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Abstract. We show that the closed convex hull of any one-dimensional semialgebraic subset of Rn is a spectra-
hedral shadow, meaning that it can be written as a linear image of the solution set of some linear
matrix inequality. This is proved by an application of the moment relaxation method. Given a
nonsingular affine real algebraic curve C and a compact semialgebraic subset K of its R-points, the
preordering P(K) of all regular functions on C that are nonnegative on K is known to be finitely
generated. Our main result, from which all others are derived, says that P(K) is stable, meaning
that uniform degree bounds exist for weighted sum of squares representations of elements of P(K).
We also extend this last result to the case where K is only virtually compact. The main technical
tool for the proof of stability is the archimedean local-global principle. As a consequence of our
results we show that every convex semialgebraic subset of R2 is a spectrahedral shadow.
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Introduction. Let K ⊆ Rn be a real algebraic set, or more generally a semialgebraic
set. The question of how to represent the convex hull conv(K) of K has attracted growing
attention in recent years. A good part of this interest originates from optimization theory,
namely from the problem of optimizing a linear functional over K. One of the most promising
approaches that has been discussed is to express conv(K) (at least up to taking closures) as
a linear image of a spectrahedron, that is, of the solution set of a linear matrix inequality. In
other words, one would like to find symmetric real matrices Mi, Nj of some size (for 0 ≤ i ≤ n,
1 ≤ j ≤ k, and some k) such that, writing

(1) M(x, y) = M0 +
n∑
i=1

xiMi +
k∑
j=1

yjNj ,

the closure of conv(K) coincides with the closure of the set

(2) S = {x ∈ Rn : ∃ y ∈ Rk M(x, y) � 0}.
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2 CLAUS SCHEIDERER

Here M � 0 means that the symmetric matrix M is positive semidefinite. In view of the very
efficient methods available in semidefinite programming, such a representation is perfectly well
suited for optimizing linear functionals over K.

Another approach tries to understand the set conv(K) via the dual algebraic variety of
the Zariski closure of its boundary; see [18], [19], [30] for more details.

A subset S ⊆ Rn is called a spectrahedral shadow if it can be written as in (2) with suitable
symmetric matrices Mi, Nj . Any representation (2) is called a semidefinite representation
of S. The question of characterizing spectrahedral shadows was raised by Nemirovski in
his plenary address at the ICM in Madrid [10]. Spectrahedral shadows are clearly convex
semialgebraic sets, and for many years no other restriction was known. In 2009, Helton
and Nie [5] conjectured that conversely every convex semialgebraic set is a spectrahedral
shadow. This conjecture was recently disproved by the author [28]. In the present paper,
however, we prove the existence of a semidefinite representation for the closed convex hull of
any one-dimensional semialgebraic set in Rn. Using this result, we show that every convex
semialgebraic subset of the plane is a spectrahedral shadow; i.e., we show that the Helton–Nie
conjecture does hold in dimension two.

Our result does not extend to convex hulls of sets of dimension greater than one. Indeed,
for every semialgebraic set K ⊆ Rn of dimension at least two, there exists a polynomial map
ϕ : Rn → RN (for some N ≥ 1) such that the closed convex hull of ϕ(K) in RN has no
semidefinite representation. This is proved in [28].

For the construction of semidefinite representations we use the moment relaxation method,
introduced by Lasserre and Parrilo ([7], [13], [14]; see also [2], [8]). Computing the convex
hull of a set K ⊆ Rn (that we assume to be basic closed semialgebraic) means to determine
the linear moments of all probability measures on K for which these moments exist. By
considering finite-dimensional relaxations of the K-moment problem, one obtains a nested
hierarchy K(1) ⊇ K(2) ⊇ · · · of sets with explicit semidefinite representations that all contain
K. Their closures K(d) = TH(d) have also been studied under the name theta bodies of K (see
[4] and [2, Chapter 7]). When K is a compact semialgebraic set, the sets K(d) approximate
conv(K) arbitrarily closely. Moreover, the approximation becomes exact, that is, K(d) =
conv(K) holds for some d ≥ 1, if and only if every linear polynomial that is nonnegative on K
has a weighted sum of squares representation with uniform degree bounds on the summands.
See Theorem 2.4 below for a rigorous formulation.

We consider a nonsingular affine algebraic curve C over R and a compact semialgebraic
subset K of C(R), the set of real points on C. We work in R[C], the affine coordinate ring
of C. Let P(K) be the saturated preordering of K, i.e., the set of all elements of R[C] that
are nonnegative on K. It is known [22] that P(K) is finitely generated as a preordering. This
means that there exist finitely many elements 1 = h0, h1, . . . , hr ∈ P(K) such that every
f ∈ P(K) has a representation

(3) f =

r∑
i=0

∑
j

p2ijhi

with pij ∈ R[C]. Fixing C, K, and the hi, the main result of this paper (Corollary 4.4) says
that there exist uniform degree bounds for such representations. That is, every f ∈ P(K)
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SDP REPRESENTATION FOR CONVEX HULLS OF CURVES 3

has some representation (3) in which the degrees of the summands p2ijhi are bounded above
by some number that only depends on deg(f). (We are using degrees here to simplify the
exposition, and so we tacitly assume that C is given with a fixed embedding in some affine
space.) Technically, this result is expressed by saying that the preordering P(K) is stable.
From this it follows that, for any morphism ϕ : C → An into affine space of any dimension,
the relaxation process for the convex hull of ϕ(K) in Rn becomes exact. In fact, this latter
property is equivalent to stability of P(K).

Our method for proving stability of P(K) may be of interest in that we do not show the
existence of degree bounds directly. Rather we establish the following equivalent fact: For
any real closed field R containing R, the preordering generated by the hi in R[C] = R[C]⊗R
is again saturated (Theorem 4.3). This fact, in turn, is proved by an application of the
archimedean local-global principle [23], which allows us to reduce the problem to local rings.
At first sight this may seem impossible since the field R is non-archimedean. We get around
this problem by working in the ring B[C] = R[C] ⊗ B, rather than in R[C], where B is the
smallest convex subring of R that contains R (so B is a non-noetherian valuation ring). We
believe that this way of applying the local-global principle is novel and perhaps somewhat
unexpected.

In the case where C has genus one and K = C(R) is the full real curve (assumed to
be compact), our main result was already known by the author [27]. In that paper, using
geometric arguments of Riemann–Roch type, we had given degree bounds of quite explicit
nature, resulting in bounds for the sizes of the derived exact semidefinite representations. For
all curves of higher genus, as well as for genus one and K 6= C(R), our results are new. In
contrast to the method of [27], the techniques used in the present paper unfortunately do not
seem to give any explicit degree bounds.

From Corollary 4.4 we deduce the existence of a semidefinite representation for the convex
hull of any compact semialgebraic set S ⊆ Rn with dim(S) ≤ 1 (Theorem 5.1). For this,
one first desingularizes via normalization and then uses the moment relaxation process. This
case in turn implies the existence of such a representation for the closed convex hull of any
semialgebraic set S with dim(S) ≤ 1, not necessarily compact (Theorem 6.1). From this we
establish the Helton–Nie conjecture in dimension two (Theorem 6.8).

On the other hand, we extend the stability result to certain noncompact cases. Namely,
when C is a nonsingular affine curve and K ⊆ C(R) is a closed semialgebraic set that is merely
virtually compact (meaning that there exists f ∈ R[C] that is nonconstant and bounded on
K), the saturated preordering P(K) is still finitely generated and stable (Theorem 7.3). Again,
this is proved by a reduction to the compact case.

We would like to point out that our main theorem on degree bounds for (weighted) sum
of squares representations does not extend to dimensions bigger than one, according to the
results of [24]. For example, it was shown there that, for any nonsingular affine R-variety V
with V (R) 6= ∅ compact and dim(V ) ≥ 2, degree bounds for sums of squares in R[V ] cannot
exist.

For practical matters our results imply the following. Suppose we are given a compact
semialgebraic set K ⊆ Rn, dim(K) = 1, and a polynomial f ∈ R[x] = R[x1, . . . , xn] and want
to find f∗ := min f(K). For simplicity assume that K = C(R) is a real algebraic curve without
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singularities (the more general case can be reduced to this one). For every degree d consider

cd := max
{
c ∈ R : f − c is modulo IC a sum of squares of polynomials of deg ≤ d

}
(IC := ideal of C in R[x]). Then cd is the optimum of an explicit semidefinite program, and
cd ↑ f∗ by the general results of [7]. Our results imply that we in fact have finite convergence,
i.e., f∗ = cd for some d ∈ N which depends only on C and deg(f), but not on f . If C has
genus g ≤ 1, upper bounds for d are known explicitly ([14], [6] for g = 0 and [27] for g = 1),
but unfortunately not otherwise.

For both theoretical and practical reasons it would be highly desirable to have a more
constructive approach to the results of this paper. In particular, one would like to have some
information on the nature of the degree bounds whose existence is proved here.

The paper is organized as follows. In section 2 we give a brief account of the relaxation
method for constructing semidefinite representations of convex hulls, in the generality that
is needed here. Section 3 contains auxiliary results for working in the ring R[C] ⊗ B. This
ring plays a key role in the proof of stability of P(K) in the compact case (section 4). The
existence of semidefinite representations for compact convex hulls is deduced in section 5, and
the extension to closed convex hulls of arbitrary one-dimensional sets is discussed in section 6.
Finally, section 7 contains the proof of stability in the virtually compact case.

This paper was originally written in 2012. At that time the Helton–Nie conjecture was still
open, and the results of this paper were considered as additional support for this conjecture.
The present form is a slightly revised and updated version.

