Poly(ADP-ribose): PARadigms and PARadoxes

Alexander Bürklea,*, László Virág\textsuperscript{b,c,*}

aDepartment of Biology, University of Konstanz, Konstanz, Germany
bDepartment of Medical Chemistry, Medical and Health Science Center, University of Debrecen, Debrecen, Hungary
cMTA DE Cell Biology and Signaling Research Group, Debrecen, Hungary

Keywords:
Poly(ADP-ribose) polymerase
Poly(ADP-ribose) glycohydrolase
Cell death
Necrosis
Apoptosis
DNA repair
Transcription
Chromatin structure
Mitochondria
Calcium
Signalization
Kinase

A B S T R A C T

Poly(ADP ribosyl)ation (PARylation) is a posttranslational protein modification (PTM) catalyzed by members of the poly(ADP ribose) polymerase (PARP) enzyme family. PARPs use NAD+ as substrate and upon cleaving off nicotinamide they transfer the ADP ribosyl moiety covalently to suitable acceptor proteins and elongate the chain by adding further ADP ribose units to create a branched polymer, termed poly(ADP ribose) (PAR), which is rapidly degraded by poly(ADP ribose) glycohydrolase (PARG) and ADP ribosylhydrolase 3 (ARH3). In recent years several key discoveries changed the way we look at the biological roles and mode of operation of PARylation. These paradigm shifts include but are not limited to (1) a single PARP enzyme expanding to a PARP family; (2) DNA break dependent activation extended to several other DNA dependent and independent PARP activation mechanisms; (3) one molecular mechanism (covalent PARylation of target proteins) underlying the biological effect of PARPs is now complemented by several other mechanisms such as protein-protein interactions, PAR signaling, modulation of NAD+ pools and (4) one principal biological role in DNA damage sensing expanded to numerous, diverse biological functions identifying PARP 1 as a real moonlighting protein. Here we review the most important paradigm shifts in PARylation research and also highlight some of the many controversial issues (or paradoxes) of the field such as (1) the mostly synergistic and not antagonistic biological effects of PARP 1 and PARG; (2) mitochondrial PARylation and PAR decomposition, (3) the crosstalk between PARylation and signaling pathways (protein kinases, phosphatases, calcium) and the (4) divergent roles of PARP/PARylation in longevity and in age related diseases.

Contents

1. Introduction to PARylation, historical overview .. 1047
2. Paradigm shifts in PARP research ... 1047
 2.1. Old paradigm #1: there is one PARP enzyme. New paradigm: PARP 1 is one of the many members of the PARP family. But are all these newcomers bona fide PARP enzymes? 1047
 2.2. Old paradigm #2: DNA breaks activate PARP. New paradigm: special DNA structures and PTM can also activate PARP in the absence of DNA damage 1048
 2.3. Old paradigm #3: PARP acts by covalently modifying target proteins and changing their physicochemical properties. New paradigm: Complex mechanisms such as protein-protein interactions, free PAR signaling, or changes in NAD+ levels underlie the biological roles of PARPs 1048

* Corresponding authors. Address: Department of Biology, University of Konstanz, D-78457 Konstanz, Germany, Tel.: +49 7531 88 4034; fax: +49 7531 88 4033 (A. Bürkle), Department of Medical Chemistry, Medical and Health Science Center, University of Debrecen, Nagyerdeikert 98, H-4032 Debrecen, Hungary, Tel.: +36 52 412 345; fax: +36 52 412 566 (L. Virág)

E-mail addresses: alexander.buerkle@uni-konstanz.de (A. Bürkle), lvirag@med.unideb.hu (L. Virág).
2. Paradigm shifts in PARP research

2.1. Old paradigm #1: there is one PARP enzyme.
New paradigm: PARP is one of the many members of the PARP family. But are all these newcomers bona fide PARP enzymes?

Purification of the major enzymatic activity that produced PAR yielded a ~116 kD protein, which was termed ADP ribosyltransferase (ADPRT) or poly(ADP ribose) synthetase (PARS) or poly(ADP ribose) polymerase (PARP) [EC 2.4.2.30]. This clear protein is highly conserved and constitutively expressed. It is catalytically active as a dimer and is the major acceptor protein in intact cells, via automodification. It displays a characteristic three domain structure, which can be further broken by digestion with proteases. The C-terminal domain, which contains the active site, is highly conserved in PARP family members (Figure 2).

The crystal structure of PARP 1 (Langelier et al., 2012; Ruf et al., 1996, 1998) followed by a more comprehensive coverage of the crystal structure of PARP 1 (Langelier et al., 2012) has provided insights into the mechanisms of DNA damage response and repair by PARP family members. The structure of PARP 1 reveals a novel architecture consisting of three domains: (1) an N-terminal DNA binding domain, (2) a C-terminal catalytic domain, and (3) an intermediate domain that connects the two domains. The DNA binding domain is responsible for the recognition of DNA damage sites, while the catalytic domain contains the active site for the synthesis of PAR. The intermediate domain is thought to be involved in the regulation of PARP activity.

Our review is built around important paradigm shifts/milestones of the field and also highlights controversial issues (“paradoxes”).
down into 8 modules (Hottiger et al., 2010). The N terminal 42 kDa DNA binding domain (DBD) of this enzyme binds to single or double strand breaks with high affinity via two zinc fingers, which leads to an immediate, massive stimulation of enzyme activity. In the absence of DNA breaks, PARP displays a very low basal enzyme activity. This is the reason for the massive formation of PAR by living cells immediately upon exposure to DNA damaging agents such as ionizing radiation, alkylating agents and oxidants.

Molecular cloning led to the chromosomal mapping of the respective gene to human chromosome 1q41 q42. Parp 1 knockout mice were independently established by three different groups and proved viable and fertile but did show a number of phenotypes. Surprisingly, cells from such mice did display residual PAR formation upon genotoxic treatment (Shieh et al., 1998). This was the basis for the search of additional proteins capable of catalyzing the formation of PAR. Meanwhile this search has led to a total of six human genes encoding proteins with proven capability to produce PAR (PARPs 1, 2, and 3, vPARP, tankyrases 1 and 2) plus another 12 genes that share the “PARP signature” sequence, yet appear to transfer only a single ADP ribosyl residue onto target proteins. Recently a new, unifying nomenclature (ARTD1 through 18) was proposed for the members of this gene family (Hottiger et al., 2010). It may well be that this set of 18 human genes encode an even larger number of polypeptides as a result of alternative promoter usage or splicing.

2.2. Old paradigm #2: DNA breaks activate PARP.

New paradigm: special DNA structures and PTM can also activate PARP in the absence of DNA damage

The “central dogma” of PARylation states that PARP 1 is activated by DNA damage. Indeed, reactive oxygen and nitrogen species (ROS and RNS, respectively) and DNA alkylating agents have been used extensively to trigger PAR synthesis in various cellular models. Whereas ROS and RNS can break DNA strands directly, alkylating agents such as MNNG and MNU methylate DNA bases, the repair of which involves glycosylases that remove altered bases leaving behind apurinic sites triggering the activation of APE (apurinic endonuclease) that creates a PARP activating nick in the DNA. An interesting twist in this story of DNA break inducible PARP activation was the discovery that DNA breaks generated by topoisomerase IIRi may also serve as activator of PARP 1 and serve as underlying mechanism for the transcription regulatory role of PARylation e.g. in nuclear receptor mediated transcription (Ju et al., 2006). In this paper Ju et al. demonstrated that in MCF7 cells, 17β estradiol treatment lead to depletion of proteins of the PARP 1 co repressor complex (HSP70, nucleolin, nucleophosmin) from and recruitment of PARP 1 (along with topoisomerase IIRi and members of DNA double strand break repair such as DNA PK, Ku86 and Ku70) to the promoter of the estrogen inducible protein pS2. Moreover, topoisomerase IIRi mediated DNA double strand breaks were surprisingly identified as the trigger for PARP activation in this model which appears to be a rather general mechanism as it has also been confirmed to be relevant in androgen receptor, retinoic acid receptor, thyroid receptor and activating protein 1 dependent transcriptional activation (Ju et al., 2006).

