










a 
', ' • I J ...... 

• Posiliva conlrol 
• PosiUva COnlfOl + OTT 

Negative control 
• Negallvo control ... OTT 

Cross-link: 0% 

b c 
• Positive control 
• Posit ive control .f- OTT 

PN1 ·PN2 
• PNI·PN2 + OTT 

Cross-link: 4 1.6% 

100 200 300 400 500 600 700 100 200 300 400 500 600 700 100 200 300 400 500 600 700 

of the N298C mutation, whereas the reduc­
tion of M[C values due to d isulfide bond 
formation was observed only by a two-fold 
reduction in M[C for TPP a nd berberine. 
Cross-linking the PCI subdomain with the 
loop leads to a large reduction o fM[C values 
for all substrates tested (Table 2). This reduc­
tion was slightly more for the Q229C_TS83C 
mutant than for the Q 229C_RS86C 
mutant, which might correla te with the 
amount of cross- linking observed (69% 
and 46%, respectively; Table 1). The PCI 
subdomain contains residues (Phe610, 
Phe61S, Phe61 7, Phe628, Val61 2 and I1e626) 
constituting part of the hydrophobic binding 
pocket that is present exclusively in the 
T monomer (Supplementary F ig. 4 online). 
Restriction of the subtle PC I subdomain 
movement in the 100p-PC l mutant results 
in a considerable loss of activity, which 
might reflect the importance of this sub­
domain movement for binding and trans­
porting drugs. [n summary, the data 
presented here provide evidence for an asym­
metric conformation of AcrB in vivo and 
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Figure 3 Effect of Dn on N-phenylnaphthyl amine (NPN) efflux by E. coli produci ng 
AcrB_cI mutants wit h disul fi de lin ks between the indicated subdomains. (a) AcrB_c l was used as a 
pos it ive control , and the nonfunctiona l D407N_D408N mutant as a negat ive control. (1Hl) Mutants with 
cross-links between the PC2 subdomai n and TM7 (S5 6 2C_T837C; b) , the PN I and PN 2 s ubdoma ins 
(S I 32C_A294C; c), the PN 2 subdomain and TM I (V32C_N298C; d) and the loop and PC I subdomain 
(Q229C_T583C; e) have redu ced NPN efflux activity, and addition of Dn restores in part the activity by 
reducing the disulfide c ross- links. (I) The NPN efflux activi ty of the loop-DC subd omai n (V225C_A7 77C) 
c ross-linked mutant was a lmost unaffected. Minimal inhibitory concentration (MIC) determinations 
confirm these results (Table 2 and Supplementary Fig. 2) . au , arbitrary units . 

o monomer, owing to structural constraints l9. Analytical ultracen­
trifugation confirmed the binding of two DARPins to trimeric AcrB. 
Therefore, trimeric AcrB in detergent solution seems to be present 
predominantly in an asymmetric conformation, because the sym­
metric conformation would be expected to bind three DARPin 
molecules per trimeric AcrB. 

The formation of disulfide bridges between AcrB monomers using 
cysteine-substituted VallOS and Gln1l 2 was reported in a study in 
which amino acid residues Asp99 to Pro1l9 of the pore helix were 
systematically exchanged for cysteines25. The cross-linking results were 
interpreted according to the symmetric structure, but could not explain 
the explicit preference for the V l OSC or Q1l 2C intermolecular cross­
linking or the lack of cross-link in the N1 09C mutant as, based on the 
symmetric AcrB structu re, this residue would be within the su itable 
cross-linking range of below 6.4 A. [nterestingly, according to the 
asymmetric structure, only VallOS and Glnl12 have an appropriate 
distan ce for cross- linking, but not Asn109 (Supplementary Table 1 
online). [n accordance, the cross-linked VllSC and Q1l 2C mutants 
conferred a global reduction of M[ C for all substrates tested25. These 
results can be taken as another line of evidence that AcrB trimer exists, 
probably exclusively, in an asymmetric conformation in the membrane. 

The observed amount of cross-linking for the PN2-TMl and PN1 -
PN2 mutants (41-42%) sugges ts that more than one monomer per 
trimer is cross-linked. Assuming that no cross-linking occurs at 
distances above the theoretical value of 6.4 A between the Sy atoms, 
it must be concluded that more than one monomer in the trimer can 
adopt the L or T conformation, at leas t in the PN I -PN2 or PN2-TM 1 
mutant, respectively. This result implies that the AcrB trimer has the 
flexibility to comprise more than one monomer in the sam e con­
formational state. There is a clear agreement between the M[C values 
and NPN effl ux activity fo r the PN I-PN2, PC2-TM7, loop-DC and 
100p-PCl mutants (Supplementary Fig. 2) . For the PN2-TMI 
(V32C_N298C) mutant, the recovery of the NPN effl ux activity 
upon trea tment with DTT clearly showed the inhibition of 
V32C_N298C cross-link formation in addition to the inhibitory effect 
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support the implied functiona l ro tation of 
the AcrB trimer as constituting the monomer conforma tional cycling 
mechanism required for drug transport. 

METHODS 
Bacterial s trains, plasmids and growth conditions. E. coli OH5o:26 and E. coli 
Machl -TI (Invitrogen) were routinely used as hosts fo r cloning procedures. 
E. coli C43(DE3)27 harboring pET24acrBI'l is

l7 was used for AcrB overproduc­
tion. LB med ium and LB agar28 were used for routine bacterial g rowth at 37 °C. 
Kanamycin (Applichem) was used at 50 ml- I (Kan50). 

