156–63.

