Efficacy of Phosphorus Gettering and Hydrogenation in Multicrystalline Silicon

Sarah Gindner, Philipp Karzel, Bernhard Herzog, and Giso Hahn

Abstract—The emitter formation step (POCl$_3$ diffusion) in p-type crystalline silicon solar cell processing includes many variables, e.g., peak temperature, gas flows, temperature ramps, which can be optimized in order to improve material quality. Diffusion parameters of an 80-Ω/□ emitter are varied, and the resulting change in electronic quality of multicrystalline silicon is analyzed. A detailed gettering analysis of multicrystalline material, surface passivated with hydrogen-rich amorphous silicon, after POCl$_3$ diffusion, and an additional gettering step combined with hydrogenation from SiN$_x$:H is presented. The industrial-type diffusion leads to material of lower electronic quality than the extended reference diffusion. A major finding of this paper is the fact that results on different 5 × 5 cm2 samples out of one 15.6 × 15.6 cm2 wafer can vary significantly. Hence, conclusions about which diffusion is most efficient in gettering strongly depend on wafer position. An edge position close to crucible walls, for example, might improve less effectively than another position close to the crucible center. In fact, the opposite can also be shown, and samples originating from edge regions reach their highest lifetimes after gettering. This is explained by the different defect structure of the investigated samples. Structures exhibiting high gettering efficacy contain fewer recombination active grain boundaries and are predominantly free of extended defect clusters.

Index Terms—Gettering, hydrogen, photococonductivity, photoluminescence (PL), photovoltaic cells, silicon.

I. INTRODUCTION

MULTICRYSTALLINE silicon (mc-Si) is of high industrial relevance because of its lower production costs compared with single crystalline silicon growth methods like float-zone and Czochralski. Because of the specific cast process, a high amount of defects, e.g., impurities, vacancies, grain boundaries (GBs), and dislocations are present in the material. A tremendous improvement of material quality is reported during the emitter formation step of p-type silicon solar cells using a POCl$_3$ diffusion [1]–[3]. This effect is commonly known as phosphorus diffusion gettering (PDG). The detailed mechanisms behind this effect are still not clear up to now and still highly discussed. This is not surprising due to the complexity of the process. Each multicrystalline material contains a large variety of impurity species [4], [5], e.g., Fe, Ni, Cu, Co, Cr, etc., with different diffusion properties and solubility in silicon and exhibits different grain boundary structures decelerating or accelerating impurity diffusion [6]. In addition to the already present defects in the material, the applied POCl$_3$ diffusion delivers oxygen and phosphorus which diffuse into the silicon matrix [7]–[9]. There are not only single impurity atoms in the silicon, but also complexes of two or more atoms are formed and precipitation occurs at certain fixed nucleation sites (preferably at dislocations, GBs, and extended defects) [10], [11]. A measure of electronic material quality is the minority carrier lifetime determined by, e.g., quasi-steady-state photoc conductivity (QSSPC) [12] and spatially resolved photoluminescence (PL) [13] measurements. A lot of scientific effort was made to determine most lifetime limiting defects and to learn to remove them most effectively [14]–[17].

In this study, these techniques are used to analyze the gettering efficacy of two 80-Ω/□ emitters with different process durations and gas flows. To achieve this, it is essential to understand the mechanisms behind PDG [18]–[21]. Multicrystalline samples of the same cast ingot differing significantly by their grain structure are selected. Therefore, a detailed gettering analysis on these samples is carried out, and the correlation between defect structure and gettering efficacy is investigated.

II. EXPERIMENT

In this investigation, four different process sequences are applied to four vertically directly neighboring p-type mc-Si samples (≈1 Ω cm, ≈150 μm) with comparable grain structure and very similar defect distribution (in the following referred to as sister samples): 1) Diffusion 1: reference; 2) Diffusion 2: industry; 3) Diffusion 1 + H: reference gettering and subsequently firing of emitter and SiN$_x$:H layer; 4) Diffusion 2 + H: industry gettering and subsequently firing of emitter and SiN$_x$:H layer.