1. Notation and preliminaries.

1.1. Let k be a field. By an algebraic k-variety (or simply k-variety) we mean a reduced
and separated k-scheme of finite type. Most algebraic varieties and schemes in this paper will
be affine. An affine k-variety is therefore the Zariski spectrum V = Spec(A) of a k-algebra A
which is finitely generated and reduced (no nonzero nilpotent elements). Following common
practice, we also write A = k[V ] and call this ring the affine coordinate ring of V . If E is
any k-algebra, then V (E) = Homk(A,E) denotes the set of E-valued points of V . Given
ξ ∈ V (E) and f ∈ A, we usually write f(ξ) (rather than ξ(f)) for the result of evaluating the
homomorphism ξ on f .

A curve over k is a k-variety all of whose irreducible components have dimension one. An
affine curve C over k is irreducible (resp., irreducible and nonsingular) if and only if the ring
k[C] is an integral domain (resp., a Dedekind domain).

1.2. We need to employ the real spectrum, and we briefly recall the basic notions. See
[3], [9], [16], or [25] for full details and background. All rings are assumed to be commutative
and to have a unit. The real spectrum of the ring A, denoted by Sper(A), is the set consisting
of all pairs α = (p, ω), where p ∈ Spec(A) and ω is an ordering of the residue field of p. The
prime ideal p is called the support of α, written as p = supp(α).

For f ∈ A and α = (p, ω) ∈ Sper(A), the notation “f(α) ≥ 0” (resp., “f(α) > 0”)
indicates that the residue class f mod p is nonnegative (resp., positive) with respect to ω.
The (Harrison) topology on Sper(A) is defined to have the collection of sets U(f) = {α ∈
Sper(A) : f(α) > 0}, f ∈ A, as a subbasis of open sets. The support map supp: Sper(A) →
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Spec(A) is continuous. A subset of Sper(A) is called constructible if it is a finite boolean
combination of sets U(f), f ∈ A, that is, if it can be described by imposing sign conditions on
finitely many elements of A. Given α, β ∈ Sper(A), one says that α specializes to β (or that
β is a specialization of α) if β lies in {α}, the closure of the set {α}. Any ring homomorphism
ϕ : A→ B induces a continuous map ϕ∗ : Sper(B)→ Sper(A) in a natural and functorial way.

A convenient alternate way to think of the real spectrum is to observe that every point of
Sper(A) is represented by a ring homomorphism A → R into some real closed field R. Two
homomorphisms A → Ri (i = 1, 2) represent the same point of Sper(A) if and only if there
exists a third homomorphism A → R into a real closed field R together with A-embeddings
Ri → R (i = 1, 2).

1.3. Let A be a ring. By ΣA2 we denote the set of (finite) sums of squares in A. A subset
M ⊆ A is called a quadratic module of A if 1 ∈ M , M + M ⊆ M , and a2M ⊆ M for every
a ∈ A hold. If, in addition, MM ⊆M holds, then M is called a preordering of A.

A quadratic moduleM is finitely generated if there exist finitely many elements h1, . . . , hr ∈
M such that (putting h0 := 1)

M = (ΣA2)h0 + · · ·+ (ΣA2)hr :=

{
r∑
i=0

sihi : s0, . . . , sr ∈ ΣA2

}
.

We say in this case that the quadratic module M is generated by h1, . . . , hr.
A quadratic module M of A is said to be archimedean if Z + M = A, or equivalently if

for every a ∈ A there exists a positive integer n such that n± a ∈M .
Given a quadratic module M ⊆ A, one associates with M the closed subset XM := {α ∈

Sper(A) : f(α) ≥ 0 for every f ∈ M} of Sper(A). The saturation of M is the preordering
Sat(M) := {f ∈ A : f ≥ 0 on XM} of A. The quadratic module M is called saturated if
M = Sat(M). Any of [9], [16], or [25] contains more background on quadratic modules or
preorderings and their saturations.

The notion of stability for a quadratic module is basic for this paper. It will be recalled
in 2.1 below.

1.4. Let R be a real closed field, and let V be an affine R-variety. Given a semialgebraic
set K ⊆ V (R), we denote the associated constructible subset of SperR[V ] by K̃; see [3,
section 7.2]. Given any finite system of inequalities that describes K, the set K̃ is the subset
of SperR[V ] that is described by the same system. The saturated preordering associated with
K is denoted by P(K), that is,

P(K) = {f ∈ R[V ] : f |K ≥ 0}.

Example 1.5. Let h1, . . . , hr ∈ R[x1, . . . , xn], and consider the basic closed set

K =
{
ξ ∈ Rn : h1(ξ) ≥ 0, . . . , hr(ξ) ≥ 0}

in Rn. The quadratic module M generated by h1, . . . , hr satisfies M ⊆ P(K). In general,
equality does not hold; i.e., there exist polynomials f with f |K ≥ 0 but f /∈ M . If M
is archimedean, then M contains every polynomial f with f |K > 0, by the archimedean
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Positivstellensatz (see [9], [16], or [17]). Note that M archimedean implies that K is compact.
Conversely, if K is compact, and if M is a preordering, then M is archimedean (Schmüdgen
Positivstellensatz; see [29], [9], or [16]).

1.6. The convex hull of a set S ⊆ Rn is denoted by conv(S). If K ⊆ Rn is a closed convex
set, a point a ∈ K is called an extreme point of K if a = (1 − t)b + tc, where b, c ∈ K and
0 < t < 1, implies b = c = a. The set of extreme points of K is denoted by Ex(K). When K
is a semialgebraic set, the set Ex(K) is semialgebraic as well.

2. The relaxation method.

2.1. Let A be a finitely generated R-algebra, and let M be a finitely generated quadratic
module in A, say M = ΣAh0 + · · ·+ ΣAhr with 1 = h0, h1, . . . , hr ∈ A, and ΣA := ΣA2 (the
cone of sums of squares in A). The quadratic module M is said to be stable (see [15], [24])
if, given any finite-dimensional linear subspace U of A, there exists a finite-dimensional linear
subspace W of A with

M ∩ U ⊆ ΣWh0 + · · ·+ ΣWhr.

Here ΣW denotes the set of sums of squares of elements ofW . The property of being stable does
not depend on the choice of the generators h0, . . . , hr of M . If A is a polynomial ring over R,
stability of M means that there exists a map ϕ : N→ N such that, for every f ∈M , there exists
a representation f =

∑
i,j p

2
ijhi with suitable polynomials pij such that deg(p2ijhi) ≤ ϕ(deg(f))

for all i, j.

2.2. By a semidefinite representation of a set S ⊆ Rn one means a representation

S =

{
x ∈ Rn : ∃ y ∈ Rk M0 +

n∑
i=1

xiMi +
k∑
j=1

yjNj � 0

}

with suitable k ≥ 0 and real symmetric matrices Mi, Nj of some size. The set S is called a
spectrahedral shadow if it has a semidefinite representation. Other terms often used in the
literature are projected spectrahedron, semidefinitely representable set, or lifted-LMI repre-
sentable set.

We now recall the method of moment relaxation [7] for constructing semidefinite represen-
tations, in a generality adapted to our needs. For more background we refer the reader to [8,
Chapter 11] and to [2, Chapters 6–7]. We only outline the basic principle of the construction,
ignoring possible refinements.

2.3. Let A be a finitely generated reduced R-algebra. We denote the associated affine
R-variety by V = Spec(A), so A = R[V ], and we always equip the set V (R) = Hom(A,R) of
real points of V with its natural Euclidean topology. Fix elements 1 = h0, h1, . . . , hr ∈ A,
write ΣA := ΣA2 for the cone of sums of squares in A, let

M = h0ΣA + · · ·+ hrΣA

be the quadratic module in A generated by the hi, and let

K = {ξ ∈ V (R) : h1(ξ) ≥ 0, . . . , hr(ξ) ≥ 0}



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

SDP REPRESENTATION FOR CONVEX HULLS OF CURVES 7

be the associated basic closed semialgebraic subset of V (R). We assume that K is Zariski
dense in V . Fix a finite-dimensional linear subspace L ⊆ A containing 1, and let 1, x1, . . . , xn
be a basis of L. We consider the morphism ϕ = ϕL = (x1, . . . , xn) from V to affine n-space
determined by L, and the induced map ϕ : V (R)→ Rn.

Given a linear subspace B ⊆ A we denote by BB the linear subspace of A spanned by
all products b1b2 with b1, b2 ∈ B. Fix a tuple W = (W0, . . . ,Wr) of finite-dimensional linear
subspaces of A, and consider the linear subspace

U := W0W0 + h1W1W1 + · · ·+ hrWrWr

of A. We assume that L is contained in U , and we denote by ρ : U ′ → L′ the restriction map
between the dual linear spaces. By U ′1 (resp., L′1) we denote the set of all linear forms λ in U ′

(resp., in L′) with λ(1) = 1, and we identify Rn with L′1 via the map

L′1
∼−→ Rn, λ 7→

(
λ(x1), . . . , λ(xn)

)
.

For i = 0, . . . , r, let ΣWi ⊆ WiWi denote the cone of sums of squares of elements of Wi. The
set

MW := ΣW0 + h1ΣW1 + · · ·+ hrΣWr

is contained in M ∩ U and is a convex semialgebraic cone in U . Since K is Zariski dense in
V , we have M ∩ (−M) = {0}. This implies that MW is closed in U [15, Proposition 2.6].
Let M∗W ⊆ U ′ be the dual cone of MW . Then M∗W can be defined by a (homogeneous) linear
matrix inequality; that is, M∗W is a spectrahedral cone in U ′. The subset M∗W ∩ U ′1 of M∗W is
therefore a spectrahedron as well. Its image set

KW := ρ(M∗W ∩ U ′1) = L′1 ∩ ρ(M∗W ) ⊆ Rn

under the restriction map ρ : U ′1 → L′1 = Rn is therefore a spectrahedral shadow by construc-
tion. For every ξ ∈ K, the cone M∗W contains the evaluation map at ξ (restricted to U).
Therefore KW contains the set ϕ(K), and therefore we have conv(ϕ(K)) ⊆ KW . Increasing
the subspaces W0, . . . ,Wr of A results in making the set KW smaller. The main facts are
summarized in the following theorem (cf. [7, Theorem 2]).