Several lines of evidence indicate that PARP 1 may also be activated in the absence of DNA breakage. For example special non B DNA structures such as bent, cruciform DNA or stably unpaired DNA regions have been described as stimulators of receptor, thyroid receptor and activating protein 1 dependent transcriptional activation (Ju et al., 2006). Although the nature of these interactions is complex, it often involves a kinase phosphorylating PARP 1, which leads to its activation. Variations to this theme include (1) direct protein protein interaction between PARP 1 and a pre phosphorylated topoisomerase IIRi may also serve as activator of PARP 1 and serve as underlying mechanism for the transcription regulatory role of PARylation e.g. in nuclear receptor mediated transcription (Ju et al., 2006) and (2) kinase mediated inhibition of PARP 1 (e.g. in the case of PKC) (Bauer et al., 1992; Hegedus et al., 2008; Tanaka et al., 1987). These “alternative” PARP activation mechanisms have been implicated in transcriptional regulation and cell death.

DNA damage and PTM may also synergistically activate PARP 1. Mao et al. (2011) have shown that the role of SIRT6 in double strand break repair requires interaction between SIRT6 and PARP 1. SIRT6 was shown to activate PARP 1 by mono ADP ribosylating it in position Lys521 whereas the deacetylation activity of SIRT6 was dispensable for PARP activation. The multilevel cross talk between Sirtuins and PARP 1 are discussed in detail in (Canto et al., 2013). Mono ADP ribosylation of PARP 1 may not be an isolated activation mechanism as PARP 3 has also been shown to activate PARP 1 by mono ADP ribosylation in the absence of DNA (Loseva et al., 2010).

Not only the activity but also protein protein interactions of PARP 1 may be regulated by PTMs. Hassa et al. (Haenni et al., 2008; Hassa et al., 2005) have shown for example that acetylation of PARP 1 by p300/CREB was required for the NF κB co activator function of PARP 1. This effect has previously been proven to be independent of the DNA binding and enzymatic functions of PARP 1 (Hassa et al., 2001). Later PARP 2 also joined the cast of PARPs undergoing acetylation as Haenni et al. (2008) demonstrated that it is a substrate for the histone acetyltransferases PCAF and GCN5L, and acetylation resulted in reduced DNA binding and consequently decreased activity of PARP 2.

2.3. Old paradigm #3: PARP acts by covalently modifying target proteins and changing their physicochemical properties.

New paradigm: Complex mechanisms such as protein protein interactions, free PAR signaling, or changes in NAD+ levels underlie the biological roles of PARPs

Soon after the discovery of PAR (Chambon et al., 1963; Nishizuka et al., 1967; Sugimura et al., 1967) it was recognized that PARylation is a posttranslational modification of proteins (Nishizuka et al., 1968) and a conspicuous number of covalently
modified target proteins (acceptor proteins) have been identified. It was therefore obvious to assume that covalent PARylation of a given acceptor protein primarily should affect the physicochemical properties of this protein, similar to the effects of many other posttranslational modifications, such as phosphorylation. It was intriguing, however, to note that the most abundant acceptor protein for PARylation found under conditions of DNA damage was PARP1 itself, via "automodification". An other important observation was the non covalent binding of selected proteins to free ADP-ribose chains (Panzeter et al., 1992; Sauermann and Wesierska Gadek, 1986). Later on, the first PAR binding motif was identified, which comprised several hydrophobic and basic amino acids in a distinct order and with distinct spacing (Fleschke et al., 2000). In more recent work the binding affinity of PAR of defined chain length could be determined and the results indicated an overall higher binding affinity for longer chains, but also a strong dependence of binding affinity on the specific binding protein studied. Maximal binding affinity proved to be very high, with K_0 values in the low nanomolar range. (Fahrer et al., 2007; Fahrer et al., 2010; Kappes et al., 2008; Popp et al., in press). In recent years, two additional PAR binding motifs were discovered, i.e. a PAR binding zinc finger motif (Ahel et al., 2008) and a histone macrodomain (Timinszky et al., 2009). Viewed together, PARylation emerges as a generic cellular mechanism for informing a large number of specific proteins via non covalent interaction, leading to the recruitment of the protein to a specific site (e.g. the site of a DNA strand break sensed by PARP1) or changes in its functional status. In view of the rapid turnover of PAR in living cells, this mechanism appears highly versatile, as it can be switched on or off very rapidly.

But apart from being covalently attached to PARPs, free PAR can also serve as an important intracellular signaling molecule. This has been exemplified by the discovery of cell death induced by free PAR triggering the release of apoptosis inducing factor from mitochondria (see Section 3.1) (Andrabi et al., 2006; Wang et al., 2011; Yu et al., 2002, 2006). It should be noted that under certain circumstances (e.g. massive DNA damage), a cellular consequence of PARP activity is not only the formation of PAR, but also a significant consumption of its substrate, NAD+. It was originally proposed by Berger et al. that under extreme conditions the depletion of cellular NAD+ may even lead to cells death (Berger et al., 1983) and subsequent work by many groups has shown that PARP inhibitors or PARP1 gene knockout or knockdown indeed can prevent

![Diagram](Image)

Fig. 1. "Layers" of PARylation. PARPs can be activated by DNA breaks or by alternative mechanisms such as phosphorylation. At the molecular level, downstream events of PARP signaling involve either covalent PARylation of substrates, protein-protein interaction between PARPs and partner proteins, non-covalent binding of PAR polymer to proteins bearing a PAR-binding motif and lowering of cellular NAD+/ATP levels. Via these pathways PARP PARylation regulates various machineries such as replication, transcription, DNA repair, metabolism mediating various cellular phenomena such as proliferation, differentiation, senescence and cell death.
PARylation started its “career” as a DNA damage responsive protein modification reaction that is required for the efficient repair of DNA breaks. By now a substantial amount of data has accumulated to change our view on the biological function(s) of PARylation. On the one hand the high abundance of the PARP 1 protein in the nucleus permits its immediate response to DNA damage while on the other hand it also calls out for “alternative” functions in order for the cells to economically utilize this valuable resource even in the absence of DNA damage. As we have learned more and more about these “alternative” functions, they often turned out to be as fundamental as the role of PARylation in DNA repair.

For example, PARP 1 is now recognized as an integral part of the chromatin. Kraus’s group has elegantly demonstrated in Drosophila polytene chromosomes (Kim et al., 2004) that PARP 1 and H1 localize to distinct and non-overlapping chromatin regions. They also observed that PARP 1 localized to the less compact regions whereas H1 was present in the compact chromatin areas. The same group has later demonstrated a reciprocal binding of PARP 1 and histone H1 at promoters in a mammalian cell genome and showed that PARP 1 was enriched and H1 was depleted at RNA polymerase II-transcribed promoters (Krishnakumar et al., 2008). Moreover, this study provided evidence that PARP 1 actively excluded H1 from chromatin and further confirmed the role of PARylation in transcription coupled regulation of chromatin structure.

The complex role of PARylation in the regulation of transcription goes beyond its contribution to chromatin remodeling. PARP 1 has been shown to regulate the effect of a large number of transcription factors. The molecular mechanism of these effects is largely unknown but for some transcription factors it has been characterized in more detail (Kraus and Hottiger, 2013). In the case of NFκB, a protein-protein interaction between PARP 1 and the transcription factor appears to underlie the NFκB co-activator function of PARP 1. Interestingly this effect did not require the DNA binding or the enzyme activity of PARP 1 (Hassa et al., 2001). Recently data from a genome wide mapping also pointed out that on some promoters the regulatory role of PARP did whereas on others it did not require enzyme activity (Frizzell et al., 2009).

The regulatory roles of PARP 1 and PARylation, however, are not limited to chromatin organization and transcription (see also Kraus and Hottiger, 2013), although these should also be regarded as fundamental roles. Replication, telomere maintenance, metabolism, cell fates should also be added to the continuously growing “to do list” of PARP 1/PARylation as covered in the reviews following this introductory paper.

In the light of the plethora of diverse biological functions now assigned to PARylation we should revise our view on what we consider a “fundamental” or “primary” role of PARylation and what we consider an “accessory” or “secondary” role. It seems that PARP 1 is a prototypical moonlighting protein that has acquired multiple cellular functions during evolution. Filling these multiple tasks is made possible by its enzyme activities, protein-protein interactions with partner proteins and posttranslational modifications (e.g. phosphorylation, acetylation, ADP ribosylation). Considering multifunctionality of enzymes as a norm rather than an exception from the rule (Jeffery, 2003) may relieve the pain one feels when trying to prioritize protein functions and may help us accept it as one of the miracles of evolution.