If SiN$_x$:H is additionally deposited on both sides in an industrial-type plasma-enhanced chemical vapor deposition (PECVD) system and fired, processes are denoted as diffusion + H. Therefore, in Fig. 1(b), all samples are schematically divided into groups A (without SiN$_x$:H) and B (with SiN$_x$:H). Note that group B samples are fired with their emitter layers still present. Thus, both effects during deposition and firing, i.e., the additional gettering as well as the hydrogenation, cannot be separated. On the other hand, this allows a direct comparison with solar cell material that is presented in Section III-D, as the final solar cell performance is affected by several processing steps (gettering and hydrogenation). In central ingot height, two sister samples per process are investigated to improve statistics.
Fig. 1. (a) PL image of a 15.6 × 15.6 cm² mc-Si wafer out of a Gen 1 crucible (as-cut). (b) Process flow of lifetime samples. (a) Cutting sketch. (b) Process flow.

Samples are cleaned by a polishing etch consisting of HF, HNO₃, and CH₃COOH. According to the process flow in Fig. 1(b), two 80-Ω/□ POCl₃ emitters with different process durations and gas flows are applied. More information on the diffusion parameters is given in Section III-A. After emitter removal (additionally for group B removal of SiNₓ:H layers) and surface piranha cleaning containing H₂O₂ and H₂SO₄ followed by HF dip, samples are surface passivated. The applied surface passivation is hydrogen-rich amorphous silicon (a-Si:H) [22] deposited in a PECVD system from Oxford Instruments (Plasmalab 100). Finally, lifetime characterization is performed using the QSSPC and PL techniques. PL images are measured at a photon generation flux of 2.6 × 10¹⁷ cm⁻² s⁻¹. These images are lifetime-calibrated using the QSS lifetime.

The analysis is executed on 5 × 5 cm² samples originating from a mc-Si ingot of Gen 1 size produced within the framework of the project SolarWinS (see acknowledgment). Gen 1 size means that one column with an area cross section of 15.6 × 15.6 cm² is obtained from one crystallization process. This column is sawed into wafers, and each of them is subsequently cut into nine samples (5 × 5 cm²), positioned as shown in Fig. 1(a). The analyzed positions are marked in red: C, D, and F. The shown PL image of the wafer reveals that the edges to the right (C, F, I) and to the bottom are close to crucible walls with impurities diffusing in from these walls, reducing the wafer quality during crystal growth. This region of lower material quality is often called red zone. The already described wafer positions are from three different ingot heights: bottom, center, and top.

III. POCl₃ GETTERING ANALYSIS

A. Applied POCl₃ Diffusions: Reference and Industry

In Fig. 2, two varied POCl₃ diffusions applied in this study are sketched. Both processes lead to a sheet resistance of 80 Ω/□. The red continuous line marks the reference diffusion. This is the standard emitter of laboratory-sized solar cells, whose front contact grid is defined by photolithography. In comparison with the industry diffusion drive-in of 5 min, the reference drive-in lasts considerably longer with 60 min, and its oxygen flow is higher (see the table in Fig. 2). Unloading temperature is 600 °C for both processes.

B. Detailed Gettering Analysis in Central Ingot Height Using Linescans

This section focuses on gettering efficacy of three different positions C, D, and F (see Fig. 3). According to Fig. 1(a), positions C and F originate from ingot edge regions, while position D is closer to the ingot center. This is in agreement with the lower as-grown mean lifetimes (∼29 μs) of these positions compared with 41 μs of sample D. A dark PL contrast at the right and bottom edges is due to the proximity to crucible walls serving as a source of contamination. At first sight, as-grown samples exhibit different defect structures. From left to right in the top row of Fig. 3, grain sizes increase, and therefore, the amount of GBs decreases. Whereas defect clusters [23], which are localized dark regions of random shape, are mainly observed for positions D and F, position C is almost free of such clusters. After industry diffusion gettering, a stronger PL contrast is predominantly visible at these clusters (note the different scaling).
Fig. 4. Green rectangles in Fig. 3. Enlarged image details of position C before and after industry diffusion. GBs running parallel mainly observed for position C in the as-grown state.

