
Visual search is a widely used experimental paradigm
for investigating properties of the visual system. In re-
spective studies, participants have to decide as quickly
as possible whether a target item is present among a vari-
able number of distractor items or not. The results are
usually presented as so-called search functions (i.e., func-
tions that relate the response times to the number of dis-
tractors). The slopes and offsets of these functions pro-
vide valuable information about the efficiency with which
the items or item features are processed. For instance,
when the target differs from the distractors by a unique
feature, the search functions are flat (i.e., the decision
time or search time depends little on the number of dis-
tractors). On the other hand, when the target is defined
by a conjunction of certain features, the resulting search
function are usually steep.

A first prominent model that tried to account for these
results was the feature integration theory (FIT, e.g., Treis-
man, 1988; Treisman & Gelade, 1980; Treisman & Gor-
mican, 1988). FIT assumes that features produce activa-
tion on specific retinotopic feature maps. When the target
possesses a unique feature, the monitoring of the activa-
tion on the respective map is sufficient for deciding
whether a target is present. Since the coding of a simple
feature occurs in parallel across the visual field, this ex-
plains the flat search functions. In the case where the tar-
get is defined by a conjunction of features, the items have
to be checked by combining the features on a so-called
map of locations. Since this process requires attention, it
proceeds serially until the target is found, which accounts
for the observed steep linear search functions.

Meanwhile, however, the distinction between parallel
and serial search has been questioned. There have been
many results showing that search efficiency varies con-

tinuously, which suggests that such a dichotomy does not
hold (Duncan & Humphreys, 1989, 1992). A recent ac-
count that can explain a gradually varying search effi-
ciency is the Guided Search 2 (GS2) model, developed by
Wolfe and his colleagues (Chun & Wolfe, 1996; Wolfe,
1994; Wolfe, Cave, & Franzel, 1989). They assume, as do
Treisman and her colleagues, that item features produce
activation on respective retinotopic maps. But, different
from FIT, the activations that each item produces on the
different feature maps are summed and the result is rep-
resented on a so-called activation map. Search is based
on the activation on this map and proceeds serially. How-
ever, the order in which the items are checked is not ran-
dom but guided by the relative strength of the activations
on the activation map. Thus, when the target produces
the highest activation on the map, it is checked first. If
this occurs frequently across trials, a fast average search
time results.

A great advantage of GS2 is that it is implemented as
a computer program, so that search behavior can be sim-
ulated. For instance, Chun and Wolfe (1996) presented a
detailed flow chart and simulated search behavior under
different conditions. Although this is undoubtedly great
progress, as compared with verbally stated models, in
some cases one would prefer to have formulas that allow
one to compute the model’s behavior exactly. For instance,
one might want to specify some characteristics of the
model precisely. Also, comparing the performance of the
model for different parameter values might be faster and
easier with formulas. However, the greatest advantage of
formulas would probably be that they allow the model to
be fit to empirical data by means of minimization pro-
grams. Such a formal version for the search and decision
part of GS2 is presented in this article. Furthermore, two
examples are provided. In the first example, the exact val-
ues for search functions are provided, which were simu-
lated in Chun and Wolfe. In the second example, GS2 is
fit to empirical data.

As already mentioned, in GS2 it is assumed that the
items produce activations on the activation map. These
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activations can be described by random variables. Let Xs
and Xn be random variables representing target and dis-
tractor activations, respectively. The corresponding den-
sities are denoted by fs(x) and fn(x) and the distribution
functions by Fs(x) and Fn(x). Given a set size of m items,
there are m 2 1 or m distractors in target-present or target-
absent trials, respectively. We will first consider the case
in which a target is present.

Target-Present Trials
The crucial assumption of GS2 is that the items are

checked one by one in descending order of their activa-
tion strength. Thus, the higher the rank of target activa-
tion, the fewer steps that are required to find it. Let m be
the number of items in the display. We will first examine
the simple situation in which search always proceeds un-
til the target is found. In this case, search time T depends
only on the number of distractors whose activation ex-
ceeds that of the target. Let R denote a discrete random
variable representing this number. To compute the ex-
pected search time across trials, we must know the prob-
ability mass function P{R 5 r} of R.

Let a represent the target activation and assume that
the activation of an individual distractor exceeds this
value with probability q. We have to determine the prob-
ability that 0, 1, . . . , m 2 1 distractor activations are
larger than a. The event that r activations are above a
(successes) and m 2 1 2 r activations are not (failures)
can occur in as many ways as r letters S can be distrib-
uted across m 2 1 positions. The possible number of dis-
tributions is

where each has a probability of q r(1 2 q)m212r.
This shows that the number R of distractor activations

exceeding the target activation has a binomial distribu-
tion (cf., e.g., Ross, 1981) with parameters (m 2 1, q)

where q is given by

q 5 1 2 Fn(a).

