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Loca/Emp/ 

Figure 4. RcsuIL of "joining" by symmetric extend. 

Adding the clause "with inverse Loca/En/pr' to the definition of Loca/Camp in the extend 

operation will result in a symmetrical "join" result as shown in Figure 4, since the inverse 

function will then connect the companies back to the employees. Technically, the symmetric 

extend operation results in two new classes, one new subclass for each of the input classes. 

Notice that, if we were interested in employees living in the same town as their company's 

location, we would have used the "warksJor" function instead of the class "CompanyC' in 

the extend operation. 

"Joining" objects by means of the extend operator is object preserving, that is, the result 

of this join is a new "relationship" among existing objects. Creating, deleting and updating 

objects in join views thus needs no special treatment. Update operations on "join" views 

behave exactly as discussed for extend views. 

Alternatives for join-like operations, including object generating ones and comparisons 

with other query languages' solutions to this problem are contained in [SS90aJ. 

3.5 Classifying Views defined by Composite Queries 

The problem, as noticed in [Kim89J, is to define the position of the query result in the object 

lattice. That is, important questions are (i) what is the type of the result objects, (ii) where 

is this (usually new) type located relative to the input types in the is_a graph, and (iii) what 

is the relationship between input and output classes. 

For the individual operator of the language, we have specified the constraints according 

to subtyping and subclassing relative to the input class. Particularly, we have already seen 

that the result is not necessarily an immediate sub- or superclass of the input class. In 

general, detennining the final position of the result in the lattice may require a rather complex 
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classification procedure, which is not even decidable if we consider arbitrarily complex 

selection predicates. 

The classification of the results of composite queries can generate more additional classes 

in the class hierarchy than algebra operations involved in the query expression. Consider the 

following queries QI and Q2 that are equivalent: 

QI : select [ age> 20 J ( project r age. name J ( PersonC» 

Q2: project rage. name J ( setect [ age> 20 J ( Person C» 

The first expression generates first a superclass of PersanC according to the project and 

second a subclass of that intennediate class. The second expression first generates a subclass 

of PersanC and then a superclass of this intennediate class (see Fig. 5). As a first observation, 

notice that both expressions end up at the same node in the type graph (as expected from 

the algebraic equivalence). Furthermore, if we classified the result of the second expression 

(selection before projection), we would have liked to introduce the third class anyway, to 

avoid making the result an immediate subclass of "ObjectC". 

In general, classifying the result of complex queries might add a bunch of new classes 

(at least one for each intermediate result) to the lattice. Obviously, most of these will not 

be useful for users . One way to hide this complexity is not to show the intennediate classes 

at all. However, then the results will almost always be direct subordinates of "ObjectC", 

since no single subclass_of link to a base class would be correct. A second alternative is to 

separate the subtype (is_a) and the subset meaning of the subclass relationship in the graphical 

representation by using two kinds of arcs . Then we could dispense with some intennediate 

nodes. For instance, in the project-select example, the result is a subset of PersonC and a 

supertype of PersanC. Hence, we could connect the result directly to PersonC via two arcs 

one in each direction. Notice, however, that this representation is somewhat strange, since 

now we have a subclass of a superrype! This clearly indicates the need to separate the two 

notions (also see [Bee89]). 

3.6 Closure of Subschemas 

So far, our discussion concerned one single view as a result of querying a class. But of 

course, we are want to collect a number of views together with some base classes to form 

a subschema. 

It is intuitively clear, that a designer is not completely free in his choice of classes and 

views to be included in the subschema. For a class of type T in the schema, he has to include 
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Figure S. Classifying composite queries 

the range type of every function defined in T. Thus, including one class into the schema can 

demand to include a number of other classes. 

Consider the class Emp/oyeeC, including it into the schema propagates to include compa­

nies as well, because this is the range of its worksJor function. If companies have a location 

function with range cities, we would need to include CityC in the subschema too. 

In general we need to assure a closure property of subschemata, such that no function 

leads out of the subschema (cL [TYIR8]). 

4 Conclusions 

We described the importance of providing a view definition capability in object-oriented 

databases. The rationale for views in ooDBSs is largerly identical to that in standard 

relational DBSs: tailoring a (possibly large) global schema towards particular application 

tasks, screening out irrelevant details, hiding information from unauthorized users, and 

opening the database for a variety of clients in a heterogeneous environment, where each 

client needs to see its own data (or object) structure imposed over the common database. A 

subschema consisting of base and/or view classes can serve these purposes. 

We presented ways to define an object query language with object preserving operator 

semantics, such that the results are always sets of preexisting objects. Particularly noticeable 

is that object preserving semantics could also be given to joins like operations. Therefore, 

arbitrary query can serve as view definitions, views are persistent derived classes, the 

extensions of which are defined by the query expression. Since no such query (and thus 

no such view) creates new objects, and since objects are always uniquely identified, views 

can almost freely be updated. The update openuions simply apply to the 'underlying' base 

objects. 
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In order to fit the view classes into the general class/type lattice, we investigated the 

effects of each query language operator w.r.t. type and extension and defined the position of 

the result class in the lattice relative to the input class. While this relative positioning seems 

fairly natural and straight-forward, some classification functionality know from AI systems 

becomes necessary when we take into account , that 

I. query results are not necessarily direct sub- or superclasses of the input classes, 

2. composite queries may introduce quite a few intermediate classes, 

3. objects can be instances of multiple types; in particular, objects can dynamically gain and 

loose types during their life time, 

4. update operations may affect the classification of objects; a change of an existing object 

can make it an instance of a more specific type or a more general one. 

That is, a tight integration of AI system's technology and database system technology has 

to go beyond the level of structuring. We find several examples in the ooDBS framework 

for the structural integration: ooDB models borrow concepts freely from semantic network 

models and knowledge representation schemes as far as their built-in semantic relationships 

are concerned. In order to make full use of this complexity of the model, however, we have 

to take into account the operational aspects of these systems, too. That is, at least some 

limited form of reasoning capabilities need to be introduced into ooDBSs. 
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