

54

Loca/Emp/

Figure 4. RcsuIL of "joining" by symmetric extend.

Adding the clause "with inverse Loca/En/pr' to the definition of Loca/Camp in the extend

operation will result in a symmetrical "join" result as shown in Figure 4, since the inverse

function will then connect the companies back to the employees. Technically, the symmetric

extend operation results in two new classes, one new subclass for each of the input classes.

Notice that, if we were interested in employees living in the same town as their company's

location, we would have used the "warksJor" function instead of the class "CompanyC' in

the extend operation.

"Joining" objects by means of the extend operator is object preserving, that is, the result

of this join is a new "relationship" among existing objects. Creating, deleting and updating

objects in join views thus needs no special treatment. Update operations on "join" views

behave exactly as discussed for extend views.

Alternatives for join-like operations, including object generating ones and comparisons

with other query languages' solutions to this problem are contained in [SS90aJ.

3.5 Classifying Views defined by Composite Queries

The problem, as noticed in [Kim89J, is to define the position of the query result in the object

lattice. That is, important questions are (i) what is the type of the result objects, (ii) where

is this (usually new) type located relative to the input types in the is_a graph, and (iii) what

is the relationship between input and output classes.

For the individual operator of the language, we have specified the constraints according

to subtyping and subclassing relative to the input class. Particularly, we have already seen

that the result is not necessarily an immediate sub- or superclass of the input class. In

general, detennining the final position of the result in the lattice may require a rather complex

55
classification procedure, which is not even decidable if we consider arbitrarily complex

selection predicates.

The classification of the results of composite queries can generate more additional classes

in the class hierarchy than algebra operations involved in the query expression. Consider the

following queries QI and Q2 that are equivalent:

QI : select [age> 20 J (project r age. name J (PersonC»

Q2: project rage. name J (setect [age> 20 J (Person C»

The first expression generates first a superclass of PersanC according to the project and

second a subclass of that intennediate class. The second expression first generates a subclass

of PersanC and then a superclass of this intennediate class (see Fig. 5). As a first observation,

notice that both expressions end up at the same node in the type graph (as expected from

the algebraic equivalence). Furthermore, if we classified the result of the second expression

(selection before projection), we would have liked to introduce the third class anyway, to

avoid making the result an immediate subclass of "ObjectC".

In general, classifying the result of complex queries might add a bunch of new classes

(at least one for each intermediate result) to the lattice. Obviously, most of these will not

be useful for users . One way to hide this complexity is not to show the intennediate classes

at all. However, then the results will almost always be direct subordinates of "ObjectC",

since no single subclass_of link to a base class would be correct. A second alternative is to

separate the subtype (is_a) and the subset meaning of the subclass relationship in the graphical

representation by using two kinds of arcs . Then we could dispense with some intennediate

nodes. For instance, in the project-select example, the result is a subset of PersonC and a

supertype of PersanC. Hence, we could connect the result directly to PersonC via two arcs

one in each direction. Notice, however, that this representation is somewhat strange, since

now we have a subclass of a superrype! This clearly indicates the need to separate the two

notions (also see [Bee89]).

3.6 Closure of Subschemas

So far, our discussion concerned one single view as a result of querying a class. But of

course, we are want to collect a number of views together with some base classes to form

a subschema.

It is intuitively clear, that a designer is not completely free in his choice of classes and

views to be included in the subschema. For a class of type T in the schema, he has to include

56

Figure S. Classifying composite queries

the range type of every function defined in T. Thus, including one class into the schema can

demand to include a number of other classes.

Consider the class Emp/oyeeC, including it into the schema propagates to include compa­

nies as well, because this is the range of its worksJor function. If companies have a location

function with range cities, we would need to include CityC in the subschema too.

In general we need to assure a closure property of subschemata, such that no function

leads out of the subschema (cL [TYIR8]).

4 Conclusions

We described the importance of providing a view definition capability in object-oriented

databases. The rationale for views in ooDBSs is largerly identical to that in standard

relational DBSs: tailoring a (possibly large) global schema towards particular application

tasks, screening out irrelevant details, hiding information from unauthorized users, and

opening the database for a variety of clients in a heterogeneous environment, where each

client needs to see its own data (or object) structure imposed over the common database. A

subschema consisting of base and/or view classes can serve these purposes.

We presented ways to define an object query language with object preserving operator

semantics, such that the results are always sets of preexisting objects. Particularly noticeable

is that object preserving semantics could also be given to joins like operations. Therefore,

arbitrary query can serve as view definitions, views are persistent derived classes, the

extensions of which are defined by the query expression. Since no such query (and thus

no such view) creates new objects, and since objects are always uniquely identified, views

can almost freely be updated. The update openuions simply apply to the 'underlying' base

objects.

57
In order to fit the view classes into the general class/type lattice, we investigated the

effects of each query language operator w.r.t. type and extension and defined the position of

the result class in the lattice relative to the input class. While this relative positioning seems

fairly natural and straight-forward, some classification functionality know from AI systems

becomes necessary when we take into account , that

I. query results are not necessarily direct sub- or superclasses of the input classes,

2. composite queries may introduce quite a few intermediate classes,

3. objects can be instances of multiple types; in particular, objects can dynamically gain and

loose types during their life time,

4. update operations may affect the classification of objects; a change of an existing object

can make it an instance of a more specific type or a more general one.