However, in GS2, the situation is more complicated,
since the target activation is itself a random variable Xs.
To take this into account, we have to compute the respec-
tive probabilities by conditioning on the values of Xs.
This yields

By using Equation 1, we can compute the expected
search time E[T] for the target, given a set size of m. Let
pm(r) 5 Pm{R 5 r}, then we have

(2)

and

(3)

Here, t is the search and processing time per item, and
c is a constant representing the time required for differ-
ent processes such as stimulus coding and making the re-
sponse. As can be seen, when no distractor activation ex-
ceeds the target, nothing is added to the constant. Since it
is assumed that at least the location of one item is checked
in any case, the time consumed by this process is also
part of c.

When we combine Equations 2 and 3, we can compute
the variance of the search times by

Varm(T ) 5 Em[T 2] 2 Em[T ]2. (4)

The formulas so far can be used for calculating the ex-
pected time required for finding the target item. Since
the target is found in any case, there are no misses.

However, according to GS2, search does not always
proceed until the target is found. Rather, there is an acti-
vation threshold, and search is terminated when this
threshold is reached. Consequently, misses are possible
when the target activation is below that threshold, which
occurs with probability

P(miss) 5 Fs(th).

As can be seen, the miss rate is independent of set size.
It only depends on the threshold and on the distribution
of the target activation.

To take this search strategy into account, we consider
the probability mass function of R under the condition
that the target activation Xs is above the activation thresh-
old th. Thus, we consider only those cases in which the
target is found. This is in line with most studies in which
only correct responses are included in the calculation of
the mean search times (i.e., error trials are discarded).

The probability that the target activation is above
threshold is

P{Xs ³ th} 5 1 2 Fs(th).

Therefore, the probability mass function of R for this case
(r 5 0, 1, . . . , m 2 1) is

Equation 5 is similar to Equation 1, except that we con-
sider only target activations above threshold (i.e., inte-
gration starts from th). To guarantee that the probabilities
of the mass function sum up to 1, the first fraction was
included as a normalization factor.
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When we substitute the corresponding probability mass
function, we can use Equations 2 and 4 for computing the
mean and variances for the present case.

Target-Absent Trials
When no activation threshold is given, we have ex-

haustive search on target-absent trials. Therefore, the
search time is proportional to set size

Em[Tabsent] 5 c 1 t ? (m 2 1).

(Note that m 2 1 is used instead of m, because the time
for going to one item is already contained in c.)

On the other hand, when an activation threshold is as-
sumed, the search time on absent trials is determined by
the number of distractors whose activations are above
that threshold. Thus, we have to calculate the probability
that k 5 0, 1, . . . , m 2 1 of m 2 1 distractor activations
are above threshold. (Again, note that one location is
checked in any case, therefore m 2 1.) Let N denote a
random variable representing the number of activations
above activation threshold. This random variable has a
binomial distribution with parameters (m 2 1, q)

(6)

where q is the probability that a single distractor activa-
tion is above the activation threshold;

q 5 1 2 Fn(th).

Since the mean and variance of the binomial distribu-
tion given by Equation 6 is (m 2 1)q and (m 2 1)q (1 2 q),
the expected search time is

Em[T ] 5 c + t ? (m 2 1) q, (7)

and the variance

Varm(T ) 5 c + t2 ? (m 2 1) q (1 2 q). (8)

Example 1. In the first example, the derived formulas
are applied in order to compute the exact search times for
parameter values used in a simulation by Chun and Wolfe
(1996). The main goal of their simulation was to show
that an activation threshold can be used to terminate search
when no target is present. For the computations presented
here, the same parameter values as for their simulation
were used. As constant c, they chose 450 msec and, as
processing time per item t, a value of 50 msec. They fur-
ther assumed that target and distractor activations were
normally distributed, with mean 400 and 300 msec, re-
spectively. The standard deviation sn of the distractor ac-
tivation was set to 100, whereas the standard deviation ss
of the target distribution depended on that of the distrac-
tor distribution and on the target mean µs. Chun and Wolfe
related these parameters in such a way as to obtain a
slope ratio of approximately 2. The functional relation-
ship they used was

ss 5 sn ? , (9)

where d ¢ is defined by (cf. Green & Swets, 1966)

d ¢ 5 .