Theorem 2.4. Let L ⊆ A be a fixed linear subspace with basis 1, x1, . . . , xn, and let ϕ : V →
An be the associated morphism. With assumptions and notation from 2.3, we have the follow-
ing:

(a) KW = {η ∈ Rn : ∀ f ∈ L ∩MW f(η) ≥ 0};
(b) the inclusion conv(ϕ(K)) ⊆ KW of closed convex sets is an equality if and only if

L ∩ P(K) ⊆MW ;
(c) if M is archimedean (see 1.3), then conv(ϕ(K)) =

⋂
W KW , the intersection over all

systems W = (W0, . . . ,Wr) of finite-dimensional subspaces of A.

If K is compact, then conv(ϕ(K)) is again compact by Carathéodory’s lemma, and for
any fixed tuple W as above we get the following lemma.

Corollary 2.5. If K is compact, then conv(ϕ(K)) = KW holds if and only if L ∩ P(K) ⊆
MW .
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2.6. The moment relaxation for the closed convex hull conv(ϕ(K)) is said to become
exact if the equality conv(ϕ(K)) = KW holds for some choice W = (W0, . . . ,Wr) of finite-
dimensional subspaces. When K is compact, this is equivalent to conv(ϕ(K)) = KW .

If one is aiming at describing the convex hull of ϕ(K) in Rn, approximately or exactly,
note that there is a two-fold freedom of modifying the above construction. On the one hand,
we may enlarge the subspaces W0, . . . ,Wr. We may as well enlarge the quadratic module
M by adding finitely many more generators hi from P(K). Both steps result in making the
approximation tighter. When the saturated preordering P(K) itself is finitely generated, then
choosing M = P(K) will give the closest approximations for conv(ϕ(K)).

When K = V (R) is a real algebraic set, and when an embedding V ⊆ An is fixed, the closed
convex sets KW ⊆ Rn resulting from taking M = ΣR[V ]2 approximate the closed convex hull
conv(V (R)). Under the name theta bodies of V they have been studied by Gouveia, Parrilo,
Thomas, and others (see [4] and [2, Chapter 7]).

Varying the embedding ϕ, we have the following corollary.

Corollary 2.7. Let V be an affine R-variety, let K ⊆ V (R) be a basic closed set, Zariski
dense in V , and assume that the saturated preordering P(K) in R[V ] is finitely generated.
Then the following two conditions are equivalent:

(i) for any n ∈ N and any morphism ϕ : V → An of R-varieties, the moment relaxation
for the closed convex hull conv(ϕ(K)) becomes exact (2.6);

(ii) the preordering P(K) in R[V ] is stable (2.1).

Proof. After fixing a finite description P(K) = h0Σ+· · ·+hrΣ (with Σ = ΣR[V ]2), stability
of P(K) means that, for every finite-dimensional subspace L ⊆ R[V ] containing 1, there exists
a tuple W = (W0, . . . ,Wr) of finite-dimensional subspaces such that L ∩ P(K) ⊆ MW . By
Theorem 2.4(b), it is equivalent that conv(ϕ(K)) = KW , where ϕ is the morphism associated
with L. Having L range over all finite-dimensional subspaces means to have ϕ range over
all morphisms from V to affine space of arbitrary dimension. Therefore, (i) and (ii) are
equivalent.

3. Auxiliary results. Let C be a nonsingular curve over R. Here we collect results that
are needed for working in the base extension of C to a real closed valuation ring B ⊇ R. The
situation has some resemblance to arithmetic surfaces. The main result that will be needed
in the next section is Proposition 3.15.

3.1. The following setup will be fixed for the entire section. Let R be a real closed field
containing R, the field of real numbers. The unique ordering of R is denoted by ≤. Let

B :=
{
b ∈ R : ∃ n ∈ N − n < b < n

}
be the convex hull of R in R. Then B is a valuation ring with quotient field R, and we denote
by v : R → Γ ∪ {∞} the associated Krull valuation. The maximal ideal of B will be denoted
by m. The residue field is B/m = R.

Let A be a finitely generated R-algebra, and write AB = A ⊗ B and AR = A ⊗ R (with
⊗ := ⊗R always). Given 0 6= f ∈ AR, we can write f =

∑r
i=1 ai ⊗ bi with ai ∈ A and bi ∈ R

in such a way that a1, . . . , ar are linearly independent over R. Putting

w(f) := min{v(bi) : i = 1, . . . , r}
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and w(0) :=∞ gives a well-defined map w : AR → Γ∪{∞} that extends the valuation v. (To
see that w is well-defined, let f =

∑s
j=1 a

′
j ⊗ b′j be a second representation with a′1, . . . , a

′
s

R-linearly independent. Then b1, . . . , br and b′1, . . . , b
′
s span the same R-linear subspace of

R, so we can write b′j =
∑

i cijbi with cij ∈ R. It follows that minj v(b′j) ≥ mini v(bi).
By symmetry, the opposite inequality holds as well.) For f, g ∈ AR, it is easy to see that
w(f + g) ≥ min{w(f), w(g)} and w(fg) ≥ w(f) + w(g) hold. For b ∈ R we have, moreover,
w(bf) = w(f) + v(b).

The residue map B → B/m = R will be denoted by either b 7→ π(b) or b 7→ b. Accordingly
we often denote the induced homomorphism AB → A by f 7→ f . We have AB = {f ∈
AR : w(f) ≥ 0}, and for f ∈ AB we have f = 0 if and only if w(f) > 0.

Lemma 3.2. Assume that the R-algebra A is an integral domain. Then w(fg) = w(f) +
w(g) holds for all f , g ∈ AR, and so w extends to a valuation of Quot(AR), the field of
fractions of AR.

Clearly, the residue field of the valuation w of Quot(AR) is Quot(A).

Proof. Since A is a domain, and since R is relatively algebraically closed in R, the tensor
product AR is a domain, too. We can write f = af0 and g = bg0 with a, b ∈ R, where
f0, g0 ∈ AB satisfy w(f0) = w(g0) = 0. So we can assume w(f) = w(g) = 0, which means
f, g 6= 0 in A. Since A is a domain, we have f · g 6= 0, which implies that w(fg) = 0. The
lemma is proved.

3.3. Let A be a finitely generated reduced R-algebra, as before, and write V = Spec(A) for
the affine R-variety associated with A. We need to work with the real spectrum of AB = A⊗B.
As a set, Sper(AB) can be identified with the disjoint union of the real spectra of the rings
A⊗R(q), where q is a prime ideal of B and R(q) denotes the residue field of q (a real closed field
extension of R). Given any point ξ ∈ V (C) = HomR(A,C), we consider the homomorphism

ξ ⊗ π : A⊗B → C, a⊗ b 7→ a(ξ)b

and denote its kernel by Mξ. So

Mξ :=

{∑
i

ai ⊗ bi ∈ A⊗B :
∑
i

ai(ξ)bi = 0 in C

}
.

Clearly, Mξ is a maximal ideal of A⊗B whose residue field is the residue field of ξ (hence R
or C). When ξ is real, i.e., ξ ∈ V (R), there is a unique point in Sper(A ⊗ B) whose support
is Mξ. This point will be denoted by αξ. Conversely, any point α ∈ Sper(A⊗B) with residue
field R has the following form.

Lemma 3.4. Given α ∈ Sper(A ⊗ B), there exists ξ ∈ V (R) with α = αξ if and only if
(A⊗B)/ supp(α) = R.

3.5. We fix a semialgebraic subset K of V (R) and denote by K̃ the constructible subset
of Sper(A) = SperR[V ] corresponding to K; see 1.4. The natural homomorphism i : A→ AB
induces a continuous map i∗ : Sper(AB)→ Sper(A) of the real spectra (see 1.2), and we write
XK := (i∗)−1(K̃). So XK is a constructible subset of Sper(AB), which is closed in Sper(AB)
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if K is a closed subset of V (R). By KR we denote the base field extension of K to R (see [3,
section 5.1]). So KR is the semialgebraic subset of V (R) that is defined by the same finite
system of inequalities as K (this does not depend on the choice of such a system). Considering
V (R) as a subset of Sper(AB) in the natural way, we have KR = V (R) ∩XK (cf. 1.4).

Recall that a closed point of a topological space T is a point x ∈ T for which the singleton
set {x} is closed in T .

Proposition 3.6. Assume that the semialgebraic set K ⊆ V (R) is compact. Then the closed
points of XK are precisely the points αξ for ξ ∈ K (see 3.3).

Proof. For ξ ∈ K we have αξ ∈ XK by construction, and this is a closed point of Sper(AB)
since supp(αξ) = Mξ is a maximal ideal of AB. Conversely, let α ∈ XK be a closed point of
XK , and let φ : A⊗B → S be a homomorphism that represents α, where S is a real closed field
(cf. 1.2). Let C ⊆ S be the convex hull of R in S; then we have C/mC = R. We claim that
im(φ) ⊆ C holds. Indeed, let a ∈ A and b ∈ B. Since K is compact, there is c ∈ R with |a| < c
on K, and it follows that |φ(a⊗1)| < c in S. On the other hand, there is a real number c′ > 0
such that |b| < c′ holds on Sper(B), for example c′ = 1 + |b|. So we get |φ(a⊗ b)| < cc′ in S,
whence φ(a⊗ b) ∈ C. Now, since im(φ) ⊆ C, we can compose φ : A⊗B → C with the residue
homomorphism C → R, resulting in a homomorphism ψ : A ⊗ B → R. By construction, the
point β ∈ Sper(A ⊗ B) represented by ψ is a specialization of α. Since K is closed in V (R),
we have β ∈ XK , and so β = α, which proves the claim by Lemma 3.4.