That is, a tight integration of AI system's technology and database system technology has

to go beyond the level of structuring. We find several examples in the ooDBS framework

for the structural integration: ooDB models borrow concepts freely from semantic network

models and knowledge representation schemes as far as their built-in semantic relationships

are concerned. In order to make full use of this complexity of the model, however, we have

to take into account the operational aspects of these systems, too. That is, at least some

limited form of reasoning capabilities need to be introduced into ooDBSs.

Acknowledgement

The COCOON model and its query language COOL have been developed jointly with Hans­

Jorg Schek, to whom the authors are indebted for numerous discussions of the subject and

improvements of an early draft of this paper.

References

[AC085] A. Albano. L. CardeUi. and R. Orsini. Galileo: A strongly-typed. interactive conceptual
language. ACM Transactions on Database Systems. 10(2):230-260, June 1985.

[ASL89] A.M. Alashqur. S.Y.W. Suo and H. Lam. OQL: A query language for manipulating
object-oriented databases. In Proc. Int. Can! on Very Large Databases. pages 433-442 •

. Amsterdam. August 1989.
[BBB+88] F. Bancilhon. G. Barbcdettc. V. Benzaken. C. Dclobel. S. Gemcrman. C. LCcluse.

P. Pfeffer. P. Richard. and F. Velez. The design and implementation of O2 • an object­
oriented database system. In K.R. Dittrich, editor. Advances in Object-Oriented Database
Systems. Heidelberg. September 1988. Springer LNCS 334.

[Bee88] D. Beech. A foundation for evolution from rclationalto object databases. In J.W. Schmidt.
S. Ceri. and M. Missikoff. editors. Advances in Database Technology - EDBr 88.
Springer LNCS 303. March 1988.

58
[Bee89] C. Beeri. Formal models for object-oriented databases. In W. Kim, J.-M. Nicolas, and

S. Nishio, editors, Proc. 1st I nt' I Con/. on Deductive and Object-Oriented Databases,
pages 370-395, Kyoto, December 1989. North-Holland..

[BTB089) V. Breazu-Tannen, P. Buneman, and A. Ohori. Static type-chccking in objcct-oriented
databases. IEEE Data Engineering, 12(3):5-12, September 1989. Special Issue on

Database Programming Languages.

[Day89] U. Dayal. Queries and views in an object-oriented data model. In R. Hull, R. Morrison,
and D. Stemple, editors, 2nd In!' I Workshop on Database Programming Languages, pages
80-102, Oregon Coast, June 1989. Morgan Kaufmann, San Mateo, Ca.

[DMB+87] U. Dayal, F. Manola, A. Buchmann, U. Chakravarthy, D. Goldhirsch, S. Heiler,
J. Orenstein, and A. Rosenthal. Simplifying complex objects: The PROBE approach
to modelling and querying them. In H.-J. Schek and G. Schlageter, editors, Proc. GI
Con/. on Database Systems for Office, Engineering and Scientific Applications, pages
17-37, Darmstadt, April 1987. Springer IFB 136, Heidelberg.

[HZ88) S. Heiler and S.B. Zdonik. Views, data abstractions, and inheritance in the FUGUE
data model. In K.R. Dittrich, editor, Advances in Object-Oriented Database Systems,
Heidelberg, September 1988. Springer LNCS 334.

[Kim89] W. Kim. A model of queries for object-oriented databases. In Proc. Int. Con! on Very
Large Databases, pages 423-432. Amsterdam, August 1989.

[KS86) H.F. Korth and A. Silberschatz. Database System Concepts. McGraw-HilI, New York,
1986.

[SJL +90] M.H. Scholl, B. Jiang, C. Laa~ch. C. Rich, and M. Tresch. The COCOON object model.
Technical report, ETH Zurich, Dept. of Computer Science, 1990. in preparation.

[SS86] H.-I . Schek and M. H. Scholl. The relational model with relation-valued attributes.
In/ormation Systems, \1(2):137-147, June 1986.

[SS90a] M.H. Scholl and H.-J. Schek. A relational object model. In Proc. Int'/' Con! on Database
Theory, Paris. December 1990. to appear.

[SS90b) M.H. Scholl and H.-I. Schek. A synthesis of complex objects and object-orientation. In
Proc. IFIP TC2 Con/. on Object Oriented Databases - Analysis. Design & Construction
(DS-4) , Windermere. UK, July 1990. North-Holland. to appear.

[SZ89) G.M. Shaw and S.B. Zdonik. An object-oriented query algebra. IEEE Data Engineering,
12(3):29-36. September 1989. Special Issue on Database Programming Languages.

[TY188) K. Tanaka, M. Yoshikawa. and K. Ishihara. Schema virtualization in object-oriented
databases. In Proc. IEEE Data Engineering. pages 23-30. Los Angeles, February 1988.

IWLH90] K. Wilkinson, P. Lyngbaek, and W. Hasan. The Iris architecture and implementation.
IEEE Trans . on Knowledge and Data Engineering, 2(1):63-75, March 1990. Special
Issue on Prototype Systems.

	Text3: Konstanzer Online-Publikations-System (KOPS)
URN: http://nbn-resolving.de/urn:nbn:de:bsz:352-