Given the parameters above, a standard deviation ss of
33.3 results.
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Figure 1. This figure shows the exact search times and variances obtained by applying the derived
formulas and using the same parameter values as in Chun and Wolfe (1996), who simulated their data.
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Figure 1 shows the resulting search functions that corre-
spond to the simulated data presented in Figure 4 of Chun
and Wolfe (1996). They obtained a slope of 20.5 msec/
item and of 9.5 msec/item for target-absent and target-
present responses, respectively. This corresponds to a ratio
of 2.16. Here, the respective slopes are 16.6 msec/item
and 8.07 msec/item, which gives a ratio of 2.07.

Chun and Wolfe (1996) included in their simulation
an adaptive mechanism that modifies the activation
threshold in such a way that, on average, the desired er-
ror rate is obtained. Here, a fixed threshold th was used
and set to 343, which corresponds to a miss rate of 4.36%
(Chun & Wolfe had a miss error rate of 4.3%). These pa-
rameters are sufficient to compute the mean search times
and their variances. In Figure 2, the corresponding prob-
ability mass functions are shown for the three employed
set sizes of 4, 10, and 16. Each function gives the prob-
ability that a certain number of distractor activations is
above that of the target. As can be seen, the maximum
probability of being above the target activation shifts to
a larger number of distractors with increasing set size.

Example 2. The second example serves to show how
the formulas can be used to fit GS2 to empirical data. To
make the example interesting and to demonstrate how
useful and flexible the present approach is, data were se-
lected that reflect a search asymmetry. This phenomenon
describes situations where the slopes of the search func-
tions change considerably when the role of target and
distractors are exchanged. Search asymmetries are still a
great challenge to visual-search theories. Although, for
instance, Treisman and Gormican (1988) discuss several
possible accounts for search asymmetries and relate them
to FIT, it remains unclear which one is valid or whether

other accounts might be more appropriate. What makes
the issue rather complex, is that search asymmetries oc-
cur for different types of items (e.g. Malinowski & Hüb-
ner, 2001; Treisman & Gormican, 1988; Wang, Cava-
nagh, & Green, 1994; Wolfe, 1994, 1998), and it is open
to question whether a single theory can account for all of
them.

Here we will consider the case in which the target dif-
fers from the distractors in degree on a quantitative di-
mension. The specific data that will be modeled are from
Treisman and Gormican (1988) and describe search be-
havior for line length. These authors found that search is
more efficient when a longer line has to be found among
shorter lines of the same orientation than vice versa.
They explain this type of search asymmetry by means of
a pooled-response account in combination with Weber’s
law. Treisman and Gormican assume that the activity elic-
ited by the items on the corresponding feature map is
pooled and the result is used to decide whether a target
is present or not. When target and distractors differ in
their activity levels, it follows from Weber’s law that it is
easier to find a high activity target among low activity
distractors than vice versa. Thus, they proposed that an
asymmetric discriminability was responsible for the search
asymmetry. To support their hypothesis, they addition-
ally varied discriminability by using an easy condition
and a difficult condition. In the former case, the differ-
ence in line length between target and distractors was
larger than in the latter case. Finally, they matched for
discriminability and, indeed, the search asymmetry van-
ished. Thus, altogether, their account is in line with the
data. However, as Treisman and Gormican mentioned, the
pooling account is not without problems. For instance,

Figure 2. The probability mass functions corresponding to the parameter values in the exam-
ple and the three set sizes of 4, 10, and 16. Each function gives the probability that a certain
number of distractor activations is above that of the target.
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with a pooled activation one cannot distinguish between
some high activations and many low ones. Therefore,
they suggested that the average activity in the pooled de-
tectors be considered instead.

Here, I demonstrate that, alternatively to the pooling
account, GS2 also can explain the data. This is done by
fitting the GS2 model to the search data for line length
in the easy and difficult conditions of Treisman and Gor-
mican (1988). The corresponding data points are shown
in Figure 3.

Four conditions were considered. A long line served
as target and short lines as distractors, or vice versa. More-
over, these two conditions were realized with line lengths
that were easy or difficult to discriminate. The four con-
ditions were labeled as easy long, easy short, difficult
long, and difficult short, where short and long denote the
target. Since Treisman and Gormican (1988) used three
different set sizes, there were six search times for each
condition: three for target-present responses, and three
for target-absent responses. Also, error rates were re-
ported. However, they were not only quite small but, un-
fortunately, misses and false alarms were summed.
Therefore, I decided to ignore the empirical error rates
and fix the activation threshold to a value that produces
5% misses. As a consequence, there were six data points
for each of the four conditions.