3. Paradoxes

Several aspects of PARylation are highly controversial and the often opposing biological functions assigned to it are difficult to reconcile. Here we highlight four such areas:

(A) How is it possible that PARylation as a cell survival mechanism can also mediate cell death?
(B) While PARP 1 and PARG represent opposite arms (synthesis and degradation) of the PARylation cycle, they often show similar and only rarely divergent biological effects.
(C) While PARP appears to be in the center of a bidirectional nuclear mitochondrial crosstalk, there is a considerable controversy regarding the existence and identity of mitochondrial PAR synthesizing and degrading activities.
(D) Divergent roles of PARP/PARylation in longevity and in age related diseases.

3.1. Cytoprotective versus cytotoxic roles of PARylation

One of the most intriguing and controversial issue in PARylation research is the complex role of PARP enzymes and PARylation in cell death regulation. On the one hand PARylation is known as a survival enhancing mechanism assisting the recovery in cell death regulation. On the one hand PARylation is known as a survival enhancing mechanism assisting the reconstruction of cell death regulation.
ery of cells from DNA damage induced injury. On the other hand excessive PARylation cycles or certain PAR dependent pathways may signal cell death in a complex, cell type and stimulus dependent manner.

3.1.1. Cytoprotective role

PARP 1, 2 and 3 are DNA damage sensitive members of the PARP family. Whereas the role of PARP 1 (and recently also that of PARP 2) in DNA damage signaling has been extensively documented (De Vos et al., 2012) (see Robert et al., 2013), the role of PARP 3 is less well characterized. PARP 1 and 2 are activated by DNA strand breaks caused e.g. by reactive oxygen or nitrogen species (ROS and RNS, respectively) or by base excision repair (BER) mechanisms introducing breaks into DNA at sites of alkylation. The ADP ribose polymer synthesized by PARPs in response to DNA injury serves as a “flag” marking the sites of DNA damage and assisting the recruitment of further DNA repair adaptor and effector proteins (De Vos et al., 2012). Efficient DNA repair is required for the survival of injured cells and thus inhibition of PARylation may impair the viability of cells that suffered DNA damage. Indeed a large number of studies have demonstrated that inhibition of PARP activity or knocking out/silencing PARP 1 may sensitize cells to the cytotoxic effects of ionizing radiation or DNA damaging agents such as DNA alkylators, cisplatin and topoisomerase poisons (De Vos et al., 2012) (see also Curtin and Szabó, 2013). A successful series of clinical trials proved the feasibility of the use of PARP inhibitors as adjuvant chemotherapeutic agents for the treatment of cancer. Moreover, PARP inhibition may also work in monotherapy if tumor cells are defective in “backup” DNA repair mechanism (homologous recombination). This type of synthetic lethality is the basis for PARP inhibitor monotherapy of BRCA 1/2 deficient breast or ovarian cancers (see also Curtin and Szabó, 2013). Homologous recombination defects are not restricted to BRCA mutations but the “BRCA deficiency like” phenotype they cause may also sensitize cells to PARP inhibition, e.g. one in four sporadic breast cancers may be deficient in homologous recombination repair and thus be amenable for PARP inhibitor monotherapy.

3.1.2. Cytotoxic role

While PARylation may promote cell survival via assisting repair of DNA breaks, it may also be the mediator of cell death under certain conditions. An important challenge of PARylation research is to understand this dual role of PARPs and PARG in the regulation of cell death. Most cell biologists associate PARP 1 with apoptosis as in the 1990s this enzyme has become known as the first identified “death substrate” of caspases, the central executors of apoptosis (Lazebnik et al., 1994). In addition to this passive role of PARP 1, its active role in cell death appears to be more complex and more challenging to understand. As early as in 1983 Nathan Berger reported that cells treated with high levels of DNA damaging agents exhibit NAD+ and ATP depletion and a “marked impairment in their ability to conduct energy dependent functions” (Berger et al., 1983). The use of PARP inhibitors prevented the depletion of NAD+ and ATP and partially restored the cells’ ability to carry out DNA, RNA, and protein synthesis. The existence of the PARP mediated cytotoxic pathway has later been demonstrated by many laboratories in a diverse set of cell death models. Later Virág et al. (Virág et al., 1998a, 1998b) and others have shown that the mode of DNA damage induced cell death mediated by PARP 1 is necrosis as supported by the morphology of the cells and by permeabilization of the plasma membrane. PARP inhibitors or the PARP 1 knockout phenotype suppress necrosis and increased apoptosis, suggesting that PARP 1 acts as a molecular switch between apoptotic and necrotic cell death subroutines. An important observation was the discovery that PAR may leave the nucleus and trigger the release of apoptosis inducing factor (AIF) from mitochondria, thus mediating caspase independent cell death termed parthanatos (Andrabi et al., 2006; Wang et al., 2011; Yu et al., 2002, 2006). In contrast to its name, AIF is now increasingly recognized as a necrotic rather than an apoptotic mediator (Boujrad et al., 2007) providing further support for the necrotic role of PARylation.

An important question is what determines whether PARP 1 acts as a survival or a cytotoxic factor? It was proposed, and may be true for most cellular models of DNA damage induced cell death, that the severity of DNA damage is a key factor, with mild insults triggering apoptosis and severe ones inducing necrosis (Virág and Szabo, 2002). Moreover, stimulus and cell type dependent differences have also been found to determine the role of PARylation in cell death (Virág and Szabo, 2002) (see also Virág et al., 2013). Nonetheless, some questions regarding the exact mechanism of PARylation dependent cell death remain unanswered, including the following ones: (a) Is parthanatos the only PAR dependent cell death mechanism? (b) If other, non AIF mediated death pathways are also triggered by PARylation, then what are the molecular determinants of death pathway selection? (c) What is the role of NAD+/ATP depletion and metabolic reprogramming in parthanatos? (d) What is the activator of PAR synthesis in non DNA damage induced cell death? These and further questions will keep PARylation scientists busy for the years to come.

3.2. Similar rather than antagonistic roles of PAR synthesis and PAR degradation

For decades, PARylation research has been dominated by studies on PAR synthesis by PARP 1 whereas investigation of PAR degradation was largely neglected. Although PARG was discovered 40 years ago (Miwa and Sugimura, 1971; Ueda et al., 1972), its low abundance, high sensitivity to degradation and lack of specific and cell permeable inhibitors rendered the research on this enzyme rather difficult. According to our current knowledge, PARG exists in multiple isoforms resulting from alternative splicing and alternative translation initiation (Min and Wang, 2009). Only the full length (111 kDa) isoform localizes to the nucleus, whereas the others localize to the cytoplasm or the mitochondria. The PARG isoforms, however, may relocate under stress conditions (Haince et al., 2006). Interestingly, whereas PARP 1 deficient mice are viable and fertile,
knocking out all PARG isoforms proved embryonic lethal (Koh et al., 2004). Our current understanding of the biological roles of PARG is mostly based on gene silencing studies and from data obtained from mice, in which only full length (111 kDa) PARG was missing.

Similar to protein kinases and phosphatases adding and removing phosphate groups to proteins for regulation, PARPs and PARG also represent two “antagonistic” sides of poly(ADP ribose) metabolism and were thus expected to exert opposite biological effects. In the kinase-phosphatase paradigm several studies report opposing biological effects for kinase-phosphatase pairs. For example, MAP kinase phosphatase 2 rescues cells from c-Jun N-terminal kinase mediated apoptosis, induced by genotoxic stress (Cadabalbert et al., 2005). Moreover, the protein phosphatase PTPIB suppressed transcriptional activation induced by p210 bcr abl, the protein tyrosine kinase responsible for the initial manifestations of chronic myelogenous leukemia (LaMontagne et al., 1998).