Lemma 3.7. Let K ⊆ V (R) be a semialgebraic set, and let f ∈ AB. Then f is nonnegative
on the constructible subset XK of Sper(AB) if and only if f is nonnegative on KR ⊆ V (R).

Proof. Let q be a prime ideal of B. The quotient field R(q) of B/q is real closed. Let
πq(f) ∈ A ⊗ R(q) = AR(q) be the coefficientwise reduction of f modulo q. On the other
hand, let KR(q) ⊆ V (R(q)) be the base field extension of K from R to R(q). Then f ≥ 0
on XK is equivalent to πq(f) ≥ 0 on KR(q) for every prime ideal q of B. Thus we have to
show the following: If f ≥ 0 on KR ⊆ V (R), then πq(f) ≥ 0 on KR(q) for every prime ideal
q of B. To see this, recall that the residue map Bq → R(q) has a homomorphic section s.
Thus if η ∈ KR(q) is a given homomorphism η : A → R(q), then ξ := s ◦ η, considered as a
homomorphism A→ Bq ⊆ R, is a point in KR. Since f ≥ 0 at ξ, it follows that πq(f) ≥ 0 at
η.

3.8. Now we specialize to the case where C is an irreducible affine curve over R and
A = R[C] is the affine coordinate ring of C. We keep fixed the extension R ⊆ R of real closed
fields and the convex hull B of R in R, and we will write R[C] := A⊗R and B[C] := A⊗B.
The following technical lemma is specific to the curves case.

Lemma 3.9. Let C be an irreducible affine curve over R, and let K ⊆ C(R) be a compact
semialgebraic set. Let M be a maximal ideal of R[C]⊗B = B[C], and assume that there exists
β ∈ XK with supp(β) ⊆M and with supp(β) 6⊆ R[C]⊗m. Then M = Mξ for some ξ ∈ K.

Proof. Write A = R[C] as before. Let P = supp(β), write q = P ∩B, and let k = R(q) =
Bq/qBq be the residue field of the prime ideal q of B. The field k is real closed. The sequence
of ring homomorphisms B → A ⊗ B → A ⊗ k induces, by taking preimages, a sequence of
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maps

Spec(A⊗ k)
j−→ Spec(A⊗B)

π−→ Spec(B)

between the Zariski spectra. The map j is a bijection from Spec(A ⊗ k) to the preimage
π−1(q) = Ck of q under π, and this bijection preserves residue fields of prime ideals. Since
A⊗k = k[C] is a one-dimensional integral domain, since the zero ideal of A⊗k corresponds to
A⊗q ∈ π−1(q), and since P 6⊆ A⊗m by assumption, we see that P corresponds to a maximal
ideal of A⊗ k under this bijection. Since, moreover, the residue field of P is real, there exists
a point η ∈ C(k) such that P is the kernel of the homomorphism

A⊗B = R[C]⊗B → R[C]⊗ k = k[C]
η−→ k.

So (A ⊗ B)/P is isomorphic to a subring of k that contains the valuation ring B/q of k.
Therefore (A⊗B)/P is a valuation ring itself and, in particular, a local ring. Therefore M is
the unique maximal ideal of A⊗ B that contains P . On the other hand, by Proposition 3.6,
there exists ξ ∈ K ⊆ C(R) such that β specializes to αξ, and hence P ⊆Mξ. This shows that
M = Mξ.

3.10. We keep fixing the extension R ⊆ R and the valuation ring B of R as before.
We now assume that C is a nonsingular and geometrically irreducible affine algebraic curve
over R, and we consider the affine scheme C ×Spec(R) Spec(B) = Spec(R[C] ⊗ B). This is a
relative affine curve over Spec(B). If B were a discrete valuation ring, the situation would
be a (very particular) instance of a relative curve over a Dedekind scheme and hence an
arithmetic surface. However, B has a divisible value group and therefore is not noetherian (as
long as R 6= R). Moreover, the Krull dimension of B can be arbitrarily large. Therefore we
cannot directly rely on arguments that are well known for arithmetic surfaces, or simply for
noetherian rings. Still, the situation and the auxiliary results we are about to prove resemble
the case of a relative curve over a discrete valuation ring.

The function field of C (resp., of CR) is, as usual, denoted by R(C) := QuotR[C] (resp.,
by R(C) := QuotR[C]).

3.11. Let R′ = R(
√
−1) be the algebraic closure of R, and let B′ = B[

√
−1], a valuation

ring of R′ that extends the valuation ring B of R. The maximal ideal of B′ will be denoted
m′, and we have B′/m′ = C. The valuation v on R (see 3.1) (resp., w on R(C) (see 3.2))
extends uniquely to a valuation on R′ (resp., on R′(C)), and we use the same letter v (resp.,
w) to denote this extension. The residue field of the valuation v on R′ is C, and the residue
field of the valuation w on R′(C) is C(C), the complex function field of the curve C. Given
g ∈ R′(C) with w(g) ≥ 0, we denote the residue class of g in C(C) by g. Also, we write
B′[C] = R[C]⊗B′ and R′[C] = R[C]⊗R′. Again we have B′[C] = {f ∈ R′[C] : w(f) = 0}.

We consider the natural specialization map

C(B′) → C(C), η 7→ η

defined by composing a homomorphism η : R[C]→ B′ with the residue map B′ → B′/m′ = C.
Note that η ∈ C(B′) specializes to ξ ∈ C(C) (that is, η = ξ) if and only if h(η) = 0 implies
that h(ξ) = 0 for every h ∈ B′[C]. Given ξ ∈ C(C), we will use the notation

U(ξ) := {η ∈ C(B′) : η = ξ},
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so this is the set of B′-rational points of C that specialize to the C-rational point ξ. The
maximal ideal of B[C] associated with ξ ∈ C(C) is denoted by Mξ = {f ∈ B[C] : f(ξ) = 0};
see 3.3.

The zero or pole order of a rational function g on a nonsingular curve in a geometric point
ξ will be denoted by ordξ(g). Thus, given f ∈ B′[C] and η ∈ C(R′), the symbol ordη(f)
denotes the vanishing order of f in the point η of the generic fibre CR′ . For ξ ∈ C(C), on the
other hand, the symbol ordξ(f) denotes the vanishing order in ξ of the restriction f of f to
the special fibre C. Below (Proposition 3.15) we show how the vanishing orders of f in points
of the generic fibre determine the vanishing orders of f in the points of the special fibre.

Lemma 3.12. Let g ∈ R(C)∗ satisfy w(g) = 0, let ξ ∈ C(C) be a geometric point of the
special fibre, and assume ordη(g) ≥ 0 for every η ∈ U(ξ). Then there exist 0 6= f, h ∈ B[C]

with g = f
h and h(ξ) 6= 0. In other words, g lies in the localized ring B[C]Mξ

.

Proof. We can write g = b
a with 0 6= a, b ∈ R[C]. By scaling a and b with a nonzero

element of R we clearly can assume w(a) = w(b) = 0. So, in particular a, b ∈ B[C].
Let η1, . . . , ηr be the zeros of a in U(ξ), and let ζ1, . . . , ζs be the remaining zeros of a

in C(R′). For each j = 1, . . . , s there exists hj ∈ B[C] satisfying hj(ξ) 6= 0 and hj(ζj) = 0
since ζj 6= ξ. By taking a product of suitable powers of these hj , we find h ∈ B[C] satisfying

h(ξ) 6= 0 and ordζj (h) ≥ ordζj (a) for j = 1, . . . , s.
For any point η ∈ C(R′) we claim that ordη(bh) ≥ ordη(a) holds. Indeed, this is trivial if

a(η) 6= 0. For η ∈ {ζ1, . . . , ζs} it is so by the choice of h. For η ∈ {η1, . . . , ηr} it is true since
ordη(b) ≥ ordη(a) by the assumption on g. So gh = bh

a has no poles in C(R′) and therefore
lies in R[C]. Since w(gh) = 0, we have gh ∈ B[C], so it suffices to take f := gh.

The analogue of Lemma 3.12 in algebraic geometry would be the following statement: If V
is a nonsingular complex algebraic surface and ξ ∈ V (C), and if a rational function g ∈ C(V )∗

has no pole along any curve C ⊆ V through ξ, then g ∈ OV,ξ. (Indeed, the noetherian local
ring OV,ξ, being integrally closed, is the intersection of its localizations at all height one prime
ideals.)

Lemma 3.13. Let f, g ∈ B′[x, y] be polynomials such that the coefficientwise reduced poly-
nomials f, g ∈ C[x, y] are not identically zero. Assume f(0, 0) = g(0, 0) = 0, and assume the
curves f = 0 and g = 0 in C2 intersect transversally at (0, 0). Then the curves f = 0 and g = 0
in R′2 intersect transversally at (0, 0), and they do not intersect in any point (a, b) 6= (0, 0) in
R′2 with a, b ∈ m′.

Proof. The gradient vectors of f and g at the origin lie in B′2, and by assumption they
are linearly independent modulo m′. Hence they are linearly independent in R′2, which is the
first assertion. After a linear change of coordinates we can assume

f = x+
∑
d≥2

fd(x, y), g = y +
∑
d≥2

gd(x, y),

where fd, gd ∈ B′[x, y] are homogeneous polynomials of degree d for d ≥ 2. Let (0, 0) 6=
(a, b) ∈ m′ × m′, and assume v(a) ≤ v(b). Since v(a) > 0, we see that v(f(a, b) − a) > v(a),
whence v(f(a, b)) = v(a), and therefore f(a, b) 6= 0. Likewise, v(a) ≥ v(b) implies that
v(g(a, b)) = v(b) and g(a, b) 6= 0.
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Lemma 3.14. Let η ∈ C(B′), and let ξ = η ∈ C(C).
(a) There is s ∈ B′[C] such that s(η) = 0 and ordξ(s) = 1.
(b) If η ∈ C(B), then an element s satisfying (a) can be found in B[C].
(c) For any element s satisfying (a) one has ordη(s) = 1 and s(η′) 6= 0 for any η′ ∈

U(ξ) r {η}.
Proof. Choose t ∈ B′[C] such that t ∈ C[C] is a local uniformizer at ξ = η. Then t(η) ∈ m′.

