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The Bloch sphere is a generic picture describing the coherent 
dynamics of coupled classical or quantum-mechanical two· 
level systems under the control of electromagnetic fields1.2. 

It is commonly applied to systems such as spin ensembles3 , 

atoms4 , quantum dotsS and superconducting circuits6 • The 
underlying Bloch equations7 describe the state evolution of the 
two-level system and allow the characterization of both energy 
and phase relaxation processes3.S·9 • Here we realize a classical 
nanomechanical two-level system2 driven by radiofrequency 
signals. It is based on the two orthogonal fundamental flexural 
modes of a high-quality-factor nanostring resonator that are 
strongly coupled by dielectric gradient fields10 • Full Bloch 
sphere control is demonstrated by means of Rabi11 , Ramsey12 

and Hahn echo13 experiments. Furthermore, we determine the 
energy relaxation time T1 and phase relaxation times T2 and r;, 
and find them all to be equal. Thus decoherence is dominated 
by energy relaxation, implying that not only T1 but also T2 can 
be increased by engineering larger mechanical quality factors. 

Whereas the dynamics of semiclassical two-level systems under 
the influence of a pulsed external electromagnetic field was observed 
decades ago in many-spin NMR experiments, a completely classical 
analogue remained elusive for a long time. Such a classical 
two-mode system can for example be created using two optical 
cavity modes14 or mechanical resonators. Only recently, several 
approaches were employed to achieve purely mechanical resonant 
coupling either between separate resonators15-

17 or different modes 
of the same resonator10•18 in the classical regime. So far, the 
pulsed coherent control of the system was prevented by weak 
coupling, low quality factors or the lack of a sufficiently strong and 
fast tuning mechanism. 

We present the successful implementation of a purely me­
chanical, classical two-level system, consisting of the two coupled 
fundamental flexural modes of a nanomechanical resonator with 
coherent time-domain control (see also the experiments indepen­
dently performed using parametric coupling19 instead of the linear 
coupling employed here). To this end, we use a 250 nm wide and 
lOOnm thick, strongly stressed20 silicon nitride string resonator 
with a lengt.h of 50 ~un dielectrically coupled to a pair of electrodes 
used for detection21 as well as actuation and tuningll. The two 
fundamental flexural modes of the mechanical resonator oscillating 
in the out-of-plane and in-plane direction (Fig. la) are linearly 
coupled by cross-derivatives of the strong inhomogeneous electric 
field generated between the electrodes (see the Supplementary 
Information of ref. 10 for a theoretical analysis). A constant d.c. 
voltage of - 15 Vis employed to dielectrically tune the system close 
to the resulting avoided crossing, while the signals generated by an 
arbitrary waveform generator (A WG) enable time-resolved control 
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Figure 11 Nanoelectromechanical system. a, Scanning electron micrograph 

showing oblique view of the 50 ~tm long silicon nitride string (green) and 
the adjacent, 1 ~tm wide gold electrodes (yellow), processed on top of the 
SiN. b, Electrical set-up. The ou tpu t of the AWG and a d.c. tuning voltage 

are added and combined with the radiofrequency drive at a bias-tee. The 

second capacitor acts as a bypass providing a microwave (~tw) ground path 

for the microwave detection21 . c, Resonance frequencies of the out-of-plane 

(Out ) and in-plane (In) mode of the resonator are cont rolled by the AWG 

voltage at a constant d.c. tuning voltage of -15 V. The black circle marks 

the initialization state at 0 V and the frequency of the radiofrequency drive, 

and the green and blue circles correspond to the lower and upper state of 
the classical two-level system, respectively, separated by JJ. 

in the vicinity of the avoided crossing (Fig. lb,c). Both voltages are 
added, combined with the radiofrequency actuation at a bias-tee, 
and applied to one electrode. The other electrode is connected to 
a 3.6 GHz microstrip cavity, enabling heterodyne detection of the 
string deflection21 after addition of a microwave bypass capacitor at 
the first electrode22• These components, as well as the mechanical 
resonator, are placed in a vacuum of ~10-4 mbar and the system is 
cooled to 10.00± 0.02 K to improve the temperature stability as well 
as the cavity quality factor. The microwave cavity is interfaced to the 
readout with a single coaxial cable and a circulator. 