By analogy, PARPs and PARG may also be assumed to mediate biological phenomena in opposite direction. In contrast, however, it appears that in most cellular models studied so far, PARP 1 and PARG in concert, rather than opposing each other’s effects. Gene silencing studies have revealed that both PARP 1 and PARG are required for efficient DNA repair (Erdelyi et al., 2009; Fisher et al., 2007; Keil et al., 2006), as it could be shown that knockdown of either PARP 1 or PARG sensitizes cells to apoptotic cell death following DNA damage. Moreover, necrotic death triggered by severe genotoxic stimuli could be inhibited either by silencing PARP 1 or PARG (Erdelyi et al., 2009). Furthermore, synthetic lethality between homologous recombination defects and either PARP 1 or PARG knockout has also been reported (Fathers et al., 2012). These data support a model in which both PAR synthesis and degradation are necessary for efficient repair of DNA breaks and for cell survival. Data obtained from PARG111/− cells also recapitulated several previous findings of PARP 1 inhibition/knockout studies: defects in DNA repair, genomic instability (sister chromatid exchange, micronuclei) and chromosomal aberrations (aneuploidy, chromosomal fragments/breaks and fusion) (Min et al., 2010). PARG111 knockout mice are hypersensitive to ionizing radiation and alkylating agents (Cortes et al., 2004) just like PARP 1−/− mice.

Similarly to cell death regulation, expression of hundreds of genes were found to be coordinately regulated by PARP 1 and PARG with both enzymes co-localizing to target promoters and acting in a similar, rather than antagonistic manner to constrain the regulation of global expression patterns (Frizzell et al., 2009). Comparison of in vivo data obtained from experiments with PARP1−/− mice are slightly more controversial. Whereas PARP deficiency/inhibition provides protection from all oxidative stress related pathologies such as different forms of inflammation, diabetes, diabetic complications (vasculopathy, neuropathy, retinopathy), ischemia reperfusion injuries of the heart, brain and splanchnic areas (Virág and Szabo, 2002), PARG111/− mice were more susceptible to streptozotocin induced diabetes, endotoxin shock (Cortes et al., 2004) and postischemic brain damage (Cozzi et al., 2006). However, these mice were protected from renal ischemia reperfusion injury (Patel et al., 2005) and from splanchnic artery occlusion and reperfusion (Cuzzocrea et al., 2005). These data may indicate that the role played by PARylation in various in vivo conditions may not be explained by a uniform mechanism and may suggest model-specific pathways differentially regulated by PARP 1 and PARG or PAR synthesis and degradation. Whereas in the case of PARP 1, inhibitor studies and gene knockout studies demonstrated similar biological effects, in the case of PARG it may be too early to compare the effects of PARG inhibition with PARG knockout. On the one hand PARG inhibitors have not yet been extensively characterized in terms of specificity and off target effects, while on the other hand the embryonic lethality of PARG knockout animals also precludes such comparisons. Thus it is not clear at the moment, which biological effects of PARG are mediated by its enzymatic effects and which are not. (Of note, PARP 1 has been shown to mediate certain effects such as NFκB co-activation via protein-protein interaction without the need of enzymatic activity (Hassa et al., 2001)). In the light of the above, it may be important to decipher how to model the often similar and sometimes opposing effects of PARP 1 and PARG.

Some of these controversies may be resolved with the help of the kinase-phosphatase analogy (Fig. 2). In scenario 1, modulating target proteins by the attachment of phosphate group/PAR polymer switches the function of the substrate on or off, whereas removal of the phosphate/PAR tag by a phosphatase/PARG may reverse the biological effect. In this case the kinase/phosphatase or PAR/PARG pairs may mediate opposite responses. In scenario 2, kinases and PARP 1 can also autoregulate themselves leading to propagation of a signaling cascade or auto inhibition of the kinase or PARP 1. (Note: such inhibitory autophosphorylation has been reported for several kinase-phosphatase pairs such as casein kinase + many Ser/Thr specific phosphatases, jun N terminal kinase + MAP kinase phosphatase 2, cyclin B cyclin dependent kinase + cdcd25C phosphatase, src kinases + CD45 phosphatase (Cadabalbert et al., 2005; Gietzen and Virshup, 1999; Plas and Thomas, 1998; Sebastian et al., 1993).) For PARP 1, auto PARylation is thought to result in auto inhibition, which does not necessarily mean inhibition of enzyme activity as it may simply result in detachment of PARP 1 from the activating DNA break. Third, unlike for kinases and phosphatases, in the case of PARPs and PARG, the biological role of the cleaved tag (PAR polymers, oligomers or ADP-ribose) should also be considered. Thus some effects of PARP inhibition/knockdown/knockout may be attributed to inhibition of free PAR signaling.

3.3. PARylation and mitochondria

One of the most intriguing issues in PARylation research is its role in the functional interplay between the nucleus and mitochondria. The controversial nature of this connection is best exemplified by the current situation where the presence of PAR degrading enzymes and activities in the mitochondria appears to be well established but the presence and/or activity
of mitochondrial PAR synthesizing enzymes is debated and remains elusive. Here we present some recent developments
around this controversial area of PARylation research and draw attention to some facets that require further elucidation.

3.3.1. PAR synthesis in mitochondria?

One of the enigmas to be solved in the field is PAR synthesis in the mitochondria. Is PAR synthesized in the mitochondria?
What is the identity of mitochondrial PAR synthetase? Is the polymer synthesized in the organelle or does it simply trans
locate from other sites of PAR synthesis? If PAR synthesis takes place in mitochondria, what is its biological role? This long
list of fundamental open questions indicates that we are far from even a superficial understanding of whether and how and
why PAR is made and functions in the mitochondria.

![Fig. 2. Analogy of PARylation/dePARylation by PARP/PARG to the operation of protein kinase/phosphatase pairs. Modifying target proteins by the
attachment of phosphate group/PAR polymer switches the function of the substrate on or off, whereas removal of the phosphate/PAR tag by a phosphatase/
PARG may reverse the biological effect. In this case the kinase/phosphatase or PARP/PARG pairs may mediate opposite responses (transPARylation).
Alternatively, kinases and PARP-1 can also aut.modify themselves leading to propagation of a signaling cascade or auto-inhibition of the kinase or PARP-1
(auto-PARylation).]
Several attempts have been made to prove mitochondrial localization of PARP 1, with conflicting results (Table 1.). As early as in 1987 Masmoudi et al. (Masmoudi et al., 1988; Masmoudi and Mandel, 1987) purified mitochondrial DNA protein complexes, and an ADP ribosyltransferase (PARP) activity was found to be associated with the purified rat liver mitochondrial DNA protein complex. Predominant PAR acceptor proteins were also described and were found to range between 116 and 30 kDa. Later, immunoelectronmicroscopic investigation found a weak but clear PARP 1 signal in the mitochondria of Sertoli and HeLa cells (Masoeller et al., 1996). Moreover, in the brain of rats that suffered traumatic brain injury, both PARP 1 and PAR could be detected by dual label immunoelectronmicroscopy (Lai et al., 2008). This latter study also identified potential substrates (components of mitochondrial complexes III, IV and V) that were PARylated. Probably the most detailed study addressing the issue of mitochondrial PARylation was published by Du et al. (2003). In this paper, mitochondrial PARP 1 protein and PAR activity could be detected in the mitochondrial fractions of fibroblasts. In neurons, the pattern of PARylated proteins showed a distinct and not overlapping pattern between mitochondria and nucleus. Whereas the only PARylated protein in the nucleus was above 120 kDa (likely corresponding to autoregulated PARP 1), in the mitochondria several smaller (<40 kDa) proteins were positive for PAR. Interestingly, the PARP inhibitor INH2BP inhibited mitochondrial but not nuclear PAR formation adding further layers of complexity to the puzzle to be assembled.

Other studies, however, found PARP 1 to be exclusively localized to the nucleus (Lapucci et al., 2011; Poitras et al., 2007). PARP 1 has also been reported to contribute to the repair of mitochondrial DNA damage (Druzhyna et al., 2000; Jarrett and Boulton, 2007) possibly indicating its mitochondrial occurrence. An alternative explanation has also been put forward to explain the effect of PARylation on mitochondrial DNA repair: Lapucci et al. (2011) have reported that inhibition or knockdown of PARP 1 reduced the integrity of mitochondrial genome and suppressed the expression of nuclear genes coding for mtDNA repair factors or mitochondrial transcription factors. These findings may explain mitochondrial effects of PARylation without the need for mitochondrial localization of the enzyme. A novel solution has also been suggested to explain the controversy between lack of mitochondrial PARP 1 and mitochondrial PARylation. Pankotai et al. (2009) identified alpha ketoglutarate dehydrogenase and especially one of its subunits dihydrolipoamide dehydrogenase as proteins with PARP like activity. In this study isolated mitochondria treated with hydrogen peroxide or a nitric oxide donor compound displayed PARylation activity and several PARylated mitochondrial proteins have also been identified. Although this study awaits confirmation by other laboratories, it may open new avenues of research on non canonical PARP enzymes.

