Quality-driven Poisson-guided Autoscanning

Shihao Wu¹ Wei Sun¹ Pinxin Long¹ Hui Huang¹⇤ Daniel Cohen-Or² Minglun Gong³ Oliver Deussen⁴ Baoquan Chen⁵
¹Shenzhen VisuCA Key Lab / SIAT ²Tel-Aviv University ³Memorial University of Newfoundland ⁴University of Konstanz ⁵Shandong University

Abstract

We present a quality-driven, Poisson-guided autonomous scanning method. Unlike previous scan planning techniques, we do not aim to minimize the number of scans needed to cover the object’s surface, but rather to ensure the high quality scanning of the model. This goal is achieved by placing the scanner at strategically selected Next-Best-Views (NBVs) to ensure progressively capturing the geometric details of the object, until both completeness and high fidelity are reached. The technique is based on the analysis of a Poisson field and its geometric relation with an input scan. We generate a confidence map that reflects the quality/fidelity of the estimated Poisson iso-surface. The confidence map guides the generation of a viewing vector field, which is then used for computing a set of NBVs. We applied the algorithm on two different robotic platforms, a PR2 mobile robot and a one-arm industry robot. We demonstrated the advantages of our method through a number of autonomous high quality scannings of complex physical objects, as well as performance comparisons against state-of-the-art methods.

Keywords: 3D acquisition, autonomous scanning, next-best-view, Poisson surface reconstruction

Links: DL PDF WEB VIDEO

⇤Corresponding author: Hui Huang (hhzhiyan@gmail.com)

1 Introduction

Scanning real physical objects is becoming more and more commonplace, which stimulates much research on accurate shape reconstruction from raw scanned data [Berger et al. 2014]. One of the main data capturing challenges via laser scanning is to fully cover the entire surface of an object with a defined accuracy. The coverage problem is difficult to solve due to physical occlusions, less than ideal material properties or potentially imprecise movement of the scanner [Tagliasacchi et al. 2009; Mullen et al. 2010; Huang et al. 2013]. Efficiently obtaining a complete surface requires a good planning based on a priori knowledge of the scanned object. When the shape is unknown, for instance in a robot-operated setting, an autonomous scanner can be strongly assisted by an on-the-fly geometric analysis of the acquired data to guide the completion of the full coverage [Scott et al. 2003].

Obtaining guidance on where to position the sensor next in order to increase the information gain is known as the Next-Best-View (NBV) planning problem, first proposed by Connolly [1985]. As we shall elaborate in the next section, the common approach to the NBV problem is to analyze the temporal boundaries of the patch- es reconstructed from the partial scan, aiming to complete the surface. Alternatively, the partial scan can be analyzed by considering a global watertight reconstruction and its ambient space. This approach requires a non-trivial analysis of a 3D point cloud of an unknown shape. In [Pauly et al. 2004], measures of uncertainty and variability of a given point cloud surface are presented. Their analysis mainly focus on density, regularity and curvature. Such measures may form an estimate about where more scans are needed to improve the quality of the current data. However, their analysis does not account for geometric completeness and topological aspects, and in particular holes or occluded regions that need to be covered by additional scans.

In this paper, we introduce a method for point cloud analysis that accounts for both completeness and quality of the reconstruction.
Unlike previous scan planning methods, we do not aim at minimizing the number of scans needed to cover the whole surface. Instead our objective is to ensure high fidelity scanning of the model. The core idea is to validate and assess a watertight surface reconstructed from a Screened Poisson equation [Kazhdan and Hoppe 2013], which leads to a confidence map defined on an estimated iso-surface. We then build an ambient viewing field, which suggests a set of NBVs with five degrees of freedom for covering low confidence areas on the iso-surface. By positioning the scanner at the suggested NBVs, the surface of the input object is progressively scanned at high fidelity.

We have implemented and experimented our autoscanning technique on two types of robots. One is a mobile robot PR2 from Willow Garage (Figure 1) and the other is a one-arm industry robot from Reis Robotics (model RV20-6, see Figure 10). Using these two robotic platforms we tested our algorithm on a number of real and complex objects with initially unknown shapes. To compare our method with state-of-the-art NBV techniques we perform a qualitative comparison on a real object and a quantitative evaluation on a virtual model; see Figures 11, 9 and 12.

2 Related work

Autoscanning of a scene or an object is a challenging view planning problem since in many cases a priori knowledge of the object or scene geometry is unavailable. Typically, planning is computed on-the-fly and based on the information collected so far from previous scans. Computing the potentially best view for the next scan is called the Next-Best-View (NBV) problem. It has been studied since 1980s [Connolly 1985], but still remains active. The problem is known to be NP-hard; however, it can be reduced to the well studied coverage problem that can be solved efficiently [Low and Lastra 2006; Chen et al. 2011].