When the system is driven by an external white-noise source 
and the A WG output voltage is swept, the avoided crossing of 
the two modes shown in Fig. lc can be mapped out, exhibiting 
a frequency splitting [} = 24,249 ± 4Hz. With a quality factor 
Q = f I t:.f ~ 2 x 105 and a linewidth of t:.f ~40Hz at the resonance 
frequency f, the system is clearly in the strong coupling regime 
of t:.f « rJ. For all measurements discussed in the following, 
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Figure 2 I Rabi oscillations. a, Pulse scheme. The system is adiabatically 
tuned from the initialization to the lower state, then a constant drive with 
frequency JJ is turned on. b, The z projections of the decaying Rabi 
oscillations (data coloured dark blue; fit indicated in red) can be directly 
measured with a spectrum analyser. The Bloch sphere in the inset shows 
the state of the Bloch vector at selected times, which are marked in the 
same colour in a. 

a radiofrequency drive of - 59 dBm at 7.539 MHz, resonantly 
actuating the string at an AWG voltage of OV, is applied, which 
initializes the system in its in-plane mode (Fig. lc, black circle). A 
1 ms long, adiabatic voltage ramp up to 2.82 V brings the state to 
the point of minimal frequency splitting Q between the coupled 
modes. Here, the system dynamics is described by two normal 
modes, hybrid states formed by the in-phase and out-of-phase 
combinations of the fundamental flexural modes. The adiabatic 
ramp thus transforms all the energy of the in-plane mode into 
the lower hybrid state, such that the classical two-level system2 , 

consisting of the two hybrid modes, is prepared in its lower state. 
As the drive frequency remains constant (Fig. lc, dashed line), the 
string is no longer actuated and its energy is slowly decaying. 

Now, the A WG is used to apply a continuous pump tone with 
frequency Q to the drive electrodes which starts Rabi oscillations3,11 
between the lower and upper state, as shown in Fig. 2. They can be 
measured directly by monitoring the time evolution of the output 
power spectrum at the frequency of one of the hybrid modes, 
here shown for the upper state at 7.6028 MHz, and measured 
with a bandwidth of 10kHz. All time-resolved measurements 
are averaged over 20 (Rabi oscillations and Tl measurement) 
or 10 pulse sequences (Ramsey fringes and Hahn echo). For a 
drive amplitude of 100m V (half peak-to-peak) we find a Rabi 
frequency of 8.3 kHz (Supplementary Section SIIA). These strong 
Rabi oscillations demonstrate that the transition between the two 
hybrid modes forms a classical two-level system, in contrast to 
the modes themselves, which can be modelled as highly populated 
harmonic oscillators. 

ln principle, the decay of these oscillations is governed by 
both energy relaxation, characterized by a rate 1/ Tt. and phase 
decoherence, characterized by l / T2 or 1/ T{, where T; ~ T2 
includes reversible processes caused by slow fluctuations or spatial 
inhomogeneity of the coupling. For clarity, we use these well-known 
phenomenological constants in the same way as, for example, in 
spin systems3, as discussed in detail in Supplementary Section Sl. 

The exponential decay of a state's energy defines T1• The 
corresponding measurement is shown in Fig. 3 for both the lower 
and upper state: the system is once again prepared in the lower 
hybrid state. To reach the upper state, a subsequent n-pulse is 
applied, thus performing one half of a Rabi cycle, which transfers 
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Figure 3 I Energy relaxation. a, Pulse scheme. The system is adiabatically 
tuned from the initialization to the lower state. An additional n-pulse is 
used to rotate it to the upper state. b, Measured exponential decay of the 
lower (data shown in green; fit in dark green) and upper (data indicated in 
blue; fit in dark blue) state. The Bloch sphere in the inset shows the state of 
the Bloch vector at selected times, which are marked in the same colour 
in a. 

the system to the upper state (Supplementary Section SIT for details 
on the frequency and amplitude calibration of the applied pulses). 
The exponential decay is then measured directly with a spectrum 
analyser at a bandwidth of 3kHz, exhibiting different relaxation 
times Tt,t = 4.83 ± 0.1 ms and Tt,u = 4.02 ± 0.1 ms for the lower 
and upper mode, respectively. They correspond to the spectrally 
measured quality factors. Previously, it has been shown that, at 
maximum coupling, the two hybrid modes should have the same 
quality factor and thus T1 time10• However, both modes are affected 
by dielectric damping22 (Supplementary Section SIB), leading to 
the observed difference. 

To measure the T{ time, a rt:/ 2-pulse is used after the preparation 
in the lower state to bring the system into a superposition state 
between the lower and upper hybrid modes. The frequency of the 
pulse is de tuned to Q +500Hz, leading to a slow precession of the 
state vector around the z axis of the Bloch sphere3

•
12

• As a result, a 
second rc /2-pulse after time ~ does not always bring the system into 
the upper state, but a slow oscillation, the so-called Ramsey fringes, 
is observed when the delay~ between the two pulses is varied and the 
z -projection of the state vector is measured after the second pulse, as 
shown in Fig. 4. The decay constant of this oscillation is T; , whereas 
the decay of the mean value can be interpreted as an effective T1 of 
both modes. The fit in Fig. 4b results in T; = 4.44±0.1 ms and T1 = 
4.31 ± 0.1 ms. The energy relaxation time of the superposition state 
T1 is identical to the reciprocal rate average of the two hybrid modes 

- ( 1 1 )-! T1 = 2 - + - = 4.39ms 
Tt,t Tt,u 

as the mechanical energy oscillates between the two modes with 
frequency Q (Supplementary Movie). 