Hence, the highest mean lifetime of 344 \(\mu s \) after gettering and, by far, the highest gettering efficacy is detected on position C. This suggests that defect clusters hinder the gettering process. It is interesting to note that GBs of weaker PL contrasts in the as-grown images, running parallel, vanish after gettering. To examine this in more detail, an image section of position C is marked as green rectangle in Fig. 3 and depicted in Fig. 4. Because of their specific structure, these GBs might accommodate impurities with low activation energies so that gettering is facilitated. This is discussed in more detail in Section IV. Another explanation for this observation could be the reduction and/or removal of structural defects due to the high-temperature diffusion step or longer diffusion durations. Fenning et al. [24] reported a reduction of the dislocation density with higher diffusion temperature already in the range of 820–920 °C.

In addition to the already gained insight into gettering mechanisms, one linescan is performed on each wafer position, and marked as 1 to 3 in Fig. 3. The scans across selected defect clusters are depicted in Fig. 5. The already stated higher lifetime contrast after industry diffusion compared with the as-grown state is also confirmed by these linescans. A useful parameter, in order to quantify clusters appearing in PL images by their recombination activity, is the PL contrast \(C \). This quantity is calculated from the lifetime plateaus to the left \(\tau_{\text{left}} \) and right \(\tau_{\text{right}} \) of a linescan profile and from its minimum lifetime \(\tau_{\text{min}} \) [see Fig. 5(a)]

\[
C = \frac{\bar{\tau}_{\text{margins}} - \tau_{\text{min}}}{\bar{\tau}_{\text{margins}}}
\]

with

\[
\bar{\tau}_{\text{margins}} = \frac{\tau_{\text{left}} + \tau_{\text{right}}}{2}
\]

All positions D, F, and C exhibit a significantly lower lifetime within the scanned clusters \(\tau_{\text{min}} \) after industry diffusion than after reference diffusion. Besides that, profiles after both diffusions are similarly shaped and are even not distinguishable toward the cluster margins. This results in a higher lifetime contrast for the industry diffusion compared with the as-grown state is also confirmed by these linescans. A useful parameter, in order to quantify clusters appearing in PL images by their recombination activity, is the PL contrast \(C \). This quantity is calculated from the lifetime plateaus to the left \(\tau_{\text{left}} \) and right \(\tau_{\text{right}} \) of a linescan profile and from its minimum lifetime \(\tau_{\text{min}} \) [see Fig. 5(a)]

\[
C = \frac{\bar{\tau}_{\text{margins}} - \tau_{\text{min}}}{\bar{\tau}_{\text{margins}}}
\]

with

\[
\bar{\tau}_{\text{margins}} = \frac{\tau_{\text{left}} + \tau_{\text{right}}}{2}
\]

All positions D, F, and C exhibit a significantly lower lifetime within the scanned clusters \(\tau_{\text{min}} \) after industry diffusion than after reference diffusion. Besides that, profiles after both diffusions are similarly shaped and are even not distinguishable toward the cluster margins. This results in a higher lifetime contrast for the industry diffusion compared with the as-grown state is also confirmed by these linescans. A useful parameter, in order to quantify clusters appearing in PL images by their recombination activity, is the PL contrast \(C \). This quantity is calculated from the lifetime plateaus to the left \(\tau_{\text{left}} \) and right \(\tau_{\text{right}} \) of a linescan profile and from its minimum lifetime \(\tau_{\text{min}} \) [see Fig. 5(a)]

\[
C = \frac{\bar{\tau}_{\text{margins}} - \tau_{\text{min}}}{\bar{\tau}_{\text{margins}}}
\]

with

\[
\bar{\tau}_{\text{margins}} = \frac{\tau_{\text{left}} + \tau_{\text{right}}}{2}
\]

Thus, recombination activity between structural defects and grains does not strongly deviate, resulting in low PL contrasts. During gettering, mobile impurities are removed, but still many of them preferably remain inside structural defects (or are internally gettered there), which results in highly recombination active dark PL regions. Thus, these structural defects are visible much more pronounced after gettering than in the as-grown state.