3.3.2. PAR degradation in mitochondria

Regardless of the way it may be formed, if PAR appears in the mitochondria we can rest assured that it will be degraded. Several lines of evidence suggest mitochondrial localization of PAR degrading enzymes PARG and ARH3 and PAR degrading activity has also been demonstrated.

The first surprising findings regarding the subcellular localization of PARG were published by Meyer Ficca et al. (2004) and Winstall et al. (1999) demonstrating that despite of the nuclear localization of the main PARP synthesizing enzymes PARP 1 and PARP 2, the majority of PARG showed perinuclear and cytoplasmic localization. Later Haince et al. (2006) presented data showing that PARG is mobile and can easily shuttle between the cytoplasm and the nucleus. The fraction that showed cytoplasmatic localization has been later refined to be partially mitochondrial: Meyer et al. (2007) identified two small PARG isoforms (PARG55 and PARG60 corresponding to the mouse proteins mPARG63 and mPARG58, respectively) that were targeted to the mitochondria. In addition to the small mitochondrial isoform, Niere et al. (2008) also reported mitochondrial localization of the other PAR degrading enzyme ARH3. Interestingly, a follow up study from the same group (Niere et al., 2012) demonstrated that ARH3 and not the small PARG isoform is responsible for the degradation of mitochondrial matrix associated PAR. These findings leave many questions open: what is the biological significance of ARH3 mediated PAR degradation in the mitochondria? What is the function of mitochondrial matrix associated PARG? Do mitochondrial and cytoplasmic PAR degrading enzymes shuttle between mitochondria and cytoplasm in response to nuclear or mitochondrial DNA damage? Further research is needed to clarify these issues.

3.3.3. PAR signaling to mitochondria

The first demonstration that PARP 1 activity dramatically impacts on mitochondrial function and structure was published by Virág et al. (1998a). They showed that in oxidatively stressed cells PARP 1 activation causes severe mitochondrial dysfunction as demonstrated by mitochondrial membrane depolarization, overproduction of superoxide and loss of cardiolipin content. Moreover, electron microscopic images revealed extensive destruction of mitochondrial ultrastructure (Fig. 3) further reinforcing the functional link between PARylation by PARP 1 and mitochondria. The exact nature of this connection, however, still remains to be elusive. The above mentioned discovery by Dawson’s group demonstrating that PAR released from the mitochondria induces the mitochondrial release and nuclear translocation of AIF provided an example that a PARP dependent nuclear mitochondrial crosstalk exists and mediates cell death following genotoxic stress. Later, upstream events triggering PARP 1 mediated mitochondrial dysfunction and downstream mediators have also been identified: RIP1 and TRAF mediated signaling was found to be responsible for PARP 1 mediated necrotic cell death and JNK was identified as a downstream mediator (Xu et al., 2006) (for more details see Section 3.4.2). In the mitochondria, respiratory complex I was shown to be the Achilles heel of mitochondrial electron transport chain which is most sensitive to the consequences of PARP activation, at least in a myocardial reperfusion injury model (Zhou et al., 2006). Some observations suggested that PARP 1 may be involved in the repair of mitochondrial DNA damage (Druzhyna et al., 2000; Jarrett and Boulton, 2007). However, these observations do not necessarily require PARP 1 to localize to the mitochondria as PARP 1 was identified as a
Table 1
PARylation in mitochondria. Literature data regarding mitochondrial PAR synthesis, mitochondrial PAR degradation and mitochondrial PAR signaling are summarized.

<table>
<thead>
<tr>
<th>Experimental model</th>
<th>Findings</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>PARP or PARylated proteins in mitochondria</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rat liver mitochondria</td>
<td>ADP-ribosyl transferase and NAD glycohydrolase activities in rat liver mitochondria. ART activity was not inhibited by 3-aminobenzamide or nicotinamide</td>
<td>Masmoudi and Mandel (1987)</td>
</tr>
<tr>
<td>Rat liver mitochondria</td>
<td>The ADP-ribosyl transferase activity appears to be associated with purified rat liver mitochondrial DNA protein complex. Predominant acceptor proteins ranged between 116-30 KDa</td>
<td>Masmoudi et al. (1993)</td>
</tr>
<tr>
<td>Human Sertoli cells and HeLa, immuno-electron microscopy</td>
<td>PARP immunoreactivity in mitochondria is higher than in the cytoplasm</td>
<td>Mosgoeller et al. (1996)</td>
</tr>
<tr>
<td>Primary rat cortical neuron enriched cultures fibroblasts from PARP-1 / and wild type mice</td>
<td>Detection of PARP-1 protein and PARP activity in mitochondrial fractions</td>
<td>Du et al. (2003)</td>
</tr>
<tr>
<td>Traumatic brain injury (TBI); Isolated rat liver mitochondria</td>
<td>PAR and PARP-1 were detected by dual label immuno-electron microscopy in mitochondria after TBI; MALDI MS analysis identified components of mitochondrial complexes III, IV and V as targets for PARylation; the PARP inhibitor INH2BP prevented peroxynitrite-induced inhibition of respiration (oxygen consumption) in isolated brain mitochondria</td>
<td>Lai et al. (2008)</td>
</tr>
<tr>
<td>Rat liver mitochondria</td>
<td>Treatment of mitochondria with hydrogen peroxide or the nitric oxide donor GSNO induced PARylation of mitochondrial proteins: mALDH, ATPase, CPS1 and Otc KGDH and DLDH (dihydrolipoamide dehydrogenase), a subunit of both KGDH and PDH, was found to have PARP-like activity</td>
<td>Pankotai et al. (2009)</td>
</tr>
<tr>
<td></td>
<td>Elevated PAR activity in mitochondrial fractions from PARC111 / cells</td>
<td>Cortes et al. (2004)</td>
</tr>
<tr>
<td>HEK293, MEFs from wild type and PARC111 / knockout mice</td>
<td>Small PARC-isoforms (hPARC55, bPARC60 and mPARC63 and mPARC58) localize to mitochondria and mediate mitochondrial PARG activity</td>
<td>Meyer et al. (2007)</td>
</tr>
<tr>
<td>Primary rat neuronal cultures and rat brain sections</td>
<td>PARG co-localizes with the mitochondrial proteins cytochrome c and MnSOD; nuclear translocation of PARG is dependent on PARP-1 activation</td>
<td>Poitras et al. (2007)</td>
</tr>
<tr>
<td>HEK293 cells stably transfected with mitochondrial targeted PARP-1</td>
<td>PAR degrading activity in mitochondria; both ARH3 and PARG6i is present in mitochondria; nuclear translocation of PARG is dependent on PARP-1 activation</td>
<td>Niere et al. (2008)</td>
</tr>
<tr>
<td>HeLa</td>
<td>Endogenous and overexpressed PARG localizes to mitochondria and can be detected in the mitochondrial fraction after cell fractionation; mitochondrially enriched PARG is a small isoform (55-60 kDa)</td>
<td>Whatcott et al. (2009)</td>
</tr>
<tr>
<td>MEFs expressing mitoPARPcd1 to artificially produce PAR in mitochondria</td>
<td>ARH3 but not PARG degrades PAR in mitochondria; human PARG55 is the only mitochondrial PARG but it is enzymatically inactive due to the absence of exon 5 encoded amino acids</td>
<td>Niere et al. (2012)</td>
</tr>
<tr>
<td>PAR degradation/PAR degrading enzymes in mitochondria</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Embryonal fibroblasts from PARC111 / mice</td>
<td>Elevated PARC activity in mitochondria isolated from PARC111 / cells</td>
<td>Cortes et al. (2004)</td>
</tr>
<tr>
<td>HeLa, HEK293, MEFs from wild type and PARC111 / knockout mice</td>
<td>Small PARC-isoforms (hPARC55, bPARC60 and mPARC63 and mPARC58) localize to mitochondria and mediate mitochondrial PARG activity; elevated PAR activity in mitochondrial fractions from PARC111 / cells</td>
<td>Meyer et al. (2007)</td>
</tr>
<tr>
<td>Primary rat neuronal cultures and rat brain sections</td>
<td>PARG co-localizes with the mitochondrial proteins cytochrome c and MnSOD; nuclear translocation of PARG is dependent on PARP-1 activation</td>
<td>Poitras et al. (2007)</td>
</tr>
<tr>
<td>HEK293 cells stably transfected with mitochondrial targeted PARP-1</td>
<td>PAR degrading activity in mitochondria; both ARH3 and PARG6i is present in mitochondria; nuclear translocation of PARG is dependent on PARP-1 activation</td>
<td>Niere et al. (2008)</td>
</tr>
<tr>
<td>HeLa</td>
<td>Endogenous and overexpressed PARG localizes to mitochondria and can be detected in the mitochondrial fraction after cell fractionation; mitochondrially enriched PARG is a small isoform (55-60 kDa)</td>
<td>Whatcott et al. (2009)</td>
</tr>
<tr>
<td>MEFs expressing mitoPARPcd1 to artificially produce PAR in mitochondria</td>
<td>ARH3 but not PARG degrades PAR in mitochondria; human PARG55 is the only mitochondrial PARG but it is enzymatically inactive due to the absence of exon 5 encoded amino acids</td>
<td>Niere et al. (2012)</td>
</tr>
<tr>
<td>PARylation signals to mitochondria</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Primary murine thymocytes from PARP-1 / and wild type mice</td>
<td>Hydrogen peroxide induces a PARP-1 dependent severe morphological deterioration in mitochondrial ultrastructure accompanied by mitochondrial dysfunction (mitochondrial membrane depolarization, superoxide production and loss of cardiolipin content)</td>
<td>Virag et al. (1998a)</td>
</tr>
<tr>
<td>RINr-38 pancreatic beta cell line treated with the alkylating agent methylthiourea (MNU)</td>
<td>PARP antisense inhibited the repair of MNU-induced N-methylpurines in mitochondrial DNA</td>
<td>Druzhyna et al. (2000)</td>
</tr>
<tr>
<td>MNNG-treated fibroblasts NMDA-treated neurons</td>
<td>PAR-dependent translocation of AIF from mitochondria to the nucleus mediates cell death</td>
<td>Yu et al. (2002)</td>
</tr>
<tr>
<td>isolated hearts from wild type and PARP-1 / mice</td>
<td>Ischemia reperfusion injury induces a PARP-1-mediated dysfunction of mitochondrial respiratory chain complex I</td>
<td>Zhou et al. (2006)</td>
</tr>
<tr>
<td>MEFs treated with the alkylating agent MNNG</td>
<td>RIP1/TRAF signaling is required for PARP activation which causes mitochondrial dysfunction via JNK activation</td>
<td>Xu et al. (2006)</td>
</tr>
<tr>
<td>Retinal pigment epithelial cells treated with H2O2 or the alkylating agent MMS</td>
<td>The PARP inhibitor 3-aminobenzamide lowered mitochondrial DNA lesion repair capacity</td>
<td>Jarrett and Boulton (2007)</td>
</tr>
</tbody>
</table>
transcriptional regulator of nuclear genes encoding for mitochondrial repair factors and mitochondrial transcription factors (Lapucci et al., 2011). PAR degradation may also influence mitochondrial functions. An interesting study by Formentini et al. (2009) suggested that ADP ribose generated by PARG may be further catabolized by NUDIX enzymes (NUDT5 and NUDT9) functioning as mitochondrial ADP-ribose pyrophosphatases. According to this scenario, AMP generated by these enzymes inhibits the ADP/ATP translocator resulting in mitochondrial energy failure.