Acquiring and reconstructing of indoor/outdoor scenes as well as navigating in such environments pose fundamental problems for autonomous robotics systems [Low and Lastra 2006; Blaer and Allen 2007; Chen et al. 2011; Zhou and Kolton 2013]. KinectFusion based systems [Newcombe et al. 2011; Chen et al. 2013] recently gained popularity for real-time dense surface mapping, tracking, and reconstruction with mobile low-cost depth cameras. Kim et al. [2013] presents a guided real-time scene scanning interface in which the user receives interactive feedback based on 3D shape retrieval operations supported by a model repository. The work focuses on the coverage and exploration of scenes at a coarse level. Li et al. [2013] presents a system to allow users scanning themselves with a single Kinect by rotating in the same pose for a few different views, this allows the scanner to cover the full body. However, scanning and registration in this case highly depends on having the human body shape as a prior. Some NBV techniques [Wenhardt et al. 2007; Dunn and Frahm 2009] build 3D models from images, based on camera movements and utilizing the model’s covariance structure as well as texture appearance. In our work, we instead aim at high fidelity 3D scanning of unknown objects that allow automatic reconstruction of objects with rich geometric details and a complex topology.

For scanning of single objects, Scott et al. [2003] classify the related NBV algorithms into two main categories: model-based [Trucco et al. 1997] and non-model-based methods. The challenge of the latter case, i.e., automatically finding NBVs for unknown objects, has been widely studied in the robotics literature [Chen et al. 2011]. The pioneer works are occlusion-guided methods [Maver and Bajcsy 1993; Pito 1996] or based on a volumetric analysis [Banta et al. 2000; Vásquez-Gómez et al. 2009]. However, these techniques restrict the search space for the NBV onto a sphere or a generalized cylinder. Such simplification helps to reduce the computation cost but limits the precision, thus level of fidelity, when scanning complex, self-occluded, or feature-rich objects.

A number of surface-based NBV algorithms have been recently proposed [Khalifaoui et al. 2013; Kriegel et al. 2013], which determine NBVs by analyzing the shape of the so-far scanned surface. In general, these techniques detect visibility limitations or open boundaries and guide the scanner to cover the surface accordingly. While these approaches produce complete scans for the input objects, they do not guarantee that the reconstructed surface captures all geometric details on the surfaces of the objects. For example, Kriegel et al. [2013] reconstruct a partial surface first and then determine successive NBVs solely based on holes or boundaries on the surface. This implicitly assumes that the areas already been scanned are of sufficient quality, which may not be true in many practical cases. In comparison, our approach assesses both the completeness and the local smoothness of the reconstructed surface, which results in high-fidelity scan models.

For point cloud assessment, our work is closely related to Pauly et al. [2004], which present uncertainty and variability analysis of
point-sampled geometry. They introduce a statistical representation for each point in space. It quantifies the likelihood that a surface obtained by least-square data fitting passes through that point. This likelihood map is combined with a corresponding confidence map that measures the quality of local normal estimations. In our work, we also investigate raw point clouds. However, we measure not only existing points, but also the predicted points from a Poisson field, and use such measurement to the acquisition of new points. This is conducted in an iterative process, through selecting next best scans and integrating new scans.

In a broader context, our work is also related to many recent publications on surface reconstruction from point cloud. The most notable works are methods for reconstructing watertight surface models [Wheeler et al. 1998; Carr et al. 2001; Kazhdan et al. 2006; Kazhdan and Hoppe 2013]. Other related works deal with the consolidation of raw point data [Lipman et al. 2007; Huang et al. 2009], surface completion [Davis et al. 2002; Sharf et al. 2004; Sagawa and Ikeuchi 2008; Tagliasacchi et al. 2009; Harary et al. 2014; Huang et al. 2013] or differentiating real holes from incomplete point clouds [Seversky and Yin 2012].

3 Overview

The core of our autonomous scanning system consists of an analysis of the data acquired by a scanner and the generation of a set of NBVs for the scanning robot. We evaluate the quality of a global, complete iso-surface model extracted from a Poisson field, rather than only analyzing existing points close to open boundaries. The evaluation is based on a confidence map, which is generated by assigning each surface sample a confidence score that reflects its measured quality; see Figure 2(c). The confidence measure is derived from two criteria: one measures the directional gradients of the Poisson field in the vicinity of the iso-surface and assesses the stability of the local topology. The other criterion analyzes to what extent the available scans support the extracted iso-surface.