It is interesting to note for positions F and C that the difference between reference and industry diffusion vanishes after SiNx + emitter firing, whereas for position D, both diffusions still differ, with reference +H resulting in higher lifetimes. As
already mentioned, positions F and C are gettered more effectively than position D due to their specific grain structure. After the additional gettering and/or hydrogenation step while firing SiN\(_x\):H, highest lifetimes are reached for both diffusion types and this might saturate at a certain maximum level. Therefore, both diffusions in combination with the SiN\(_x\):H deposition and firing step seem to be capable of achieving this maximum lifetime on positions C and F. On the contrary, at position D, still nongettered and/or nonpassivated impurities, lowering the local lifetime, might remain in defect clusters especially for the shorter industry diffusion. Hence, the difference between both diffusions is maintained after SiN\(_x\) + emitter firing.

C. Gettering Analysis on Position D Using Differential Maps

1) Comparison of Two POCl\(_3\) Diffusions: Fig. 6 shows lifetime-calibrated PL maps of D samples in central ingot height. It is clearly seen that reference diffusion gettered samples exhibit higher lifetimes than industry gettered ones. To examine in more detail which regions actually improve, a differential map is calculated between reference (i + 1) and industry (i) diffusion gettered sister samples [see Fig. 7(left)]. The shown deviation is normalized to the lower lifetime (industry diffused sample) according to the following equation:

\[
\tau_{\text{differential}} = \frac{\tau_{i+1} - \tau_i}{\tau_i}
\]

The map on the right-hand side is the normalized differential between two samples that are processed in the same diffusion in order to see process-related deviations between sister samples. The full width at half maximum of its histogram is around 87\%. Assuming a normal distribution, this value corresponds to a standard deviation of ±37\%. Improvements in the left-hand side map exceeding this deviation are relevant. Therefore, the mean improvement by the reference diffusion is 66(37)%.

In particular, red regions are negative values, which would describe a degradation due to reference diffusion compared with industry diffusion. These values mainly constitute within the experimental error of ±37\% and, hence, may not necessarily reflect actual degradations. Nevertheless, it is interesting to note that most of these red regions belong to higher quality regions in the PL images. This implies that the shorter industry diffusion is more effective in regions of higher material quality. Yellow regions, describing a difference of ≈200\% and higher, are correlated with dark black regions that do not improve significantly after industry diffusion compared with the as-grown state (see Figs. 5(a) and 6). These regions of low material quality might be accumulations of dislocations and GBs decorated with impurities lowering the bulk lifetime [25]. Since the initial as-grown lifetime within these regions is very low, it is not surprising that there is stronger percentage improvement than within regions of better initial material quality. Here, we focus on two kinds of diffusions which obviously lead to different final lifetimes within these regions starting from the same initial low lifetime. As a similar structure is visible after both reference and industry diffusion, significant structural changes due to the longer diffusion duration can be excluded. Reference gettered samples exhibit a much lower PL contrast than industry gettered ones. This indicates a more efficient improvement of low-quality regions, which consequently appear less pronounced. It is supposed that a higher impurity decoration of GBs and defect clusters is still present after the shorter industry process.