An interesting question is whether signaling also occurs in the opposite direction (from mitochondria to the nucleus). The PARP dependent nuclear translocation of AIF is one nice example for mitochondria to nucleus signaling. Furthermore Kun et al. reported that PARP 1 may function as a sensor of ATP generated by oxidative phosphorylation and identified adenylate kinase as a cellular “wire” channeling ATP to the nucleus where it can inhibit PARP 1 (Kun et al., 2008). Of note ATP has previously been shown to inhibit PARP 1 with a K_i value corresponding to cellular ATP content (3 mM) indicating a physiological relevance of this observation (Kun et al., 2004).

3.4. Crosstalk between PARylation and signaling cascades

Adaptation of cells to the ever changing environment is regulated by signal transduction pathways. Common elements of these pathways are receptors (cell surface or nuclear receptors), second messengers such as calcium or cyclic nucleotides and...
PKC with PARP 1. In this early study by Tanaka et al. (1987) PARP 1 was shown to be a substrate for PKC which was later shown to converge on or at least modulate downstream kinases. The first connection between kinases and PARP 1 linked to the induction of neurogenic differentiation (Ju et al., 2004). Moreover, ILK (McPhee et al., 2008) and Txk kinases (Maruyama et al., 2007) phosphorylate PARP 1 to regulate the transcription of E-cadherin and IFN-γ, respectively. Interestingly, in the same model, PARP 1 was found to act upstream of a late, sustained elevation of cytosolic calcium “signal” indicating that not only calcium signaling activates PARP 1 but PARP 1 also regulates calcium redox transduction following intense oxidative stress (Virág et al., 1998a). Confirming these findings in a similar model of hydrogen peroxide induced cytotoxicity, Blenn et al. (2011) also identified TRPM2 as the step where PARP 1 and PARG regulate the flow of calcium from the extracellular compartment into the cytoplasm. The role of PARG is to generate ADP ribose that serves as the signal for TRPM2 activation and downstream events in oxidant induced cell death. A similar functional synergy between PARP and PARG has previously been published to account for the inhibition of ABC transporters in UVB treated cells (Dumitriu et al., 2004). These data identify (ADP ribose), as a new second messenger.

Homburg et al. (2000) provided evidence that a functional connection between calcium signal and PARP activation is not only relevant in cell death but also in the context of neuronal activation. This seminal paper placed PARP 1 into the signaling pathway mediated by PKC kinase and calcium. Neurons depolarized by KCl treatment or electric stimulation showed a calcium signal and a calcium dependent PARP activation in the absence of DNA breaks. Moreover, PKC or thapsigargin added to nuclei isolated from unstimulated neurons to mobilize calcium from intracellular stores were also capable of inducing PARP activation indicating the key role of intracellular calcium mobilization in the activation of PARP 1. Although calcium and magnesium may directly impact on PARP activity (Kun et al., 2004), the effect of calcium on PARP activation may also involve downstream signaling events such as calcium calmodulin dependent kinases. Indeed CamKII has been shown to activate PARP 1 by phosphorylation (Ju et al., 2004), a mechanism that appears to be more common than we previously thought (also see 3.4.2).

3.4.2. PARylation in kinase cascades

As discussed under Section 3.2, reversible PARylation by the concerted actions of PARPs and PARG is highly analogous to the operation of protein kinases and phosphatases. But there is more than just analogy between these two fields. Several lines of evidence (summarized in Table 2) suggest that (1) PARP 1 is regulated by phosphorylation and the effects of PARP 1 converge on or at least modulate downstream kinases. The first connection between kinases and PARP 1 linked PKC with PARP 1. In this early study by Tanaka et al. (1987) PARP 1 was shown to be a substrate for PKC which was later demonstrated by Bauer et al. (1992) to inhibit DNA binding and activation of PARP 1. The PKC activating phorbol esters were also found to cause PARP phosphorylation and to protect cells in a model of PARP activation dependent cell death (Hedegus et al., 2008) indicating that these observations may also have importance in a cellular setting. Many other kinases intimately linked to the DNA damage response such as DNA PK, ATM and ATR kinases have also been shown to interact with PARP 1. DNA PK can phosphorylate PARP 1 and PARP 1 can also activate or inhibit ATM and ATR kinases. (Binding of the negatively charged PAR polymer to ATM was suggested to be responsible for the inhibitory effect of PARP activation on the kinase.) Of note, many other kinases mediating DNA repair (CDK3, MAPK12, PLK3, P53, STK22c and STK36) have also been shown to be synthetic lethal in combination with PARP inhibition indicating that the repair pathway they are involved in is distinct from and complementary to the one mediated by PARylation (Turner et al., 2008). This latter situation does not imply direct inter action between the kinases and PARP 1.