Construction of acrB knockout. T he acrB gene on the chromosome of E. coli 
BW25 11 3 was deleted as described29. Orug resistance of E. coli BW25 113t.acrB 
could be fully restored by constitutive 'lea ky' expressio n of acrB fro m the 
pET24acrBH is plasmid. 

Site-directed mutagenesis. A der ivative of pET24acrBHis, pET24acrB_cl. 
encodes a cysteine-free variant of AcrB (C493A_C887 A), which we designated 
AcrB_cl . It was used as a template fo r single- and double-cysteine substitu tions. 
Site-directed mutagenesis was d one using the Quikchange p rotocol (Strata­
gene). All cysteine substitutions were verified by sequencing a nd , for clo nes 
comprising the double-cysteine mutatio ns, the enti re acrB gene was sequenced. 

Drug susceptibility assays. Determi natio n of the minimal inhibitory concen­
trat io n (MIC) was done as fo llows. Aliquo ts ( 1.5 of precultures of E. coli 

ca rrying pET24acrB_cI with and without cys teine substi tutions 
grown in LB Kan50 (4 ml, final 00600 between 0.5 and I) were used to 
inoculate LB Kan50 (1 50 fll ) with two-fold serial dilutions o f the indicated 
d rug in wells of a 96-well microtiter plate. After incubat io n (37 °C and 
160 rev min- I) of 22-24 h, the 00600 was determined . Control grow th without 

added d rugs lead to a maxim um 00600 of 1.8- 2.0. and drug concentra tion of 
samples with an 0 0 600 of less than 0.58 (turbidit y visual detection limi t) was 
considered as minimal inhibitory concentration (MIC). Each assay was 
repeated at least three times. 

N-Phenylnaphthylamme (NPN) efflux assay. Cultures of E. coli 
BW 25J 13t.ncrB harboring pET24acrB_cI with and without cysteine mutations 
were grown in LB Kan50 (40 ml , 37 °C and 280 rev min- \) to a fi nal 00600 of 

between 0.85 and J.J , harvested , and resuspended in 50 mM potassium 
phosphate buffer (KPi), pH 7, I mM MgSO,\ (4 ml). Cells were de-energized 



in the presence of carbonyl cyanide m-chlorophenylhydrazone (CCCP; 200 pM) 
for 10 min on ice. CCCP was removed by washing the cells three times with 
50 mM KPj. pH 7. I mM MgSO'1 (4 ml). Cell density was adjusted to an OD600 
of 0.2. and NPN (10 pM) and. if required. Dl-DTT (10 mM) were added. 
Incorporation of NPN into the inner membrane was followed by measuring 
fluorescence (excitation: 355 nm. emission: 420 nm) until saturation was reached 
(6 min) . Cells were re-energized by addition of glucose (0.2% (w/v) fina l 
concentration) and the fluorescence signal was followed for another 12 min. 

SDS-PAGE. Double-cys teine mutants of AcrB_c1 were overproduced and 
purified as described9,17. Before solubiliz.1t ion. membranes were incubated with 
N-ethylmaleimide (NEM. Sigma; 5 mM fina l concentration) for 30 min at room 
temperature. Purified protein (2 pg) was subjected to SDS-PAGE30 in the pre­
sence or absence of ~-mercap toethano l and stained with coUoidal coomassie31 . 

Western blot analysis. Cultures of E. coli BW25113LlacrB carrying 
pET.24acrB_c1 with and without additional mutations were grown in LB 
Kan50 (4 ml) to an OD600 of 0.6--1.0 before harvest (0.8 ml). The pellet was 
resuspended in SDS-PAGE loading buffer (0.05 ml x OD600 of the harvested 
culture) including 2% (v/v) ~-mercaptoetha nol and boiled for 5 min. Under 
nonreducing conditions. NEM (5 mM fina l concentration) replaced 
~-mercaptoethanol in the loading buffer and samples were incubated for 
30 min at room temperature before boiling. Each sample (20 pI) was subjected 
to SDS-PAGE3o and blotted onto nitroceUulose membrane32. AcrB_c1 and its 
mutant derivatives were immunodetected with anti -AcrB rabbit antibod ies 
(Neosystem) at a 1:104 dilution. Bound immunoglobulins were probed with 
mouse anti-rabbit antibody coupled to horseradish peroxidase and visualized 
using the enhanced chemiluminescence ECl system (Pierce). 

Q uantification of disulfide bridges by mass spectrometry. An overview of the 
workflow is presented in Supplementary Figure 3. Membranes of E. coli C43 
(DE3) containing overproduced double-cysteine mutants of AcrB_c1 were 
solubilized in the presence of NEM. and the detergent extract was applied on 
a nickel- nitrilotriacetic acid (NiH -NTA) gravity flow column (Qiagen) . The free 
thiol groups were alkylated on the column using NEM (10 mM) in the presence 
of guanidine hydrochloride (2 M). The disulfide linkages were reduced using 
DTT (10 mM) and the newly generated free thiol groups were modified. after 
removal of DTT. with N-methylmaleimide (NMM). Alternatively. the protocol 
was carried out starting with the NMM modification. followed by reduction of 
the disulfide bonds and NEM modification. The NEM- and NMM-treated 
mutant proteins were subsequently purified. and digested using cyanogen 
bromide (CNBr) and trypsin before analysis using MALDI-TOFn The 
signal-Io-noise ratio of the peaks originating from peptides labeled with NEM 
and NMM were used for the quantificat ion of the disu lfide bonds. 

Other methods. More detailed descriptions of the construction of the acrB 
knockou t. the NPN efflux assay and the quantifica tion of disulfide bridges by 
MS is provided in the Supplementary Methods online. 
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