2) Effect of SiN\(_x\):H + Emitter Firing: In this section, the effect of SiN\(_x\):H deposition and subsequently firing this layer with emitter underneath is discussed. It should be mentioned that from this experiment, it is not distinguishable if the analyzed effect originates from hydrogen in-diffusion, from additional POCl\(_3\) gettering or from a combination of both. The differential map between a reference gettered sample and its sister sample after the additional SiN\(_x\):H step is calculated. Samples are also D samples out of central ingot height and, therefore, are comparable with the already shown PL maps in Fig. 6. As can be seen from Fig. 8, there is an enhancement of bulk lifetime within the whole wafer. Again the experimental error is depicted on the right-hand side map. The standard deviation is only 12%, which is significantly lower than the above shown error of samples after diffusion. According to the differential map in Fig. 8(left), it is remarkable that the effect of the SiN\(_x\):H firing step predominantly improves regions that have not already been improved by reference gettering compared with industry gettering. These regions are highlighted in yellow, representing values up to 200\%, and correspond to individual GBs mostly in the vicinity of or even surrounding already reference gettered regions. An additional mean lifetime improvement of 98(12)%
by SiN$_x$:H is reached. It seems that both processing steps, emitter diffusion and SiN$_x$:H deposition with firing, complement one another. Within particular regions, the reference diffusion might not have been able to remove all impurities. During firing, the remaining impurities might be partially gettered, and subsequently, dangling bonds are passivated by hydrogen or impurities themselves are passivated by hydrogen.

At first sight, the differential between industry gettered and industry + H gettered samples shown in Fig. 9 seems to exhibit a stronger relative lifetime enhancement. This might be expected since the previously industry gettered sample is of lower material quality compared with the reference diffusion. Thus, high relative lifetime changes can be more easily achieved starting from lower lifetimes compared with samples of better initial quality. The mean improvement of industry gettered material by SiN$_x$:H with 137(37)% is higher than the additional improvement of previously reference gettered material. In this case, the experimental error could not be determined from two sister samples since only one sample after industry + H is measured. Therefore, the standard deviation of ±37% is assumed, which has already been determined for industry gettering. As already argued, a high amount of impurities may remain predominantly within defect clusters and GBs, which could not be gettered by the short industry diffusion before. Therefore, this amount of impurities might undergo another gettering process during SiN$_x$:H firing and/or a passivation by hydrogen. It was shown in the previous Section III-B that positions C and F react to POCl$_3$ diffusion differently than position D. They exhibit such strong lifetime improvements after industry + H gettering that the final lifetimes reach the level of reference + H gettered samples. These differences in responding to the same process schemes are attributed to the different defect structure for the different wafer positions. The corresponding structures are clearly seen in Fig. 3. In conclusion, the optimum process scheme for position D within central ingot height can be stated as reference diffusion followed by SiN$_x$:H deposition and firing.

D. Gettering Analysis in Different Ingot Heights—A Comparison With Solar Cell Efficiencies

Fig. 10 shows mean lifetimes arithmetically averaged over the respective 5 × 5 cm2 samples versus ingot height after each process scheme. In central ingot height, two samples per process are measured. Lifetimes of positions D, F, and C are depicted. The reference diffusion gettered samples are displayed as red crosses and group B samples (+ SiN$_x$:H) as red stars. Lifetimes after industry diffusion are marked as green minus signs and with an additional SiN$_x$:H step as green plus signs. Black dots are the initial as-grown lifetimes with no processing except saw damage removal, surface cleaning, and passivation required for lifetime measurements. Highest as-grown lifetime in central ingot height is 41 μs for position D followed by position F with 30 μs. Position C exhibits the lowest as-grown lifetime of 28 μs. Note that a few data points are missing due to broken samples.

In the framework of the project SolarWinS (see the acknowledgement), an industrial project partner (Sunways AG) produced solar cells using a standard industrial cell process out of every tenth 15.6 × 15.6 cm2 wafer along the ingot height. In Fig. 10, normalized efficiencies of these cells are included as blue squares and are linked to the right y-axis. Given efficiencies are normalized to the highest efficiency measured for the mc-Si material under investigation. As already stated in Section III-B, position F (central ingot height) exhibits such a strong lifetime increase that industry + H samples even slightly outreach the lifetime level of reference + H samples. This is also visible in Fig. 10. Again position C shows similar behavior in central ingot height with reference + H and industry + H reaching similar lifetimes.