Once the confidence map is computed on the iso-surface, we define a 3D viewing vector field (Figure 2(d)). The magnitude of the vectors reflect their potential for being the next scanning locations, and their directions suggest a rough scan orientation. A sparse set of positions having local maxima of vector magnitudes is then selected to form a set of NBVs for the next scanning iteration. For each selected position, its optimal scanning direction is computed. According to the current position of the robot arm, these NBVs are ordered into a sequence for the next scan path (Figure 2(e)).

Figure 2 illustrates the scanning pipeline, which starts with a blind, all-around scanning of the object and iteratively refines the model by additional scans from automatically selected NBVs. The iterative process continues until a high-quality model is obtained or the reconstruction cannot be further improved.

4 Iso-surface estimation and measurement

Given an object with unknown shape, blind scanning around the object gives us an initial point cloud \(Q = \{ q_i \}_{i \in I} \subset \mathbb{R}^3 \), e.g., in Figure 2(b). Our first goal is to reconstruct a tentative, watertight surface model from \(Q \) and estimate its reconstruction quality.

4.1 Point consolidation and Poisson reconstruction

Depending on the quality of the scanner, the initial raw point cloud may be corrupted due to noise and outliers, and may not be equipped with reliable normals. In this case, we apply a point cloud consolidation preprocessing step (includes noise filtering, outliers removal, normal estimation, and thinning), which facilitates the estimation of a robust iso-surface. Here a Weighted Locally Optimal Projection operator [Huang et al. 2009] is employed, which outputs a cleaned and oriented point set \(P = \{ (p_i, n_i) \}_{i \in I} \subset \mathbb{R}^3 \) that adheres faithfully to the underlying shape.

Having a consolidated point set \(P \), we are able to generate a tentative model for the object using the so-called Screened Poisson surface reconstruction method [Kazhdan et al. 2006; Kazhdan and Hoppe 2013]. This approach interprets an inward pointing normal field of a surface as the gradient of its solid indicator function. Thus, a surface can be obtained by transforming the oriented points into a continuous vector field in 3D, and then extracting the appropriate iso-surface from an indicator function whose gradients best match the vector field (see Figure 3(c) and (d)). The resulting model is watertight and of high quality if the underlying points are dense and accurate enough. However, if there are areas with missing data or being insufficiently sampled, the reconstructed Poisson surface may contain topological errors and/or miss geometry details. Hence, our goal is to automatically identify these areas and apply additional s-
4.2 Quality assessment on a Poisson iso-surface

To evaluate the quality of the obtained Poisson iso-surface, we first discretize it into a set of oriented points, \(S = \{(s_k, \mathbf{n}_k)\}_{k \in K} \subset \mathbb{R}^d \), using Poisson-disk sampling [Corsini et al. 2012]. These points are regularly distributed on the iso-surface and hereafter we refer to them as iso-points. Two criteria are used in our approach for evaluating how well these iso-points approximate the true underlying surface of the input object. Firstly, we measure our confidence in the locations of the iso-points, which reside at the zero-crossings of the Poisson scalar field. If this scalar field varies too slowly, we cannot precisely locate the zero-crossings, which is an important indicator that more scans are needed. Moreover, reliable iso-points should be supported by a sufficient number of raw scan samples. Hence, for a given iso-point \(s_k \), we locate the nearby points from \(Q \) and evaluate how consistent their locations are with respect to \(s_k \).

The first criterion is based on the observation that Poisson surface reconstruction highly relies on the density and smoothness of the underlying points. The denser and smoother the input points are, the more rapidly the scalar field varies, and the closer the iso-points are to their exact locations on the surface. In areas with missing data the Poisson scalar field is blurry and the extracted iso-points are unreliable; see Figure 3. Accordingly, we define the completeness confidence score \(f_g(s_k, \mathbf{n}_k) \) for iso-point \(s_k \) as

\[
f_g(s_k, \mathbf{n}_k) = \Gamma(s_k) \cdot \mathbf{n}_k, \tag{1}
\]

where \(\Gamma(s_k) \) is the gradient of the scalar field at location \(s_k \). It is worth noting that \(\Gamma \) is calculated during the Poisson reconstruction process and hence no additional computation is needed.

The second criterion directly evaluates a given iso-point \(s_k \) using the raw input points. Here we locate all raw points \(\{q_j\}_{j \in \Omega_k} \) in the \(K \)-nearest neighborhood \(\Omega_k \) of \(s_k \). Theoretically, a large value of this parameter \(K \) leads to a smooth confidence map, while a small value may emphasize more the fine scale features. In practice, we find that this parameter does not have big effect on results. It is set to 100 (a relatively small value) throughout our experiments.