The element s := t− t(η) of B′[C] has s(η) = 0 and s = t, and hence ordη(s) = 1. If η is real,
i.e., η ∈ C(B), then t (and therefore s) can be found in B[C]. This proves (a) and (b).

(c) The question is local around the point η ∈ C(C). Zariski locally around any given
C-point, any nonsingular curve over C is isomorphic to a Zariski open subset of a plane curve
over C. Therefore we can assume that C is a (possibly singular) closed curve in A2

C and that
ξ = (0, 0) is a nonsingular point of C. Now assertion (c) follows from Lemma 3.13.

Proposition 3.15. Let f ∈ B′[C] satisfy w(f) = 0. The vanishing order of f in a point
ξ ∈ C(C) satisfies

ordξ(f) =
∑

η∈U(ξ)

ordη(f).

Proof. Let e denote the right-hand sum in the assertion, and let

{η ∈ U(ξ) : f(η) = 0} =: {η1, . . . , ηr},

a finite set of points in U(ξ) ⊆ C(B′) ⊆ C(R′). For every i = 1, . . . , r, choose si ∈ B′[C] with
w(si) = 0, si(ηi) = 0, and ordξ(si) = 1, according to Lemma 3.14(a). Moreover, put ei :=
ordηi(f). Let s := se11 · · · serr ∈ B′[C]; then we have w(s) = 0 and ordξ(s) = e1 + · · ·+ er = e.
Moreover, from Lemma 3.14(c) we see that ordηi(s) = ei = ordηi(f) for i = 1, . . . , r and

s(η) 6= 0 for any η ∈ U(ξ) r {η1, . . . , ηr}. Hence the rational function g := f
s ∈ R

′(C)∗ has
ordη(g) = 0 for any η ∈ C(B′) with η = ξ. Applying Lemma 3.12 to g and g−1 shows that g
is a unit in the localized ring B′[C]Mξ

. Thus g(ξ) 6= 0, and hence ordξ(f) = ordξ(s) = e.

For an analogue of Proposition 3.15 in algebraic geometry let V be a nonsingular complex
surface and C ⊆ V be an irreducible curve. Given a rational function f ∈ C(V )∗ of order
zero along C, the proposition corresponds to the formula for the divisor of the restriction of
f to C.

4. Main theorem. The following fact is well known.

Theorem 4.1. Let C be a nonsingular affine curve over R, and let K ⊆ C(R) be a compact
semialgebraic set. Then the saturated preordering P(K) of K in R[C] is finitely generated.

This is proved in [22, Theorem 5.21]. More precisely (by [22, Theorem 5.22(b)]), P(K)
can be generated by two elements, even as a quadratic module, and can in fact be generated
by a single element whenever K has no isolated points. If K = C(R) (assuming this set is
compact), we have P(K) = ΣR[C]2.

4.2. Let us briefly indicate how Theorem 4.1 can be proved. (The proof given in [22] was
more complicated since the archimedean local-global principle was not yet available at that
time.) When K has no isolated points, P(K) is generated by any f ∈ P(K) which has simple
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zeros in the boundary points of K and has no other zeros in K (one can show that such f
exists). This follows from the archimedean local-global principle (see Theorem 4.6 below). In
the general case, let ξ1, . . . , ξr be the isolated points of K. We modify the set K by replacing
each isolated point ξi with a small closed interval [ξi, ηi] on C(R), for which ηi 6= ξi lies on the
same connected component of C(R) as ξi, and the interval is so small that [ξi, ηi]∩K = {ξi}.
Let K1 be the modified set obtained in this way, and note that K1 has no isolated points. Let
K2 be a second such modification of K in which ξi gets replaced by [η′i, ξi], where η′i 6= ξi is
again chosen close to ξi, but such that ηi and η′i lie on opposite sides of ξi on the local branch
of C(R) around ξi. Then, by the first part of the argument, there exists a single generator fj
of P(Kj) for both j = 1, 2. Again using the archimedean local-global principle, one concludes
that P(K) is generated by f1 and f2.

The following theorem (resp., its corollary) is the main result of this paper. The results
on spectrahedral representations in sections 5–6 are derived from it.

Theorem 4.3. Let C be a nonsingular affine curve over R, let K ⊆ C(R) be a compact
semialgebraic set, and let T = P(K) be the saturated preordering of K in R[C]. For any real
closed field R containing R, the preordering TR generated by T in R[C] is saturated as well.

Using the notion of stable preordering (see 2.1), we can give the following equivalent
formulation.

Corollary 4.4. For C and K as in Theorem 4.3, the preordering P(K) in R[C] is stable.

Proof. By [24, Corollary 3.8], T = P(K) is stable if and only if for every real closed field
R containing R the preordering TR is saturated in R[C]. So Corollary 4.4 is equivalent to
Theorem 4.3.

Remarks 4.5. For the following remarks assume that the nonsingular affine curve C is
irreducible.

1. When the curve C is rational, the assertions of Theorem 4.3 and Corollary 4.4 are true
regardless of whether K is compact or not. More precisely, assume that C is a nonsingular
rational affine curve, and letK ⊆ C(R) be any closed semialgebraic subset. Then the saturated
preordering P(K) of K in R[C] is finitely generated and is stable. This is well known and
essentially elementary.

2. When C has genus one and C(R) is compact, Theorem 4.3 and Corollary 4.4 were
proved for K = C(R) in [27]. In all other cases of positive genus, these results are new.

3. When C is nonsingular of genus ≥ 1 and K ⊆ C(R) is a closed semialgebraic set that
is not compact, two situations can occur. Either K is virtually compact (see 7.1 below), in
which case we will later prove that the above results remain true (Theorem 7.3 below), or else
K fails to be virtually compact; then it is known that the preordering P(K) fails to be finitely
generated [22, Theorem 5.21], and so the notion of stability does not even make sense for it.
See Example 7.2 below for both examples and nonexamples of virtually compact sets.

Before giving the actual proof of Theorem 4.3, we need some preparations. First recall
the archimedean local-global principle.

Theorem 4.6 ([23, Corollary 2.10]). Let A be a ring containing 1
2 , let P be an archimedean
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preordering in A, and let f be an element of the saturation of P . Then f lies in P if (and
only if) f lies in Pm for every maximal ideal m of A.

Here Pm is the preordering generated by P in the localized ring Am. See 1.3 for the notions
of archimedean preordering and saturation.

4.7. In the following C let be a nonsingular affine curve over R, let K ⊆ C(R) be a
compact semialgebraic subset, and let T = P(K) ⊆ R[C]. Moreover, let R be a real closed
field containing R, and let B be the convex hull of R in R (see 3.1). We shall work in the
ring B[C] = R[C]⊗ B and use the auxiliary results from section 3. In particular, we use the
notation introduced there. Let TB be the preordering generated by T in B[C]. The saturation
of TB consists of all f ∈ B[C] with f ≥ 0 on XK .

Lemma 4.8. The preordering TB in B[C] is archimedean.

Proof. Since T = P(K) is the saturated preordering in R[C] associated with the compact
set K, it is clear that T is archimedean. Let f ∈ B[C] = R[C]⊗ B. Since T − T = R[C], we
can write f in the form f =

∑r
i=1 fi ⊗ bi with fi ∈ T and bi ∈ B (i = 1, . . . , r). Since T is

archimedean, there exists 0 < c1 ∈ R with c1 − fi ∈ T (i = 1, . . . , r). By the definition of B
there exists 0 < c2 ∈ R with bi ≤ c2 in R for every i, and hence c2 − bi is a square in B for
i = 1, . . . , r. We conclude that

rc1c2 − f = c2

r∑
i=1

(c1 − fi)⊗ 1 +
r∑
i=1

fi ⊗ (c2 − bi)

lies in TB.

By int(KR) we denote the interior, relative to C(R), of the semialgebraic subset KR of
C(R). The following technical lemma is based on Lemma 3.14.

Lemma 4.9. Let ξ ∈ K, and let U(ξ) = {η ∈ C(B′) : η = ξ} as in 3.11. For every point
η ∈ U(ξ) there exists an element pη ∈ TB with w(pη) = 0, such that pη(η) = 0 and

ordξ(pη) =


1 if η ∈ C(R), η /∈ int(KR),

2 if η ∈ C(R), η ∈ int(KR),

2 if η ∈ C(R′) r C(R).

Moreover, if η = ξ and ξ is an isolated point of K, there exists a second element p′ξ ∈ TB with
the same properties as pξ and such that pξp

′
ξ ≤ 0 on a neighborhood of ξ in C(R).

Proof. We need to distinguish several cases. First assume η ∈ C(R′) r C(R). By Lemma
3.14(a) there exists s ∈ B′[C] with s(η) = 0 and ordξ(s) = 1. Let τ be the R-automorphism
of R′[C] of order two that is induced by complex conjugation on R′. Then pη := s · τ(s) is a
sum of two squares in B[C], and hence pη ∈ TB, and clearly pη(η) = 0 and ordξ(pη) = 2.

When η ∈ int(KR), choose s ∈ B[C] with s(η) = 0 and ordξ(s) = 1, according to Lemma
3.14(b). Then pη := s2 will do the job.

Now assume η ∈ C(R) and η /∈ int(KR). Then necessarily ξ is a boundary (or isolated)
point of K, and either η = ξ or η /∈ KR. Since T is saturated, there exists t ∈ T with
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ordξ(t) = 1 and with t(η) ≤ 0. (The second condition is automatic if ξ is not an isolated point
of KR.) So pη := t− t(η) lies in TB and has the desired properties.