As solar cells are commonly passivated by PECVD SiN$_x$:H and fired, it should be focused on lifetime values after diffusion + H when comparing with cell efficiencies. It is interesting to note that edge positions F and C follow the same decrease in lifetime toward top ingot height as the solar cell efficiency. This is not observed for position D, probably because of the fact that position D is located closer to the ingot center, whereas positions F and C are closer to crucible walls. Therefore, it is indicated that 15.6 × 15.6 cm2 solar cells in top ingot height are limited by the red zone which is the low material quality region originating from impurities diffusing out of crucible walls. It was shown by the detailed gettering analysis that the particular defect structure found in each sample determines the sample’s behavior under varying PDG processes (compare, e.g., with similar results in [26] and [27]). The amount of extended defects especially limits PDG on position D. It should be emphasized here that comparing lifetimes with solar cell efficiencies is only possible by focusing on lifetime samples that...
reflect the combination of gettering and hydrogenation, namely diffusion + H samples. Efficiency of large-area solar cells shows the same trend as the edge samples in contrast with the centrally positioned D sample. This behavior seems to be independent of the varying PDG processes. Each position, as well as each ingot height, exhibits a different optimum process that leads to the highest lifetime. This clearly shows the need of analyzing not only the difference in PDG efficacy but rather the combination of both PDG and hydrogenation. In the previous section, a fundamental difference between both processing steps is highlighted for the reference diffusion on position D (see Fig. 8).

The hydrogenation step herein predominantly improves GBs, while the optimized PDG alone (reference) is more efficient at extended defects. In summary, the achievable lifetime after the complete processing is not only dependent on the respective local defect structure but also on ingot height and position. The correlation in performance between lifetime edge samples and solar cells demonstrates that cell efficiencies are governed by the red zone. In addition, the material quality of edge samples is limited toward top ingot height independently of the applied type of PDG.

IV. DISCUSSION

Comparing all three as-grown wafers in Fig. 3, it can be noticed that position C contains most twin boundaries running parallel for quite long distances (see enlarged section in Fig. 4). Also remarkable is a smaller number of grains compared with position F and especially to position D, which contains the highest number of grains and smallest amount of GBs running parallel. According to Karzel et al. [28], it is suggested that these twin boundaries are \sum^3 GBs that exhibit a weaker recombination activity than for example GBs of higher \sum value or dislocation clusters [29]. Chen et al. claimed that this type of GBs is only recombination active when contaminated, e.g., with Fe [30]. This is consistent with the presented results on position C. Herein, most \sum^3 GBs are detected in the as-grown state, whereas their PL contrast vanishes after gettering. It can be argued that impurities are completely removed out of these grain boundaries. Because of the small tilt angle between neighboring grain orientations in case of \sum^3 GBs, the crystal structure is less distorted than for higher \sum values. Thus, it seems plausible that impurities are easily removed out of them. However, it is emphasized that the GB characterization via coincidence site lattice CSL (\sum value) is incomplete when classifying grain boundaries by their recombination activity. This is due to the fact that the \sum value does not describe the boundary plane that is formed between the neighboring grains [31], [32]. Whether grain boundaries are recombination active or not is, therefore, highly discussed and not completely understood up to now.