We then compute the smoothness confidence score \(f_s(s_k, \mathbf{n}_k) \) for iso-point \(s_k \) using the following bilateral weighted sum:

\[
f_s(s_k, \mathbf{n}_k) = \sum_{j \in \Omega_k} \theta(\|s_k - q_j\|) \phi(\mathbf{n}_k, q_j - s_k), \tag{2}
\]

\[
\theta(\|s_k - q_j\|) = e^{-\frac{\|s_k - q_j\|^2}{(h_k/2)^2}},
\]

\[
\phi(\mathbf{n}_k, q_j - s_k) = e^{-\frac{\|\mathbf{n}_k \cdot (q_j - s_k)\|^2}{(h_k/4)^2}},
\]

where \(\|\cdot\| \) is the \(L_2 \)-norm. The spatial weighting function \(\theta(\|s_k - q_j\|) \) rapidly decays with the support radius \(h_k = \max_{j \in \Omega_k} \|s_k - q_j\| \); \(\phi(\mathbf{n}_k, q_j - s_k) \) is the orthogonal weighting function that measures how distant the Knn points are to the tangent plane at iso-point \(s_k \) along an orthogonal direction.

By definition, a high value of \(f_s \) indicates that the region is locally smooth and the scan quality is high, i.e., the raw scan points in \(\Omega_k \) form a thin plate. A low \(f_s \) value, on the other hand, suggests that
either the scan is noisy or the surface contains rich geometric details and thus more scans are needed. Figure 4 visualizes the f_s values calculated for areas with different levels of geometric details and after different numbers of scans. It shows that areas that require additional scans are properly identified.

Figure 5 confirms that the two confidence scores f_d and f_s measure reconstruction quality from different perspectives. Right after the initial blind scans, there are areas that are considered smooth enough (i.e., with high f_d values in Figure 5(d)), but incomplete since they are close to holes or open boundaries. After four scan iterations, the model is mostly complete (i.e., with high f_d values in Figure 5(f)), but the low f_s values in areas with rich geometric details still demand additional scans. The final confidence scores are calculated using the product of these two indicators,

$$f(s_k) = f_d(s_k, n_k)f_s(s_k, n_k),$$

which has high values only at areas that are both complete and locally smooth. As a result, our approach not only suggests NBVs based on large areas of missing data, but also on the amount of surface details to be captured in order to meet given quality criteria.

5 Next-Best-Views (NBVs)

Having analyzed the Poisson surface and assigned confidence to each of its points, our next task is to determine good locations and orientations to place the scanners for future capturing, a.k.a. the NBVs. To efficiently plan the movement of the scanning robot, we select multiple NBVs for each scan iteration and use them to determine the next motion path of the robot, avoiding unnecessary back and forth motion. The selection of NBVs are guided by a viewing vector field (VVF), where the magnitude of each vector in the field indicates how suitable the corresponding location can serve as the NBV, and the vector direction suggests a scan orientation; see Figure 6 for a 2D illustration of the NBV algorithm.

5.1 Viewing vector field (VVF) generation

All scanners have their optimal working distance range $[d_n, d_f]$ from near to far. We cannot place a scanner too close to the surface, nor too far away. Based on the furthest working distance d_f, we select a bounding box B, which contains all points in the space whose distance to the closest point on the surface is smaller or equal to d_f. In particular, the Z-direction of B is constrained to be the vertical. To determine the X-Y directions, we project the already acquired 3D points onto the horizontal plane and compute the two principle axes. The space inside the bounding box is then our searching space for the NBVs. We quantize the space B into a 3D voxel grid (100 × 100 × 100) by default. The NBV scores are only evaluated at the centers of the voxels that are not occupied by the scanned object. For each empty voxel v_i, we cast a ray through each iso-point s_k to test their visibilities.

To evaluate the suitability of a given location v_i in B for serving as a viewpoint in the next scan, we compute a NBV score $g(v_i)$ using:

$$g(v_i) = \max_{s_k} \{w(v_i, s_k)(1 - f(s_k))\},$$

where $f(s_k)$ is the aforementioned confidence score for a given iso-point s_k and normalized to the range $[0, 1]$. The weight $w(v_i, s_k)$ between s_k and the candidate location v_i is computed as a product of three terms: a distance-based term w_d, an orientation-based term w_o, and a visibility-based term w_v. That is:

$$w(v_i, s_k) = w_d(s_k, v_i)w_o(s_k, v_i)w_v(s_k, v_i),$$

where the scanner optimal working distance $d_o = (d_n + d_f)/2$. The normalized vector $d(v_i, s_k) = (v_i - s_k)/||v_i - s_k||$ denotes the direction that points from s_k to v_i. The parameter σ is set to 25° by default. Intuitively, the score function $g(v_i)$ has high values when there is a low confident iso-point s_k that is facing v_i, visible from v_i, and whose distance to v_i is within the optimal distance range for scanning. Once the iso-point s_k that maximizes $g(v_i)$ is found, the score value $g(v_i)$ is stored together with the direction $d(v_i, s_k)$. Computing the best s_k for all the voxels in B yields the viewing vector field (VVF); see Figure 6(b) for an illustration on the magnitudes of the vectors.