Kinase PARP interactions have also been implicated in biological phenomena distinct from DNA damage repair. For example CamKII has been shown to activate PARP 1 by phosphorylation which is a crucial event in the transcriptional regulation of neurogenic differentiation (Ju et al., 2004). Moreover, ILK (McPhee et al., 2008) and Txk kinases (Maruyama et al., 2007) phosphorylate PARP 1 to regulate the transcription of E-cadherin and IFN-γ, respectively. Furthermore, kinase PARP interactions have been shown to underlie regulations of additional cellular processes such as cell death (RIP kinase, JNK, Erk, p38, Akt) and FGF induced neuronal differentiation of embryonal stem cells (Erk) (see Table 2 for references). However, the exact molecular mechanisms of the kinase PARP crosstalk in these and other conditions is not always known. Further systematic investigations such as the one by Gagne et al. (2009) combining in vitro kinase assays with mapping and verification of phosphorylation sites and with cell based systems to verify biological relevance are clearly needed to advance our knowledge on the biological role of PARP phosphorylation. This is especially important as some data in the literature indicates that PARP enzymatic activity absolutely requires the enzyme to be phosphorylated. For example PARP isolated from cells has been reported to be endogenously phosphorylated and removal of the phosphate groups by phosphatase treatment resulted in loss of enzyme activity (Gagne et al., 2009). Moreover, in Xenopus laevis oocytes and eggs an equal amount of PARP protein could be detected but only eggs displayed PARP activity (Aoufouchi and Shall, 1997). When maturation was induced in oocytes by progesterone treatment, it caused PARP phosphorylation (as indicated by a mobility shift of proteins).
Table 2: Crosstalk between PARylation and protein kinase-phosphatase signaling. Literature data regarding the interrelationship between kinase/phosphatase cascades and PARP function are summarized.

<table>
<thead>
<tr>
<th>Interacting kinase</th>
<th>Nature of relationship between PARP-1 and kinases</th>
<th>Biological context</th>
</tr>
</thead>
<tbody>
<tr>
<td>PKC</td>
<td>PKC phosphorylates PARP-1 (in vitro)</td>
<td>PKP phosphorylation in phospholipid bilayers reveals a PARP-1-dependent protective action against necrotic cell death.</td>
</tr>
<tr>
<td>Erk1, Erk2, CKII, CDK5, JNK1, CaMK-II</td>
<td>PKC and p phosphorylated PARP in vitro. 3 phosphorylation sites were identified. Erk1, Erk2, CKII, CDK5, JNK1, CaMK-II also phosphorylated PARP-1 in vitro but phosphorylation was weaker than with PKC.</td>
<td>PARP phosphorylation in phospholipid bilayers reveals a PARP-1-dependent protective action against necrotic cell death.</td>
</tr>
<tr>
<td>DNA PK</td>
<td>DNA-PK phosphorylates PARP in a DNA-dependent manner. PARP was found to ADP-ribosylate DNA-PK in vitro. DNA-PK-mediated phosphorylation of PARP-1 is unlikely to be responsible for the suppression of PARP Activity, since this suppression occurred even in the absence of DNA-PK-mediated phosphorylation.</td>
<td>DNA-PK phosphorylates PARP in vitro. DNA-PK-mediated phosphorylation of PARP-1 is unlikely to be responsible for the suppression of PARP Activity, since this suppression occurred even in the absence of DNA-PK-mediated phosphorylation.</td>
</tr>
<tr>
<td>ATM</td>
<td>PARP-1 inhibits ATM kinase activity (in vitro)</td>
<td>ATM is inhibited by PARP activity. Both ATM and PARP-1 phosphorylate DNA damage signals.</td>
</tr>
<tr>
<td>ATR</td>
<td>Immunoprecipitation of PARP-1 and ATR in vitro.</td>
<td>PARP-1 physically interacts with ATR. ATR and PARP-1 physically interact in vivo.</td>
</tr>
<tr>
<td>ATM</td>
<td>ATM is modified by PARP during DNA damage response.</td>
<td>ATM is modified by PARP during DNA damage response.</td>
</tr>
<tr>
<td>ATM</td>
<td>ATM binds PARP (stabilizing sequences identified)</td>
<td>ATM binds PARP (stabilizing sequences identified)</td>
</tr>
<tr>
<td>ATM</td>
<td>ATM is stimulated by PARP in vitro.</td>
<td>ATM is stimulated by PARP in vitro.</td>
</tr>
<tr>
<td>ATM</td>
<td>ATM-mediated phosphorylation of ATM-IR is independent of the ATM/KU70/80 complex.</td>
<td>ATM-mediated phosphorylation of ATM-IR is independent of the ATM/KU70/80 complex.</td>
</tr>
<tr>
<td>ATM</td>
<td>ATM activation in response to ATM is due to PAR synthesis.</td>
<td>ATM activation in response to ATM is due to PAR synthesis.</td>
</tr>
<tr>
<td>ATM</td>
<td>DNA-PK-mediated phosphorylation of PARP is independent of the Ku70/80 complex.</td>
<td>DNA-PK-mediated phosphorylation of PARP is independent of the Ku70/80 complex.</td>
</tr>
<tr>
<td>ATM</td>
<td>Phosphorylation of ATM by PARP occurs in the presence of NAD but not in the absence of ATP.</td>
<td>Phosphorylation of ATM by PARP occurs in the presence of NAD but not in the absence of ATP.</td>
</tr>
<tr>
<td>ATM</td>
<td>ATM is activated by PARP in the presence of NAD.</td>
<td>ATM is activated by PARP in the presence of NAD.</td>
</tr>
<tr>
<td>ATM</td>
<td>ATM activation is independent of the Ku70/80 complex.</td>
<td>ATM activation is independent of the Ku70/80 complex.</td>
</tr>
<tr>
<td>ATM</td>
<td>ATM is activated by PARP in the presence of NAD.</td>
<td>ATM is activated by PARP in the presence of NAD.</td>
</tr>
<tr>
<td>ATM</td>
<td>ATM activation is independent of the Ku70/80 complex.</td>
<td>ATM activation is independent of the Ku70/80 complex.</td>
</tr>
<tr>
<td>ATM</td>
<td>ATM is activated by PARP in the presence of NAD.</td>
<td>ATM is activated by PARP in the presence of NAD.</td>
</tr>
<tr>
<td>ATM</td>
<td>ATM activation is independent of the Ku70/80 complex.</td>
<td>ATM activation is independent of the Ku70/80 complex.</td>
</tr>
</tbody>
</table>

References:
phosphorylation of PARP-1 by Erk1/1 was not required for the PARP activating effect of the kinase; only weak phosphorylation of the polymerase was detected in in vitro kinase assay

phosphorylated Erk2 directly interacts with and stimulates the activity of PARP-1 PARP-1 enhanced Erk2 mediated phosphorylation of Elk1, acetylation of core histones and expression of the Elk target gene c-fos

Erk Not investigated

FGF induced neuronal differentiation of embryonal stem cells was mediated by Erk1/2 and PARP-1 with the latter binding to the promoter of Pax6, a master regulator of neuronal differentiation

JNK Direct protein-protein interaction between JNK1 and PARP-1 JNK1 phosphorylates PARP-1 in in vitro kinase assay

Suppression of JNK1 activation by a chemical inhibitor or genetic deletion markedly suppressed the late-phase PARP-1 activation induced by H2O2, suggesting that JNK1 contributes to the sustained activation of PARP-1 in a model of caspase-independent non-apoptotic death

JNK not investigated (PARP-mediated NAD+ consumption was proposed to trigger signaling via RIP1 TRAF2 and JNK1)

In MNNG-induced PARP-1 mediated non-apoptotic cell death, PARP activation leads to activation of the RIP1 TRAF2 JNK1 cytotoxic pathway. JNK1 was required for mitochondrial dysfunction and AIF translocation