The fact that the sample with most grains of smaller size exhibits the highest as-grown lifetime (position D) is not clear from first sight. It might be a consequence of an internal gettering effect which preferably occurs at grain boundaries during crystallization and cooling. Due to this effect, intragrain regions of position D might be cleaner and reach higher bulk lifetimes than intragrain regions of position F, for example. At position F, these regions are crossed by the aforementioned twin boundaries (\sum^3) and appear as blurry dark regions of low material quality in the as-grown PL image. In addition to the fact that position D exhibits most structural defects serving as many internal gettering sites, the edge samples C and F are more strongly and homogeneously contaminated by in-diffusing impurities from the crucible walls. In comparison with that, position D exhibits intragrain regions of brighter PL contrasts and therefore higher lifetimes. After gettering, the situation is completely changed. The best gettering efficacy occurs for the C samples with the lowest as-grown lifetimes, but the highest number of \sum^3 GBs. This would lead to the conclusion of a facilitated gettering.
process when there are more $\sum 3$ GBs present in the material. In addition, it can be stated here that the initial as-grown lifetime alone is not a good indicator for predicting the gettering efficacy of mc-Si, without taking the local defect structure into account.

According to Fig. 7, the longer lasting POCI$_3$ diffusion process (reference) predominantly improves the already mentioned defect clusters highlighted in yellow. These PDG-limiting extended defects that are selected by the linescans in Fig. 5 have been exposed to a defect etch. A clear correlation between higher dislocation density and recombination activity can be drawn from these measurements (not shown here). A critical dislocation density of $10^{6.1}$/cm2 is detected, which can be seen as the minimum dislocation density leading to a lowered lifetime compared with nondislocated surroundings. Lattice defects like dislocations and grain boundaries can enhance impurity diffusion since activation energy for migrating atoms can be lowered in these regions depending on the type of foreign atom [33], [34]. On the contrary, they might also serve as internal gettering sites with dangling bonds and vacancies that attract and facilitate precipitation of impurities [6], [35]. If impurities stay recombination active within these sites, the external POCI$_3$ gettering process is constricted. In the case of a decelerated precipitation dissolution and impurity diffusion, atoms need more time and/or higher temperature to be released from lattice defects, particularly from defect clusters, and to be transported toward external gettering sites. Since both diffusions are performed at the same temperature, the longer lasting reference diffusion might be better suited. Additionally, there is a higher oxygen flow during drive-in. Oxygen is found to produce a large amount of Si self-interstitials due to amorphous SiO$_2$ formation with a volume expansion of $=130\%$ [36], [37]. It is suggested that the supersaturation of these interstitials is responsible for gettering via the so-called kick-out mechanism [38]–[40]. Another possible mechanism behind P gettering is given by Syre et al. [8]. Here, vacancies are claimed to be responsible for gettering while they are formed during P in-diffusion in the near-surface region containing very high P concentration. Vacancy and oxygen form VO$_2$ complexes that might act as precipitation centers for oxygen precipitates which, in turn, act as gettering sites for Fe. Consequently, it seems plausible that a longer drive-in time accompanied by a higher oxygen flow provides a more efficient gettering diffusion.

V. SUMMARY

Different gettering efficacy is observed for two 80-Ω/□ POCI$_3$ emitters on mc-Si carried out with different drive-in durations and gas flows. The extended diffusion combined with a higher oxygen flow results in higher bulk lifetimes. A detailed gettering analysis of three positions (D, F, and C) out of a 15.6 \times 15.6 cm2 wafer lead to the conclusion that the particular defect structure of each position determines its behavior under varied POCI$_3$ diffusions. This is most evident for central ingot height of position C, which contains less defect clusters compared with the other positions and reaches, by far, the highest lifetimes after gettering.

A comparison with efficiencies of 15.6 \times 15.6 cm2 solar cells shows that lifetimes of samples originating from wafer edge regions (C and F) follow the same decreasing trend toward the top ingot height. On the contrary, D samples are closer to the ingot center and do not reflect that decrease. It is suggested that cell efficiencies are limited by the red zone, in which edge wafers are located.

ACKNOWLEDGMENT

The authors would like to thank S. Joos and N. Brinkmann for their help concerning surface passivation issues. Technical support by L. Mahlstaedt is also gratefully acknowledged. The content is the responsibility of the authors.

REFERENCES