5.2 Field-guided view selection

Our next task is to select a set of view positions and directions for the next round of scanning. We start by picking locations that have
local maximal magnitudes in the VVF and use them as the scanner’s view positions. The field is partitioned into a grid of cells and we determine the locations with maximal vector magnitude within each cell. We then select a small subset of these local maximal vectors as the basis for optimizing the scanner’s view directions. When selecting the subset, we avoid picking locations that are too close to each other and select locations only in non-adjacent cells.

To efficiently compute the subset of non-adjacent locally maximal magnitude locations, a greedy algorithm is used. With all the per-cell local maxima vectors forming a set $V = \{v_i\}$, the algorithm starts with filtering out all vectors whose magnitude $g(v_i)$ is lower than a given threshold. It then iteratively selects v_i with the largest $g(v_i)$ value from V and moves it to a second set V^*. Once a vector v_i is moved, all vectors from the cells adjacent to v_i are removed from V to prevent them being added to V^*. The process repeats until the set V is empty.

As shown in Figure 6(c), the above greedy approach ensures that the location selected each time is not in the neighborhoods of previous selections and has the highest vector magnitude among the rest. Thus, the set V^* gives us the positions for the NBVs. The vector direction $d(v_i, s_k)$ at each selected location points toward a low confident iso-point s_k. Our next goal is to select an optimal view direction that allows the scanner to cover as many low confident iso-points as possible, and at the same time cover enough high confident iso-points to ensure an accurate point cloud registration between the existing and the new scans. Thus, instead of using $d(v_i, s_k)$ to set the scanner’s orientation directly, we select a locally optimal iso-point $s_{k'}$ in the vicinity of s_k and let the scanner point to $s_{k'}$, i.e., using direction $d(v_i, s_{k'})$. The location $s_{k'}$ is computed by maximizing the following objective function:

$$\arg\max_{s_{k'} \in \mathcal{T}_k} \eta(s_{k'}) \zeta(s_{k'}),$$ \hspace{1cm} (5)

$$\eta(s_{k'}) = \max_{j\in \mathcal{T}_k} \{w(v_i, s_j)f(s_j)\},$$

$$\zeta(s_{k'}) = \sum_{j\in \mathcal{T}_k} w(v_i, s_j)(1 - f(s_j)),$$

where \mathcal{T}_k is a set holding all the iso-points within the local neighborhood (10% of the scan range d_f by default) of s_k. Intuitively, function η returns high values when there are confident iso-points within the local neighborhood, whereas function ζ is high when there are many low confident iso-points. Maximizing the product of these two terms yields a neighborhood that contains high confident iso-points and, at the same time, covers as many low-confident points as possible; see Figure 6(d).

5.3 On-the-fly registration and reconstruction

When the scanner can be precisely positioned at the specified NBV, the newly scanned raw points can be directly added to the existing
the global confidence on the Poisson reconstructed surface is high-the scanning process. It shows that as more scans are performed, error (the closest distance to the original digital model) vary during average of the confidence values on all points) and the reconstruction Figure model with unknown shape based on our NBV computation. The In Figure wings and legs, than in smooth regions, e.g., the main body. This density is much higher at areas with rich geometric details, such as Figure selective insert each new point confidence value is to generate a 3D mesh using approaches such as Poisson sur-

Table 1: The average time needed for a single scan iteration, which usually covers 5 – 15 NBVs. The distribution of processing time among different operations are also listed.

<table>
<thead>
<tr>
<th>Operation</th>
<th>Time (sec)</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Robot motion/capture</td>
<td>463</td>
<td>65%</td>
</tr>
<tr>
<td>Scan consolidation/registration</td>
<td>178</td>
<td>25%</td>
</tr>
<tr>
<td>NBV computation</td>
<td>71</td>
<td>10%</td>
</tr>
</tbody>
</table>

Table 2: The overall time took for scanning each of the physical models presented in the paper. #Pt: number of points in the final point set surface; #Iter: number of scan iterations applied; #NBV: number of NBVs selected in all iterations.