By including an additional re-pulse at ~ / 2 into the Ramsey 
pulse scheme and replacing the finalrc/ 2-pulse by a 3rc/ 2-pulse to 
once again rotate to the upper state (Fig. 5), the T2 time can be 
measured in a Hahn echo experiment3

•
13

• The 180° rotation flips 
the state vector in the xy-plane of the Bloch sphere, thus reversing 
the effects of a fluctuating or inhomogeneous coupling strength Q 

in the second delay interval of ~ / 2 and thereby cancelling their 
contribution. The frequency of the pulses is once again exactly 
D, as all three pulses need to be applied exactly around the same 
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Figure 41 Ramsey fringes. a , Pulse scheme. The system is adiabatically 
tuned from the initialization to the lower state. A n/ 2-pulse creates a 
superposition state, and after a delay • a second n/ 2-pulse is applied. 
b, A 500Hz detuning between the drive and precession frequency leads to 
a slow rotation of the superposition state in the equator plane of the Bloch 
sphere, giving rise to a beating pattern in the measured z component after 
the second pulse (data shown in dark blue; fit in red) . The Bloch sphere in 
the inset shows the state of the Bloch vector at selected times, which are 
marked in the same colour in a. 
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Figure 5 I Hahn echo. a, Pulse scheme. The system is adiabatically tuned 
from the initialization to the lower state. A n/2-pulse creates a 
superposition state, and after a delay of • / 2 a n-pulse mirrors the state 
vector to the other half of the Bloch sphere. After another delay of • / 2, a 
3n/ 2-pulse is used to rotate to the upper state. b, The inverse evolution of 
the system during the two delay t imes cancels out any broadening or slow 
precession effects, thus the system always ends up along the z axis and no 
oscillation is observed (data shown in dark blue; fit in red). The Bloch 
sphere in the inset shows the state of the Bloch vector at selected t imes, 
which are marked in the same colour in a . 

axis. The resulting decay curve represents T2, for which a value of 
T2 = 4.35±0.1 ms can be extracted from the fit in Fig. Sb. 

The good agreement between T2 and T; clearly shows that 
reversible elastic dephasing, for example caused by temporal and 
spatial enviromental fluctuations or spatial inhomogeneities, does 
not noticeably increase decoherence. The experiment is performed 
with the two hybrid modes occupied by billions of phonons, 
making it analogous to a many-spin NMR measurement, only 
that the macroscopic magnetization is replaced by the mode 
polarization and a single spin flip corresponds to the transfer of 
a single phonon between the two modes. But in contrast to the 

NMR system, here all quasi-particles reside in the same collective 
mechanical mode and thus experience an identical environment 
(Supplementary Section Sill). 

It is more surprising that the phase coherence time T2 is 
equal to the average energy relaxation time T1• This indicates the 
absence of measurable elastic phase relaxation processes in the 
nanomechanical system, such that the observed loss of coherence is 
essentially caused by the energy decay of the mechanical oscillation 
(Supplementary Section Sill). Earlier research20 suggests that 
the dominant relaxation mechanism in silicon nitride strings is 
mediated by localized defect states of the amorphous resonator 
material, described as two-level systems at low temperature. They 
facilitate energy relaxation by providing the momentum required to 
transform a resonator phonon into a bulk phonon. For this process 
to lead to elastic phase relaxation, an excited defect state would 
have to re-emit the phonon back into the resonator mode, which is 
extremely unlikely owing to the weak coupling between the two. 

In conclusion, we demonstrate coherent electrical control of a 
strongly coupled (.Q » f JQ) classical nanomechanical two-level 
system, employing the pulse techniques well-known from coherent 
spin dynamics in the field of nanomechanics. Each superposition 
state of the two hybrid modes on the Bloch sphere can be addressed 
by a sequence of the described pulses. The presented system 
stands out by the finding that the elastic phase relaxation rate 
r <P is negligible compared with the energy decay rate 2nf/Q, 
leaving room for improvement of the coherence by means of 
increased quality factors. 

The coherent manipulation schemes presented here allow the 
simulation of quantum systems using a classical two-level system2 • 

Furthermore, in light of the recent breakthrough in ground-state 
cooling of nanomechanical resonators2>-26 , they can be directly 
transferred to quantum nanomechanical systems, where they open 
up new applications in quantum information processing. Not only 
can they be used as efficient interfaces for quantum state transfers 
in hybrid quantum systems27•28, but by creating coupled, quantized 
resonators29 quantum computations can be carried out directly 
using nanoelectromechanical two-level systems30 • 
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