

















in the presence of carbonyl cyanide m-chlorophenylhydrazone (CCCP; 200 pM)
for 10 min on ice. CCCP was removed by washing the cells three times with
50 mM KPj, pH 7, 1 mM MgSO, (4 ml). Cell density was adjusted to an ODgqq
of 0.2, and NPN (10 uM) and, if required, DL-DTT (10 mM) were added.
Incorporation of NPN into the inner membrane was followed by measuring
fluorescence (excitation: 355 nm, emission: 420 nm) until saturation was reached
(6 min). Cells were re-energized by addition of glucose (0.2% (w/v) final
concentration) and the fluorescence signal was followed for another 12 min.

SDS-PAGE. Double-cysteine mutants of AcrB_cl were overproduced and
purified as described®!”. Before solubilization, membranes were incubated with
N-ethylmaleimide (NEM, Sigma; 5 mM final concentration) for 30 min at room
temperature. Purified protein (2 pg) was subjected to SDS-PAGE? in the pre-
sence or absence of B-mercaptoethanol and stained with colloidal coomassie®'.
Western blot analysis. Cultures of E. coli BW25113AacrB carrying
pET24acrB_cl with and without additional mutations were grown in LB
Kan® (4 ml) to an ODgyy of 0.6-1.0 before harvest (0.8 ml). The pellet was
resuspended in SDS-PAGE loading buffer (0.05 ml x ODggp of the harvested
culture) including 2% (v/v) B-mercaptoethanol and boiled for 5 min. Under
nonreducing conditions, NEM (5 mM final concentration) replaced
B-mercaptoethanol in the loading buffer and samples were incubated for
30 min at room temperature before boiling. Each sample (20 pl) was subjected
to SDS-PAGE*® and blotted onto nitrocellulose membrane2. AcrB_cl and its
mutant derivatives were immunodetected with anti-AcrB rabbit antibodies
(Neosystem) at a 1:10* dilution. Bound immunoglobulins were probed with
mouse anti-rabbit antibody coupled to horseradish peroxidase and visualized
using the enhanced chemiluminescence ECL system (Pierce).

Quantification of disulfide bridges by mass spectrometry. An overview of the
workflow is presented in Supplementary Figure 3. Membranes of E. coli C43
(DE3) containing overproduced double-cysteine mutants of AcrB_cl were
solubilized in the presence of NEM, and the detergent extract was applied on
a nickel-nitrilotriacetic acid (Ni>*-NTA) gravity flow column (Qiagen). The free
thiol groups were alkylated on the column using NEM (10 mM) in the presence
of guanidine hydrochloride (2 M). The disulfide linkages were reduced using
DTT (10 mM) and the newly generated free thiol groups were modified, after
removal of DTT, with N-methylmaleimide (NMM). Alternatively, the protocol
was carried out starting with the NMM modification, followed by reduction of
the disulfide bonds and NEM modification. The NEM- and NMM-treated
mutant proteins were subsequently purified, and digested using cyanogen
bromide (CNBr) and trypsin before analysis using MALDI-TOF*, The
signal-to-noise ratio of the peaks originating from peptides labeled with NEM
and NMM were used for the quantification of the disulfide bonds.

Other methods. More detailed descriptions of the construction of the acrB
knockout, the NPN efflux assay and the quantification of disulfide bridges by
MS is provided in the Supplementary Methods online.
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