To prove the additional claim in the case where η = ξ is an isolated point of K, fix a local
orientation on C(R) around ξ. Since T is saturated, one can find t1 ∈ T changing sign from
+ to − in ξ, as well as t2 ∈ T changing sign from − to + in ξ, such that both have vanishing
order 1 in ξ. The proof of the lemma is complete.

Proof of Theorem 4.3. We have to show that TR contains every g ∈ R[C] with g ≥ 0 on
KR. It suffices to prove that TB contains every f ∈ B[C] with f ≥ 0 on KR and with w(f) = 0.
Indeed, given g ∈ R[C] with g ≥ 0 on KR, we find 0 6= b ∈ R with w(g) = v(b2), and hence
with b−2g ∈ B[C] and w(b−2g) = 0. Knowing b−2g ∈ TB clearly implies that g ∈ TR.

So fix f ∈ B[C] with f ≥ 0 on KR and with w(f) = 0. From Lemma 3.7 we know
that f ≥ 0 on XK , that is, f lies in the saturation of TB in B[C]. Since TB is archimedean
(Lemma 4.8), we can apply the archimedean local-global principle, Theorem 4.6, to f and
TB. By this theorem, it suffices to prove, for every maximal ideal M of B[C], that f lies in
TM , the preordering generated by T in the local ring B[C]M . To show this, fix M , and let
XK,M := XK ∩ SperB[C]M , where SperB[C]M is considered as a subset of SperB[C] in the
natural way. So XK,M is the basic closed constructible subset of SperB[C]M associated with
TM .

If f > 0 on XK,M , then f ∈ TM by [26, Proposition 2.1]. So we can assume that there
exists β ∈ XK with f ∈ supp(β) ⊆ M . The hypotheses of Lemma 3.9 apply to M since
w(f) = 0 implies that supp(β) 6⊆ R[C] ⊗ m. By Lemma 3.9, therefore, we have M = Mξ for
some point ξ ∈ K. Recall that

U(ξ) = {η ∈ C(B′) : η = ξ}.

We decompose the set of R-zeros of f in U(ξ) as

{η ∈ U(ξ) ∩ C(R) : f(η) = 0} = {η1, . . . , ηr} ∪ {ζ1, . . . , ζs}

in such a way that η1, . . . , ηr are interior points of KR, while ζ1, . . . , ζs are not. Note that f
has even order in any of the points ηi. Among the nonreal zeros of f in U(ξ), choose a subset
{ω1, . . . , ωt} that contains exactly one representative from each pair of complex conjugate
points. Then put

p :=
r∏
i=1

(pηi)
1
2
ordηi (f) ·

s∏
j=1

(pζj )
ordζj (f) ·

t∏
k=1

(pωk)ordωk (f),

where the pηi , pζj , pωk ∈ TB are chosen as in Lemma 4.9. Then p, being a product of elements
of TB, lies in TB. By Proposition 3.15 we have

ordξ(f) =

r∑
i=1

ordηi(f) +

s∑
j=1

ordζj (f) + 2
t∑

k=1

ordωk(f).

This number is also equal to ordξ(p). It follows that g := f
p is a unit in the local ring B[C]M .

In particular, g has no zeros or poles in U(ξ).
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We would like g to take positive values in all points η ∈ U(ξ) ∩ KR. This obviously is
the case whenever p(η) 6= 0. By continuity, it is also true whenever η is not an isolated point
of KR. The remaining case when η ∈ U(ξ) is an isolated point of KR can occur only for
η = ξ ∈ C(R) and when ξ is an isolated point of K. If g(ξ) < 0, we replace one of the local
factors pξ in the definition of p by p′ξ, where p′ξ is chosen as in Lemma 4.9. If p′ denotes the
modification of p obtained in this way, and g′ = f/p′, we have achieved g′(ξ) > 0.

Using Lemma 3.7 we see that the unit g of B[C]M takes strictly positive values on the
set XK,M associated with the preordering TM . Hence, by another application of [26, Propo-
sition 2.1], we conclude that g lies in TM . As a consequence, it follows that f = pg ∈ TM , as
desired. The proof of Theorem 4.3 is complete.

5. Semidefinite representations in the compact case. Now we use moment relaxation
to obtain semidefinite representations from the results of the previous section.

Theorem 5.1. Let K ⊆ Rn be a compact convex semialgebraic set whose set Ex(K) of ex-
treme points has (semialgebraic) dimension ≤ 1. Then K is a spectrahedral shadow. A semidef-
inite representation of K can be obtained from a suitable moment relaxation.

Proof. The closure K0 := Ex(K) is a compact semialgebraic set and satisfies dim(K0) ≤ 1.
We have K = conv(K0) by the Krein–Milman theorem. We may assume that K is not
contained in any proper affine-linear subspace of Rn.

Let I ⊆ R[x] = R[x1, . . . , xn] be the ideal of polynomials vanishing on K0, and let C0 =
Spec(R[x]/I); then C0 is the reduced Zariski closure of K0 in An. Then C0 is an R-variety
(possibly reducible) of dimension ≤ 1. Let π : C ′0 → C0 be the normalization of C0. Note
that π is a finite morphism and that C ′0 is nonsingular. If C0 has the irreducible components
X1, . . . , Xl, and if we denote by A′i the integral closure of R[Xi] in its quotient field, the
coordinate ring of C ′0 is therefore R[C ′0] = A′1 × · · · ×A′l.

The map π : C ′0(R) → C0(R) on R-points may fail to be surjective. Indeed, when ξ is
an isolated point of C0(R) that lies on a one-dimensional irreducible component of C0, then
ξ /∈ π(C ′0(R)). To resolve this problem, let ξ1, . . . , ξk be the isolated points of C0(R) that lie
in K0 and that lie on one-dimensional irreducible components of C0, and write Pi = Spec(R)
for i = 1, . . . , k. Finally let

C1 = C ′0 q P1 q · · · q Pk

(disjoint sum), and let φ : C1 → C0 be the morphism with φ|C′0 = π and with φ(Pi) = ξi
(i = 1, . . . , k). Let K1 be the preimage of K0 in C1(R). Since π, and therefore also φ, is a finite
morphism, the semialgebraic set K1 is compact. By construction we have φ(K1) = K0. Since
C1 is nonsingular with irreducible components of dimension ≤ 1, the saturated preordering
P(K1) of K1 in R[C1] is finitely generated (see Theorem 4.1). By the main result of the
previous section (Corollary 4.4), the preordering P(K1) is stable. Note that K1 is a basic
closed set since dim(K1) ≤ 1 (see, for instance, [1, Propositions VI.5.1 and III.3.1]).

The morphism φ : C1 → C0 ⊆ An induces a homomorphism ϕ : R[x] → R[C1] of the
coordinate rings. Since K was assumed not to be contained in a proper affine-linear subspace,
the restriction of ϕ to L := span(1, x1, . . . , xn) is injective. We consider L as a linear subspace
of R[C1]. Let Σ = ΣR[C1]

2, and choose 1 = h0, h1, . . . , hr ∈ R[C1] with P(K1) = h0Σ + · · ·+
hrΣ. Since P(K1) is stable, there exists a tuple W = (W0, . . . ,Wr) of finite-dimensional linear
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subspaces Wi ⊆ R[C1] such that L ∩ P(K1) is contained in

MW = ΣW0 + h1ΣW1 + · · ·+ hrΣWr ;

see 2.3. By Corollary 2.5 this implies that we have found a semidefinite representation for
conv(φ(K1)) = K.

Example 5.2. To illustrate the construction in the proof of Theorem 5.1, let us consider
the (rational) affine curve C0 with equation

y2 + x2(x− 1)(x− 2) = 0.

The set C0(R) ⊆ R2 is compact and has the origin as an isolated point. To construct a
semidefinite representation for the convex hull K of C0(R), we work in A1 = A′0 × R, where
A′0 is the integral closure of A0 = R[C0], i.e.,

A′0 = R[x, z]/
(
z2 + (x− 1)(x− 2)

)
(where y = xz). Using the elements 1 = (1, 1), u = (x, 0), v = (z, 0), and e = (1, 0) of A1,
we let L = span(1, u, uv), W = span(1, e, u, v), and U = WW = span(1, e, u, v, u2, uv). The
relaxation for K obtained from this data is exact. Using the basis 1− e, e, u, v for W , we get
K as the set of all (ξ, η) ∈ R2 for which there exist a, b, c ∈ R with

1− c 0 0 0
0 c ξ a
0 ξ b η
0 a η 3ξ − b− 2c

 � 0.

For the reader’s convenience we include the details of the argument: Since v2 = −u2+3u−2e,
we get, for

µ = µ1 + cµe + xµu + aµv + bµu2 + yµuv ∈ U ′

a general linear form, the matrix

M = M(x, y, a, b, c) =


1− c 0 0 0

0 c x a
0 x b y
0 a y 3x− b− 2c


with respect to the basis 1 − e, e, v of W . This matrix represents the pull-back of µ to a
symmetric bilinear form on W , via the product map W ×W → U . Exactness of the relaxation
is shown as follows. Let S = {(ξ, η) : ∃ a, b, c M(ξ, η, a, b, c) � 0}, and let K be the convex
hull of C0(R). The inclusion C0(R) ⊆ S is obvious. To prove S ⊆ K, let M(ξ, η, a, b, c) � 0.
Then 0 ≤ c ≤ 1. Exploiting the 2× 2 minors M23 and M34 we get η2 + ξ2(ξ2 − 3ξ + 2c) ≤ 0.
This implies that (ξ, η) ∈ K when c = 0 or c = 1. Let 0 < c < 1. Since the right bottom 3× 3
submatrix of M is homogeneous, we can scale with 1

c and get M( ξc ,
η
c ,

a
c ,

b
c , 1) � 0. By what

was just remarked we have ( ξc ,
η
c ) ∈ K and hence (ξ, η) ∈ K as well.
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Remark 5.3. It was already mentioned that the dimension hypothesis dim(K) ≤ 1 in
Theorem 5.1 is essential, according to [28]. Similarly, this hypothesis is also essential for
the stability result, Theorem 4.4, from which Theorem 5.1 was derived. Indeed, there does
not exist any compact semialgebraic set K ⊆ Rn with dim(K) ≥ 2 such that the saturated
preordering P(K) is finitely generated and stable. This follows from the main result of [24].