<table>
<thead>
<tr>
<th>#Fig</th>
<th>#Pt</th>
<th>#Iter</th>
<th>#NBV</th>
<th>Time (min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 1</td>
<td>1828K</td>
<td>8</td>
<td>105</td>
<td>124</td>
</tr>
<tr>
<td>Figure 2</td>
<td>513K</td>
<td>3</td>
<td>35</td>
<td>41</td>
</tr>
<tr>
<td>Figure 10</td>
<td>406K</td>
<td>2</td>
<td>23</td>
<td>26</td>
</tr>
<tr>
<td>Figure 12</td>
<td>543K</td>
<td>2</td>
<td>25</td>
<td>29</td>
</tr>
<tr>
<td>Figure 13</td>
<td>2117K</td>
<td>10</td>
<td>127</td>
<td>154</td>
</tr>
<tr>
<td>Figure 14</td>
<td>376K</td>
<td>3</td>
<td>36</td>
<td>37</td>
</tr>
<tr>
<td>Figure 15</td>
<td>1777K</td>
<td>8</td>
<td>96</td>
<td>115</td>
</tr>
<tr>
<td>Figure 17</td>
<td>714K</td>
<td>4</td>
<td>41</td>
<td>49</td>
</tr>
<tr>
<td>Figure 18</td>
<td>4140K</td>
<td>15</td>
<td>213</td>
<td>235</td>
</tr>
</tbody>
</table>

In Figure 7, we show a progressive virtual scanning on a digital model with unknown shape based on our NBV computation. The coordinates of the model have been normalized to the range [0, 1]. Figure 8 further plots how the global confidence measure (the average of the confidence values on all points) and the reconstruction error (the closest distance to the original digital model) vary during the scanning process. It shows that as more scans are performed, the global confidence on the Poisson reconstructed surface is higher and the reconstruction error decreases monotonically, ensuring the convergence. In practice, we terminate the scanning once the overall confidence does not improve any more. That is, the acquisition completes when the global confidence difference between two consecutive iterations is below a threshold (0.005 by default). For example, in Figure 7, the scanning and reconstruction successfully completes after the sixth iteration.

In addition, the plot in Figure 8 also demonstrates that the gradient-based confidence measure has the largest increases after the second and the third scan iterations, whereas the smoothness-based confidence measure increases more dramatically after the fourth and the fifth iteration. This suggests that the initial scan iterations improve the completeness of the reconstructed model, whereas the later ones add geometry details. This finding is consistent with the results shown in Figure 5, where after the first 4 iterations, the gradient-based confidence measure is high across the rather complete surface, whereas some surface details are still missing and the smoothness-based confidence measure remains low.

6 Results

We have applied the presented autoscanning technique to two different types of robotic platforms. The first is a mobile robot PR2 from Willow Garage, which is equipped with two 7-DOF arm manipulators. For fast data acquisition, we mount an Artec Spider scanner to the PR2’s right hand and attach a 3D printed resin table to its left hand (see Figure 1). This allows the robot to turn the object that is placed on the table, rather than having to move its arm around the object. As a result, the user only needs to specify the position and orientation of the scanner for the first scan. The acquired partial scan can be used to update the bounding box B of the object, which is then used to adjust the distance between the robot arm and the turn table to avoid collision. The second platform is a one-arm 6-DOF industry robot RV20-6 from Reis Robotics. We mount a grasping tool at the end of the arm to hold the scanner and use a motorized turntable to rotate the model; see Figure 10.

The two autoscanning platforms are tested using a number of highly detailed and self-occluding physical objects, such as the action figures in Figures 1 and 2 and the animal models in Figures 10, 12, and 13. During scanning, we utilize prior knowledge on the geometry of the robot arm and the supporting table to remove any captured points associated with them from the raw scan data. The default parameter settings specified throughout the paper are used.
Figure 10: An elephant model being scanned by a one-arm industry robot. The trunk is completely missing in the initial blind scan. Through iteratively scanning from the automatically selected NBVs, the final model captures all geometric details.

(a) Visibility (85K pts). (b) PVS (86K pts). (c) Ours (74K pts).

Figure 11: Comparison with the visibility-based algorithm [Khalfaoui et al. 2013] (a) and the PVS approach [Kriegel et al. 2013] (b) on the virtual model shown in Figure 5(a). Both approaches converge after 55 scans, since no more barely visible or boundary points can be detected. Our approach (c) takes 67 scans under the default setting. However, through utilizing the selective point insertion strategy, the point cloud of our result contains fewer points than the previous two approaches and yet captures more details.

(a) A dragon toy. (b) Initial blind scans. (c) Barely visible points (yellow). (d) Visibility-based recon.

(e) Boundary points (yellow). (f) PVS reconstruction. (g) Our confidence map. (h) Our reconstruction.