JNK not investigated (continued on next page)
Table 2 (continued)

<table>
<thead>
<tr>
<th>Interacting kinase</th>
<th>Nature of relationship between PARP-1 and kinases</th>
<th>Biological context</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Txk (a Tyr kinase from the Tec family)</td>
<td>Txk phosphorylates PARP-1 in vitro.</td>
<td>Formation of a trimolecular complex between PARP-1, Txk and the elongation factor EF-1a was dependent on ATP and Tx kinase activity The trimolecular complex (PARP-1, Txk, EF-1a) binds to the IFN-y promoter region to regulate IFN-y production</td>
<td>Maruyama et al. (2007)</td>
</tr>
<tr>
<td>CDK5, MAPK12, PLK3, PNKP, STK22c and STK36</td>
<td>Not investigated</td>
<td>Silencing of these kinases is synthetic lethal in combination with a PARP inhibitor</td>
<td>Turner et al. (2008)</td>
</tr>
</tbody>
</table>

Crosstalk between PARP-1 and phosphatases

<table>
<thead>
<tr>
<th>Phosphatase</th>
<th>Nature of relationship</th>
<th>Biological context</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alkaline phosphatase</td>
<td>Addition of alkaline phosphatase to endogenously phosphorylated PARP-1 expressed in Sf9 cells resulted in marked loss of PARP activity</td>
<td>Not investigated</td>
<td>Gagne et al. (2009)</td>
</tr>
<tr>
<td>E. coli alkaline phosphatase type III and potato acid phosphatase</td>
<td>E. coli alkaline phosphatase type III and potato acid phosphatase abolished enzyme activity of Xenopus levis PARP-1</td>
<td>Equal amount of PARP protein in Xenopus levis oocytes and eggs but only eggs but not oocytes show PARP activity Induction of oocyte maturation by progesterone results in mobility shift of PARP protein (from 116kDa to 125kDa) accompanied by appearance of PARP activity</td>
<td>Aoufouchi and Shall (1997)</td>
</tr>
<tr>
<td>MKP-2</td>
<td>Not investigated</td>
<td>Equal amount of PARP protein in Xenopus levis oocytes and eggs but only eggs but not oocytes show PARP activity Induction of oocyte maturation by progesterone results in mobility shift of PARP protein (from 116kDa to 125kDa) accompanied by appearance of PARP activity</td>
<td>Racz et al. (2010)</td>
</tr>
</tbody>
</table>

Crosstalk between PARC and kinases

<table>
<thead>
<tr>
<th>Kinase</th>
<th>Nature of relationship</th>
<th>Biological context</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>N/A (CKII 7)</td>
<td>In HeLa cells PARC was endogenously phosphorylated at S316 (a predicted CKII phosphorylation site) 3 phosphosites (S137, S261 and S264) were identified on PARC from mouse liver</td>
<td>Not investigated</td>
<td>Beauroille et al. (2004)</td>
</tr>
<tr>
<td>CKII</td>
<td>CKII phosphatides PAR in vitro at 8 identified sites including S316 (most phosphosites localized to the N-terminal regulatory region of PARC)</td>
<td>Not investigated</td>
<td>Villen et al. (2007)</td>
</tr>
</tbody>
</table>

Abbreviations: AMPK, 5'-adenosine monophosphate-activated protein kinase; ATM, ataxia telangiectasia mutated; ATR, ataxia telangiectasia and Rad3-related kinase; CK, casein kinase; DNA-PK, DNA-dependent protein kinase; GSK3β, Glycogen synthase 3 beta; ILK, integrin-linked kinase; JNK, c-Jun N-terminal kinase; MNNG, methylnitrosoimidazolylguanidine; TRAF2, tumor necrosis factor receptor-associated factor 2; PLK, Phosphatidylinositol 3-kinases; PKC, protein kinase C; CaMK-II, Ca2+/calmodulin-dependent protein kinases II.
PARP protein from 116 kDa to 125 kDa) and appearance of PARP activity (Aoufouchi and Shall, 1997). These data emphasize the crucial role of PTM in the regulation of PARP activity.

On the other side of the coin, phosphorylation cascades can also be modulated by PARylation either directly or indirectly. Several examples demonstrate (Table 2) that PARP1 can PARylate certain kinases or binding of the kinase to the PAR polymer affects the activity of the kinase. A rather unique way of regulating kinase cascades has also been demonstrated by Rácz et al., 2010. In a model of hydrogen peroxide induced cytotoxicity, they provided evidence for PARylation by PARP 1 serving as a repressor mechanism controlling the expression of the phosphatase MKP1 resulting in altered phosphorylation of the MAP kinases p38 and JNK. These interesting data highlight the so far neglected but very important role of protein phosphatases in mediating the cross talk between PARPs and kinase cascades.

3.5. Divergent roles of PARP/PARYlation in longevity and in age related disease

Twenty years ago, Grube and Bürkle could show a positive correlation between poly(ADP ribose) polymerase activity in mononuclear leukocytes of 13 mammalian species with species specific life span (Grube and Burkle, 1992). Those data were perfectly compatible with a role of PARylation in genomic maintenance, as it appeared plausible that cells from long lived organisms should be equipped with more efficient maintenance mechanisms including DNA repair as compared to short lived ones (Kirkwood and Austad, 2000; Kirkwood and Holliday, 1979). Subsequently, enzymological comparison of recombinant human vs. rat PARP 1 provided an explanation for the difference in PARylation capacity between mammalian species of vastly differing life span (Beneke et al., 2000, 2010). Further support for a positive role of PARylation (by PARP 1) came from studies by Beneke and colleagues, revealing rapid positive regulation of telomere length via PARP 1 activity (Beneke et al., 2008).

Attempts at expressing the (more active) human PARP 1 in genetically modified mice led to more pronounced inflammatory changes but not increased life span of the mice (Mangerich and Burkle, in press; Mangerich et al., 2009, 2010).

In contrast to the above scenario, PARP inhibition has a beneficial effect in several age related diseases such as ischemia reperfusion damage or Parkinson’s disease (Koh et al., 2005; Virág and Szabo, 2002), which at first sight may seem paradoxical. One should, however, keep in mind that the evolutionary pressure towards maintenance of high levels of DNA maintenance functions (such as DNA repair pathways, including PARylation) in order to guarantee a long life span can only be effective before the age of sexual maturity. Thereafter, individuals are in the “shadow of evolution” and gene functions that are beneficial in early life may turn into detrimental ones in later life (“antagonistic pleiotropy”) (Kirkwood and Rose, 1991). In this context the PARylation system may be viewed as one example for antagonistic pleiotropy.

4. New directions in PARylation research

4.1. Biological roles of PARP family members

It goes without saying that the elucidation of the biological functions of the novel members of the PARP/ARTD family (Hottiger et al., 2010), especially ARTD4 through ARTD18, is of high priority. Significant progress has already been achieved, especially regarding ARTDs 4, 5, 6, 8, 9, 10 and 15, but overall our knowledge on these proteins is still rather limited. The importance of this aspect is also underpinned by the increasing use of PARylation inhibitors in clinical medicine for a variety of pathological conditions, raising the question of side effects arising from “collateral” inhibition of various members of the PARP/ARTD family.

4.2. Structural biology of poly(ADP ribose) interactions

While structural biology has already led to breakthroughs in PAR research (see above and in Karlberg et al., 2013), there is still a lot of scientific questions that call for further activity in this discipline. One example is the precise elucidation of the interaction of PAR with proteins carrying various PAR binding motifs and, even more complex, how a covalently PARylated protein may interact with PAR binding protein, or how several PAR binding molecules (of the same or of different nature) interact with the same ADP ribose chain.

With the increase in the amount of structural data on PARP family members an era of isoform specific inhibitors may soon be within reach. This desirable development would contribute to more successful and targeted translational applications in various diseases.

Conflict of interest

Authors declare no conflict of interest.

Acknowledgements

This work was supported by the following grants awarded to LV: OTKA K75864, K73003, K82009, TÁMOP 4.2.1./B 09/1/KONV 2010 0007, TÁMOP 4.2.2.A 11/1/KONV 2012 0025, the National Innovation Office of Hungary (Baross program Sea 1061