To keep the number of free parameters small, most of
the parameters were fixed to reasonable values. I chose
a value of 400 for the mean and 80 for the standard de-
viation of the distractor distributions. For calculating the

standard deviation of the target distribution I used Equa-
tion 9. Finally, I chose a reasonable value for the process-
ing time per item (50 msec). Thus, only the constant c and
the mean of the target distribution µs remained as free pa-
rameters. Indeed, when search asymmetries are mainly
due to discriminability, the varying of the mean activa-
tion of the target (i.e., d ¢) should be sufficient for pro-
ducing a search asymmetry also in connection with GS2.

The values of the free parameters were estimated by
fitting GS2 to the respective search times by means of a
minimization algorithm (the function “fminsearch” from
MATLAB) that tries to minimize the squared deviation
of the predicted search times from the empirical ones.
As expected, given these values of the fixed parameters,
a good fit could be obtained for both easy conditions. It
also turned out that the quality of the fit remained largely
unchanged even with moderately different values of the
fixed parameters. This led merely to different estimates of
the free parameters. In any case, the decrease in perfor-
mance from the condition with the long target (efficient)
to that with a short target (less efficient) could sufficiently
be modeled by a reduction of d ¢.

However, it was not possible to model the decrease in
performance from the easy to the difficult conditions sim-
ply by reducing d ¢. To obtain the steep search functions
for the difficult conditions, I also had to increase the pro-
cessing time per item. Actually, this is a reasonable as-
sumption. The time for deciding whether the currently
inspected item is the target or not should depend on the
discriminability between the target and distractors. To

Figure 3. The result of fitting GS2 to the data of Treisman and Gormican (1988). The points
represent the data, and the lines, the fit of the model.
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avoid including the processing time as a second free pa-
rameter, I related it to d ¢ in a similar manner as the stan-
dard deviation of the target distribution

t 5 tmax ? , d ¢ ³ 0. (10)

The value of parameter tmax in Equation 10 was set to
150 msec. This value and the constant 3 were chosen in
order to obtain processing times that lie in a reasonable
range for the expected values of d ¢. With this additional
relation, all eight search functions could be fit by one set
of fixed parameter values and the constant c and the mean
of the target activation as free parameters. The result is
given in Figure 3, in which the lines represent the pre-
diction of GS2 with the obtained parameters. In Table 1,
the corresponding parameter values are given. Note that
only the values in the first two columns were estimated.
The other values were simply calculated from those in
the second column.

This example shows that even fitting a small number
of data points is not trivial with only two free parameters.
However, by assuming reasonable relations between sev-
eral parameters, GS2 can explain the data quite well. As
a result, the model fit suggests that, when visual search
proceeds serially, as assumed for GS2, discriminability
not only affects the mean activations but also the pro-
cessing or decision time per item. Thus, GS2 provides a
serious alternative to the pooling account of Treisman
and Gormican (1988).

Discussion
In the present article, formulas were derived for com-

puting visual search times according to the GS2 model
(Chun & Wolfe, 1996; Wolfe, 1994). They can be used
for deriving and investigating general properties of the
model. Moreover, with these formulas it is possible to fit
GS2 to data by means of standard minimization proce-
dures. The usefulness of this has been demonstrated by
an example in which GS2 was fit successfully to search
functions representing a search asymmetry. It should be
mentioned that Wolfe (1994) already simulated a search
asymmetry with respect to orientation. However, in his
study, the simulation relied on the prototype account of
Treisman and Gormican (1988). Moreover, he simulated
only the qualitative aspects of this phenomenon and did
not fit GS2 to real data.

A further application of the present approach is pro-
vided in Hübner and Malinowski (2001). They even ex-
tend GS2 and provide an account of the phenomenon that,
under certain conditions, an absent advantage occurs (i.e.,
absent responses are faster than present responses; cf.
Humphreys, Quinlan, & Riddoch, 1989; Müller, Hum-
phreys, & Donnelly, 1994).

The present derivations focus mainly on search times
and deal only partly with errors. One reason is that errors
are not well elaborated in GS2. To account for errors,
particularly for false alarms, educated guesses are pro-
posed. For instance, Chun and Wolfe (1996) assumed that
the likelihood of a guess increases with elapsed search
time. When a guess occurs, the probability of an absent
response was set to .80 and that of a present response to
.20. However, there are alternative and more plausible ac-
counts for errors. One way would be to abandon the as-
sumption of perfect matches (cf. Zenger & Fahle, 1997).

Nevertheless, since the most important information is
usually contained in the search times, the provided for-
mulas should be useful for examining and modeling visual
search behavior. Moreover, the formulas also allow vari-
ances to be predicted. Therefore, future studies should
take them into account.
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