Figure 12: Comparison on a real object under the same number of scans. The initial blind scans (b) do not fully capture the input model (a). The visibility-based approach [Khalfaoui et al. 2013] selects NBVs based on barely visible points (c). The surface reconstructed using the first 25 NBVs is incomplete with the left wing missing. The PVS approach [Kriegel et al. 2013] performs better through detecting open boundaries (e), but also yields an incomplete model after using 25 NBVs (f). Our approach produces a complete model using the same number of NBVs (h).
Figure 13: Reconstruction results under different confidence measures. For a given real object (a), the initial blind scans (b) do not cover the full object. Evaluating local surface curvature and using them to guide the NBV selection cannot produce a complete model after 20 scan iterations (c). Using local point density to guide NBV selection generates a more complete model (d) using the same number of scan iterations, but holes still exist at areas highlighted. Selecting NBVs using the presented confidence measures yields a complete model with rich surface details after only 10 scan iterations (e).

Figure 14: Comparison between two models obtained using the same number of scans. Scanning from the first 36 NBVs adaptively selected for the input object (a) results in a complete model (b). The raised weapon and the feet are missing from the model (c) obtained by scanning from 36 directions that are selected by a sphere-based NBV approach [Vásquez-Gómez et al. 2009].

Figure 15: Comparison between models generated by manual scans and our autonomous scanner. Due to fine geometry details, complex occlusions, and challenging surface properties, an experienced user took over 200 scans and spent more than three hours to register them into a model (b). Our PR2 autoscanner achieves a comparable result (c) fully automatically with about 100 scans in less than two hours. The autoscanner missed some parts that are captured by the user (highlighted in blue boxes). However, it registers the scans more precisely, resulting an overall smoother model (e.g., areas in red boxes). It is worth noting that our approach, using the confidence map, properly identifies areas that require additional scans (d), but the model cannot be further improved due to limitations of the accessibility.
for acquiring all models presented. The processing time and the time distribution among different tasks are given in Tables 1 and 2.

The experiments show that blindly scanning complex objects often results in missing parts, e.g., the feet of the action figures and the trunk, wing, or horn of the animals. Through evaluating the confidence of the reconstructed iso-surface, we detect these missing areas and apply additional scans. As demonstrated, the final scanned models accurately capture the original objects.

Comparison to state-of-the-art techniques To evaluate the performance of our approach, we compare our algorithm with two recent NBV techniques [Khalfaoui et al. 2013; Kriegel et al. 2013] that represent the state-of-the-art. Kriegel et al. consider the boundaries of the surface reconstructed from the points scanned so far and select the NBVs that can best scan the boundary areas. Khalfaoui et al. select NBVs based on visibility information, which guides the scanner to cover the surface progressively. Implementing these two approaches on our robotic platform indeed allows complete models being automatically captured. However, neither approach considers the quality of the reconstructed surface in NBV calculation. As demonstrated in Figure 11, this leads to reconstructed models being much less detailed than ours. In addition, our approach selects NBVs by locating topological uncertain areas from the results of a Screened Poisson surface reconstruction. This makes it possible to obtain a complete model with fewer scans than detecting surface visibility or boundaries locally (see Figure 12), even though minimizing the number of scans is not our design goal.

To measure the fidelity of the reconstructed models, we conduct a quantitative evaluation using the input digital model as our ground truth. Here the error is measured using the closest distance between the reconstructed surface and the ground truth. The error histogram plotted in Figure 9 confirms that our reconstruction is more accurate than the competing approaches.

Comparison to more straightforward approaches To justify that our confidence measure is not unnecessarily complex, we compare it with two more straightforward approaches. The first one is density-based, where the NBVs are selected to cover areas with low point density. The second one uses importance-driven sampling, where areas with high-frequency content, detected using local curvature, attract more scans. Figure 13 shows that neither approach is as effective as the presented confidence measure. Moreover, the corresponding results do not give noticeable improvement with more scans because they keep scanning the low density or high curvature regions from less optimal viewing points. Our method can achieve better results with fewer scans instead.

Figure 14 further compares the model acquired using our selected NBVs with the one using a simpler alternative [Vásquez-Gómez et al. 2009]. The latter approach restricts the NBV searching space to a spheric surface (see Figure 14(c)). Such simplification helps to reduce computational costs, but at the same time, introduces limitations in handling complex, self-occluded, or feature-rich objects.

In addition, Figure 15 compares the models obtained by our autoscanner and by manual scanning. The latter was done using the Artect Studio software and with interactive feedback until an experienced user felt that further scans can no longer improve the model. It shows that our automatic approach can achieve a comparable model in less time and with much less user effort. In addition, since the autoscanner performs all scans from known NBV locations, the final registered result contains much fewer artifacts. Nevertheless, the autoscanner does not capture as much geometry as an experienced user is able to do. Our investigation shows that this is mainly due to the non-negligible physical size of the scanner when compared to the object size. As a result, placing the scanner at the selected NBVs cannot ensure that low confident areas are visible from all cameras and the structured lights on scanner, leading to imperfect depth acquisition of such areas.