6. Semidefinite representations in the general case. Using the compact case, we now
establish semidefinite representations for the closed convex hulls of arbitrary one-dimensional
semialgebraic sets and will deduce the dimension two case of the Helton–Nie conjecture. I
am indebted to Tim Netzer, who showed me how to obtain semidefinite representations for
noncompact closed convex sets from such representations for compact sets.

Theorem 6.1. Let K ⊆ Rn be the closed convex hull of a semialgebraic set of dimension
≤ 1. Then K is a spectrahedral shadow.

6.2. Before we start the proof, we need to recall a few notions on convex sets and cones,
for which we refer the reader to [20, Theorems 8.1 and 8.2]. Given a nonempty closed convex
set K ⊆ Rn, the recession cone of K is

rc(K) = {x ∈ Rn : K + x ⊆ K}

and is a closed convex cone. Note that rc(K) can also be described as the set of all existing
limits limν→∞ aνxν in Rn, where xν is a sequence in K and aν is a null sequence of positive real
numbers. The homogenization Kh of K is the closure of the convex cone Kc = {(t, tx) : t ≥ 0,
x ∈ K} in R× Rn = Rn+1 and is described as

Kh = Kc ∪ {(0, y) : y ∈ rc(K)}.

The original set K is recovered from its homogenization as K = {x ∈ Rn : (1, x) ∈ Kh}. The
extreme rays of Kh are the rays spanned by points (1, x) with x ∈ Ex(K), together with the
rays spanned by points (0, y) where R+y is an extreme ray of rc(K).

6.3. Let S ⊆ Rn be a semialgebraic set. A ray R+u (with 0 6= u ∈ Rn) will be called an
asymptotic direction of S at infinity if there exist continuous semialgebraic paths a(t) in R
and x(t) in S (with 0 < t ≤ 1) such that a(t) > 0, a(t)→ 0, and a(t)x(t)→ u for t→ 0.

Proposition 6.4. Let S ⊆ Rn be a nonempty closed semialgebraic set, and let K = conv(S)
be its closed convex hull.

(a) Each extreme point of K is contained in S.
(b) Each extreme ray of rc(K) is an asymptotic direction of S at infinity.

Without the hypothesis that S is semialgebraic, assertion (a) certainly remains true as
long as S is bounded, but we are not sure about the general case.

Proof. For the proof of both parts we can assume rc(K)∩ (−rc(K)) = {0}. (Otherwise K
contains a line, which implies that Ex(K) = ∅ and rc(K) has no extreme ray.) We are first
going to show that for any ξ ∈ K there exists u ∈ rc(K) with ξ − u ∈ conv(S); note that this
implies Ex(K) ⊆ conv(S) and hence (a). Let ξ ∈ K. By the curve selection lemma and by
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Carathéodory’s lemma, there exist continuous semialgebraic paths ai(t) in [0, 1] and xi(t) in
S, for i = 0, . . . , n and 0 < t ≤ 1, such that

∑n
i=0 ai(t) ≡ 1, and such that

(4) x(t) =
n∑
i=0

ai(t)xi(t)

converges to ξ for t → 0. Note that the limit αi := limt→0 ai(t) exists in [0, 1] for every
0 ≤ i ≤ n since the functions ai(t) are semialgebraic, and note that

∑
i αi ≡ 1.

We claim that the curves ai(t)xi(t) (i = 0, . . . , n) are bounded for t→ 0. Indeed, assume
that ai(t)xi(t) is unbounded for at least one index i. Since the ai(t)xi(t) have Puiseux–Laurent
expansions in t for small t > 0, we see that there exists a minimal rational number q > 0
such that, for every 0 ≤ i ≤ n, the curve tqai(t)xi(t) is bounded and therefore the limit
ui := limt→0 t

qai(t)xi(t) exists in Rn. Then ui ∈ rc(K) for every i, and ui 6= 0 for at least one
index i. Multiplying (4) with tq shows that

∑n
i=0 ui = 0, contradicting rc(K)∩(−rc(K)) = {0}.

So the curves ai(t)xi(t) are all bounded. Hence the limits ui := limt→0 ai(t)xi(t) exist
in Rn. If xi(t) is unbounded, then αi = 0 and ui ∈ rc(K). If xi(t) is bounded, then ξi =
limt→0 xi(t) exists in S, and ui = αiξi. Let y denote the sum of the ui for those indices i
for which xi(t) is bounded, and let u be the sum of the remaining ui. Then y ∈ conv(S),
u ∈ rc(K), and ξ = y + u. This proves our assertion and hence (a).

The proof of (b) is similar. After making a translation we can assume 0 ∈ K. Let
0 6= u ∈ rc(K). Similar to (4) we have

1

t
u− w(t) =

n∑
i=0

ai(t)xi(t)

(0 < t ≤ 1) with semialgebraic paths ai(t) in [0, 1] and xi(t) in S, where
∑

i ai(t) ≡ 0 and
w(t) is a correction term with |w(t)| < 1. Multiplication with t gives

u− tw(t) =

n∑
i=0

tai(t)xi(t).

For t→ 0, the summands on the right remain bounded, as shown above. Therefore the limit
ui = limt→0 tai(t)xi(t) exists in Rn for i = 0, . . . , n, and R+ui is an asymptotic direction of S
at infinity (see 6.3) if ui 6= 0. From u =

∑
i ui we see that if R+u is an extreme ray of rc(K),

then R+u = R+ui for some i, which proves (b).

6.5. We now give the proof of Theorem 6.1. Let S ⊆ Rn be a nonempty semialgebraic
set of dimension at most one, and let K = conv(S) be its closed convex hull. In order to
prove that K is a spectrahedral shadow, we may assume rc(K) ∩ (−rc(K)) = {0}. (Indeed,
U = rc(K) ∩ (−rc(K)) is a linear subspace of Rn, and K + U ⊆ K. If π : Rn → Rn/U is the
quotient map, then π(K) = π(S), and the recession cone R of π(K) satisfies R∩ (−R) = {0}.
A semidefinite representation for π(K) immediately gives one for K.) For the homogenization
Kh ⊆ Rn+1 of K (see 6.2) this implies that Kh ∩ (−Kh) = {0}. So the dual cone (Kh)∗ of
Kh in Rn+1 is full-dimensional, and we can pick an interior point w of (Kh)∗. The convex set

K1 := {x ∈ Kh : 〈x,w〉 = 1}
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is compact, and Kh is (isomorphic to) the homogenization of K1. Indeed, since 〈y, w〉 > 0 for
0 6= y ∈ Kh, we have Kh = {tx : x ∈ K1, t ≥ 0}, and the right-hand set is closed and hence
equal to Kh

1 .
The extreme rays of the convex cone Kh correspond to the extreme points of K and to the

extreme rays of rc(K); see 6.2. By Proposition 6.4(a), Ex(K) ⊆ S has dimension ≤ 1. The set
S has only finitely many asymptotic directions at infinity since dim(S) ≤ 1, and so rc(K) has
only finitely many extreme rays by Proposition 6.4(b). Considering the set of extreme rays
of Kh as a subset of the unit sphere in Rn+1, this set therefore has dimension ≤ 1. It follows
that the set Ex(K1) of extreme points of K1 has dimension ≤ 1 as well. So we can apply
Theorem 5.1 to K1 and conclude that K1 is a spectrahedral shadow. By Lemma 6.6 below,
this implies that the cone (K1)

c = (K1)
h ∼= Kh (first equality holds since K1 is compact) is

a spectrahedral shadow as well. This completes the proof of Theorem 6.1 since K, being an
affine-linear section of Kh, is again a spectrahedral shadow.

Lemma 6.6. Let K ⊆ Rn be a convex set. If K is a spectrahedral shadow, the same is true
for the convex cone Kc ⊆ R× Rn (see 6.2).

Proof. This is certainly well known: Assume

K = {x ∈ Rn : ∃ y ∈ Rm A+M(x) +N(y) � 0},

where M(x), N(y) are linear systems of symmetric matrices. Then Kc is the set of all
(t, x) ∈ R× Rn for which there is (s, y) ∈ R× Rm with

tA+M(x) +N(y) � 0,

(
t xi
xi s

)
� 0 (i = 1, . . . , n).

The proof of Theorem 6.1 is therefore complete. We can easily extend the theorem to
closed conic hulls.

Corollary 6.7. Let S ⊆ Rn be a semialgebraic set, and let S1 := { x|x| : 0 6= x ∈ S} be its

radial projection to the (n − 1)-sphere. If dim(S1) ≤ 1, then the closed conic hull cone(S) of
S is a spectrahedral shadow.

Proof. Here cone(S), the convex cone generated by S, consists of all finite linear combi-
nations of elements of S with nonnegative coefficients. For the proof consider K := conv(S1),
a compact convex set in Rn that is a spectrahedral shadow by Theorem 6.1. By Lemma 6.6,
the cone Kc = Kh ⊆ R × Rn of K is a spectrahedral shadow as well. Since cone(S) is the
closure of the projection of Kc to Rn, the assertion of the corollary follows.

Now we combine Theorem 6.1 with results of Netzer to show the following theorem.

Theorem 6.8 (Helton–Nie conjecture in dimension two). Every convex semialgebraic subset
of R2 is a spectrahedral shadow.