Comparison to current commercial solutions There are already a few autoscanner products available in the market, such as Rexcans (CS+ ($60,000, http://www.aniwaa.com/product/equality-tech-rexscan-cs-2-5mp), Matter and Form Scanner ($579, https://matterandform.net/scanner), MakerBotDigitizer ($800, http://www.aniwaa.com/product/makerbot-digitizer), Rubicon Rubicon 3D ($550, http://www.aniwaa.com/product/rubicon-3d), etc. These emerging techniques are inspiring, but in general their mounted scanners have limited degrees of freedom, e.g., only using sphere-based NBVs as shown in Figure 14, which make them hard to scan big objects with complex topology.

Inexpensive hardware options and noise handling Our PR2 ($400,000) can easily be replaced by a low-cost robot arm such as UR5 ($30,000, http://www.universal-robots.com), and the Artect Spider ($22,000) can exchange a cheaper scanner with the same resolution such as DAVID Structured Light Scanner SLS ($2,730, http://www.aniwaa.com/product/david-structured-light-3d-scanner). Using inexpensive hardware may cause less accurate scanner positioning and noisier scans. To see how robust our autoscanner system is, we add both random and systematic errors...
simulated as in [Berger et al. 2013] into the virtual scanner, where the noise magnitude can be controlled by a user-specified parameter. We then run our NBV computation with point cloud consolidation preprocessing (Section 4.1) on the same digital model used in Figure 7, with noise magnitudes ranging from 0, i.e., no noise, to 1 that can heavily corrupt the accuracy of the virtual scanning. The resulted reconstruction errors are plotted at the left of Figure 16 and validate the robustness of our algorithm. The final model reconstructed under the strongest noise corruption is presented at the right, which still shows satisfactory quality.

More applications Figure 17 shows that both geometry and color of an object can be simultaneously captured using our autonomous scanners, making it easy to perform texture mapping onto the reconstructed surface. Nonetheless, we choose not to use color information for computing NBVs, because color information may not be accessible for all scanners and high color variation may not correlate with rich geometric details.

While the two robotic platforms used limit us to experiment with small objects, the presented algorithm is capable of suggesting NBVs for large-scale scanning as well. Figure 18 simulates an outdoor scene scanning scenario, similar to the setting of Allen’s work [Bláer and Allen 2007]. It shows that a complex church model is progressively scanned and successfully reconstructed.

7 Discussion and Future work

We present an autonomous scanning technique. The key is to analyze the quality of a tentative watertight iso-surface model extracted from a Poisson field, and use the analysis to guide the selection of NBVs. Iteratively scanning and analyzing the object lead to a high quality surface reconstruction. In contrast to previous work, our method is *quality-driven* and selects NBVs through locating areas with geometrical and topological uncertainty in a *global manner*.

Please note that, due to the limitation of the scanner’s accessibility (see Figure 15), we cannot guarantee a given quality requirement is satisfied everywhere on the model. This limitation in fact applies to virtual scanners as well (see Figures 7 and 11), since deep or complex cavities are hard or impossible to cover. Generally speaking, our approach is greedy, where at each iteration the scanner seeks to improve the quality of the regions with the currently lowest confidence. There could be more efficient sequences of scanning that can reach the same quality faster, with fewer scans, or shorter paths. Also our current approach assumes that the scan sensor used is isotropic. That is, we search for NBVs in 5D pose space, ignoring the effects of sensor rotation about its normal. This is one of the reasons that the scan acquired by our PR2 is not as complete as the manual scan in Figure 15. Incorporating more advanced sensor models [Gschwandtner et al. 2011] and searching in 6D pose space may further enhance the results using the proposed framework.

Humans are relatively good at high-level view planning for coverage of simple objects. However even experienced operators encounter considerable difficulties with topologically and geometrically complex shapes. Besides guiding fully automated scanning, our confidence map can also serve as visual feedback for user-operated capturing systems to facilitate and simplify the acquisition task. In the future, we would like to explore such semi-automatic interactive scanning mechanisms.

Acknowledgments

The authors would like to thank all the reviewers for their valuable comments and feedback. This work is supported in part by grants from NSFC (61232011, 61103166, 61379091), National 863 Program (2012AA011801), Shenzhen Innovation Program (CXB201104220029A, KQCX20120807104901791, ZJ201111080115A, JCYJ20130401170306810, JSGG20130624154940238), NSERC and Israel Science Foundation.

References