Proof. Let K ⊆ R2 be a convex semialgebraic set. To prove that K has a semidefinite
representation, we first consider the case when K is closed. If K contains a line, the assertion is
obvious by reduction to a (closed) convex subset of R. So we assume rc(K)∩ (−rc(K)) = {0}.
Then K = conv Ex(K) + rc(K) = conv Ex(K) + rc(K) (Minkowski sum; see [20, Theorem
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18.5]), and the set Ex(K) is semialgebraic of dimension ≤ 1. By Theorem 6.1, conv Ex(K) is
a spectrahedral shadow. Since rc(K) is clearly a spectrahedral shadow, being a closed convex
cone in R2, we see that K is one as well.

Now let K ⊆ R2 be an arbitrary convex semialgebraic set. We can assume that K has
nonempty interior. Let M be the set of points in the boundary ∂K = ∂K that do not lie in K.
Then M is a semialgebraic set with dim(M) ≤ 1, and we can decompose M set-theoretically
as follows. Let M0 be the relative topological interior of M ∩ Ex(K) inside ∂K, and let F be
the set of one-dimensional faces of K. The supporting line of every F ∈ F is an irreducible
component of the Zariski closure of ∂K. Therefore the set F is finite. For each F ∈ F, let
MF = F ∩M . Moreover, let HF be the open halfplane with HF ∩K 6= ∅ whose boundary line
contains F , and let KF = HF ∪ (F ∩K) = HF ∪ (HF ∩K). Then M is the union of M0 with
finitely many extreme points of K and with

⋃
F∈FMF . Accordingly, K is the intersection of

K0 := K rM0 with finitely many sets Kξ := K r {ξ} (where ξ ∈ Ex(K)) and with the sets
KF (F ∈ F).

Since any finite intersection of spectrahedral shadows is a spectrahedral shadow, it suffices
to show that each of K0, Kξ, and KF as above has a semidefinite representation. Each of
the sets KF is a union of an open halfplane H with a convex subset of the line ∂H. Using
the result of Netzer and Sinn [12], such a KF has a semidefinite representation. (Due to
the elementary nature of this situation, one can easily find an explicit such representation
directly.) The sets Kξ (ξ ∈ Ex(K)) have semidefinite representations by [11, Proposition 3.1].
For K0 we employ Netzer’s construction from [11]. Let N = ∂K rM0, a closed subset of ∂K
with K0 = int(K) ∪N , and let T = conv(N). Then T is a closed convex subset of K and is
a spectrahedral shadow by Theorem 6.1. By construction, and by Proposition 6.4, T ∩ ∂K =
N = ∂K rM0. Using the notation introduced in [11], let (T " K) denote the union of the
relative interiors of all the faces of K that meet T . We see that (T " K) = int(K)∪N = K0.
By [11, Theorem 3.8], (T " K) is a spectrahedral shadow, which proves our theorem.

Homogenizing, we see that the Helton–Nie conjecture holds also for convex cones in R3.

Corollary 6.9. Every semialgebraic convex cone C ⊆ R3 is a spectrahedral shadow.

Proof. We may assume C∩(−C) = {0}. In fact we easily reduce to the case where C 6= {0}
and there exists u ∈ R3 with 〈u, x〉 > 0 for every 0 6= x ∈ C. Let L := {x ∈ R3 : 〈u, x〉 = 1}.
Then K := C ∩ L has a semidefinite representation by Theorem 6.8. Since C = {tx : x ∈ K,
t ≥ 0} is a linear image of the cone Kc and Kc has a semidefinite representation by Lemma
6.6, we are done.

7. Stability in the virtually compact case.

7.1. Let C be an irreducible affine curve over R, and let K ⊆ C(R) be a closed semial-
gebraic subset. Adopting the terminology of [22], [25], we say that K is virtually compact if
there exists a nonconstant regular function f ∈ R[C] that is bounded on K. Equivalently, K
is virtually compact if and only if there exists an irreducible affine curve C1 containing C as
a Zariski open subset, in such a way that the points in C1 rC are nonsingular on C1 and the
closure K1 of K in C1(R) is compact.

When the affine curve C is not necessarily irreducible, a closed semialgebraic set K ⊆ C(R)
is called virtually compact if K ∩ C ′(R) is virtually compact on C ′ for every irreducible
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component C ′ of C. A closed semialgebraic set K ⊆ Rn of dimension ≤ 1 is called virtually
compact if it has this property with respect to its Zariski closure C.

Examples 7.2. A closed semialgebraic set K ⊆ R is virtually compact only if it is compact.
For more interesting examples let C be an irreducible plane curve with equation f(x, y) = 0.
If the highest degree homogeneous part of f has a nonreal linear factor, then every closed
semialgebraic set K ⊆ C(R) is virtually compact. For yet another class of examples consider
plane curves C with equation y2 = p(x), where p ∈ R[x] is monic and separable with deg(p) =
d. If d = 2 or d is odd, only compact sets K ⊆ C(R) are virtually compact. If d ≡ 0
(mod 4), then K ⊆ C(R) is virtually compact if and only if K is contained in the union of a
bounded set with either the upper or the lower halfplane. If d ≡ 2 (mod 4), d ≥ 6, a similar
characterization holds with upper or lower halfplanes replaced by the unions of diagonally
opposite quadrants.

We show that the analogues of the stability results from section 4 remain true for virtually
compact sets K.

Theorem 7.3. Let C be an irreducible nonsingular affine curve over R, and let K ⊆ C(R)
be a closed semialgebraic set that is virtually compact. Then the saturated preordering P(K)
in R[C] is finitely generated and stable.

Proof. That P(K) is finitely generated was already proved (in greater generality) in [22,
Theorem 5.21]. We are going to reprove this fact here using a different reasoning because we
will need the same argument to prove stability. Since Theorem 7.3 has already been proved
when K is compact, we can assume that K is not compact. In particular, the set K is infinite.

Let C1 and K1 be as in 7.1. Then C1 is a nonsingular irreducible affine curve containing
C as a Zariski open set, and the closure K1 of K in C1(R) is compact. Note that R[C1]
is a subring of R[C]. Let T = PC(K), the saturated preordering of K in R[C], and let
T1 = PC1(K1), the saturated preordering of K1 in R[C1]. Since K1 is compact, the preordering
T1 in R[C1] is finitely generated according to Theorem 4.1. So there are nonzero elements
1 = h0, h1, . . . , hr ∈ R[C1] that generate T1 as a quadratic module in R[C1]. (We can even
do this with r ≤ 2; see the remarks after Theorem 4.1.) We will prove that T = PC(K) is
generated by h0, . . . , hr as a quadratic module in R[C].

Let C̃ be the nonsingular projective curve over R that contains C1 as an open dense
subscheme. We consider Weil divisors on C̃ and regard them as conjugation-invariant Weil
divisors on the complexified curve C̃C. Since C̃(R) 6= ∅, we have Pic(C̃) = Pic(C̃C)Gal(C/R).
Let J be the Jacobian variety of C̃, an abelian variety over R.

Let C1(C) r C(C) = {Q1, . . . , Qs}, and let 0 6= f ∈ R[C] with f |K ≥ 0. For i = 1, . . . , s
let mi ≥ 0 be an integer satisfying 2mi + ordQi(f) ≥ 0. Consider the divisor

D =
s∑
i=1

miQi

on C̃. Choose a point Q ∈ C̃(C) rC1(C), and let E = Q+Q (again a divisor on C̃, the case
Q = Q is allowed, the bar denoting complex conjugation). There exist integers l, n ≥ 1 such
that the divisor nE − lD has degree zero and such that the divisor class [nE − lD] ∈ J(R)
lies in the identity connected component J(R)0 of the compact real Lie group J(R). Fix an
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arbitrary R-point P0 in the interior int(K) of K relative to C(R). By the argument in [21,
Lemmas 2.11 and 2.12], there is an integer k ≥ 1 such that, for every α ∈ J(R)0, there exist
2k points P1, . . . , P2k ∈ int(K) with

α =
2k∑
j=1

[Pj − P0].

Applying this to the divisor class α := [nE − lD − k(2P0 − E)] (which lies in J(R)0; cf. [21,
Lemma 2.6]), we conclude that there exist P1, . . . , P2k ∈ int(K) such that

lD +
2k∑
j=1

Pj ∼ (n+ k)E

on C̃. Since supp(E) is disjoint to C1, there exists 0 6= h ∈ R[C1] such that the divisor of h
on C1 is lD+

∑2k
j=1 Pj . Since ordQi(h

2f) ≥ 2lmi+ ordQi(f) ≥ 0, we see that h2f lies in R[C1]
as well. Moreover, every zero of h on C is real and is an interior point of K. In addition, we
can ensure that h has no common zero with any of h0, . . . , hr.

Since f ≥ 0 on K, and since K is dense in K1, it follows that h2f ≥ 0 on K1. So h2f ∈ T1,
which means that there is an identity

h2f =
r∑
i=0

∑
j

p2ijhi

with suitable pij ∈ R[C1]. Since any zero of h on C is real and is an interior point of K, it
follows that each summand p2ijhi of the right-hand sum is divisible (inside R[C]) by h2; see
[21, Lemma 0.1]. By the choice of h, none of the hi vanishes in any of the zeros of h. Hence
we even have h | pij inside R[C] for all indices i, j. Dividing we conclude that f lies in the
quadratic module generated by h0, . . . , hr in R[C].

We have thus proved that T = PC(K) is finitely generated in R[C]. To prove that T is
stable is equivalent to proving the following assertion (cf. [24, Corollary 3.8]): Let R be any
real closed extension field of R. Then the preordering TR generated by T in R[C] is saturated.

To prove this, let 0 6= f ∈ R[C] be nonnegative on KR, where KR denotes the extension of
the semialgebraic set K ⊆ C(R) to a semialgebraic subset of C(R). Arguing literally as in the
first part of the proof, we find h ∈ R[C1] (sic) such that h2f ∈ R[C1], and such that any zero
of h on C is real and is an interior point of K in which h0 · · ·hr does not vanish. Completing
the argument exactly as before, we see that f lies in the quadratic module of R[C] generated
by h0, . . . , hr. In other words, f ∈ TR, as desired. The theorem is proved.
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